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Abstract

With the advent of structural genomics, the need for fast structural information about unknown proteins has in-
creased. We describe a new methodology, based on "*C, N and 'H chemical shift dispersion to predict the amount of
secondary structure of unassigned proteins from their *N- and/or °C-edited heteronuclear single quantum coher-
ence (HSQC) spectra. This methodology has been coded into a software called PASSNMR (Prediction of the
Amount of Secondary Structure by Nuclear Magnetic Resonance), which can be accessed directly from the Internet.
PASSNMR program is a powerful tool for screening proteins for proteomic or structural genomic investigations when
used with recent methodologies that take advantage of the use of the antibiotic rifampicin to selectively label the
heterologous proteins expressed in E. coli. PASSNMR analysis can be useful as a first approach to predict the
amount of secondary structure in proteins to structural genomics. Information about the secondary structure of pro-
teins can be obtained even before protein purification, with small quantities of protein, just by performing two simple
nuclear magnetic resonance (NMR) experiments and using PASSNMR program.
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Introduction

The genome of a variety of organisms has been se-
quenced and the scientific community is now investigating
the large amount of information available. Understanding
the functioning of the newly discovered genes will have a
great impact on almost all fields of research and may lead to
novel treatments for cancers and other diseases (Onyango
et al., 2004; Smith and Sacchettini, 2003; Chambers et al.,
2000; Christendat, 2000). The scientific community is dis-
cussing strategies for quickly analyzing this deluge of new
information. In this sense, computational methods are im-
portant for mining the genome to look for primary, second-
ary and tertiary structure homologies between proteins.

One problem in structural proteomics is that only a
small group of protein folds are determined because the se-
lection of proteins for experimental analysis is often based
on their solubility and flexibility. In this way, this leads to
the same classes of “well-behaved” proteins being selected
for study and, consequently, only known folding motifs be-
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ing resolved. The major challenge in this field is to develop
methods for pre-screening potential structural targets for
possible novel folding structures patterns. The process of
pre-screening is principally accomplished by computa-
tional processes which restrict protein candidates (Linding
et al., 2003; Christendat et al., 2000; Brenner, 2000). Tar-
get proteins have to be prioritized according to interest and
accessibility and improved target-screening methods can
be very important because the selection of appropriate can-
didates relies on arbitrary boundaries and is thus largely im-
precise (Brenner, 2000). Prestegard et al. (2001) proposed
the use of NMR spectroscopy as a tool for the selection of
structured proteins as targets for structural determination.

The dependence of 'Hao, 'HY, '*C chemical shifts on
the secondary structure of proteins has been extensively
studied (Tjandra and Bax, 1997; Osapay and Case, 1994;
Spera and Bax, 1991; Wishart et al., 1991; Wishart ef al.,
1991b; Pastore and Saudek, 1990; Williamson, 1990; Saito,
1986; Ando et al., 1984; Pardi et al., 1984). Heteronuclear
correlation spectra (*C/"*N) can be obtained without pro-
tein purification and at low cost by using the rifampicin
protocol recently proposed by our group (Galvao-Botton et
al.,2003; Almeida et al., 2001). This methodology enables
the selective >C/"°N labeling of the heterologous protein
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expressed in bacteria. The present paper describes a new
methodology to extract quantitative information from hete-
ronuclear correlation spectra edited by '°N and/or °C with-
out requiring resonance assignments. It is possible to
predict the amount of secondary structure only based on
cross peak dispersion. This methodology was coded into a
computer program for the prediction of the amount of sec-
ondary structure by NMR (PASSNMR) which was de-
signed in our laboratory to be used in combination with the
rifampicin protocol (Galvao-Botton ef al., 2003; Almeida
et al., 2001), thus creating a system for rapidly screening
the structure of protein candidates for possible structure de-
termination in structural proteomics.

Material and Methods

The PASSNMR program was written in the Practical
Extraction and Report Language (Perl) version 5.0 using an
IBM-PC workstations running Linux version 2.2, and
should be fully compatible with all Unix variants and Win-
dows systems. Starfiles of 72 proteins were obtained from
BioMagRes Bank (Seavy et al., 1991) and their resonance
assignments were used to reconstruct both *C- and '"N-
HSQC spectra of these proteins. Only Starfiles of proteins
that had complete °C and "N assignments and three-
dimensional structures determined by NMR were used.

Training procedures

The amount of a-helix and -sheet, and non-a.3 struc-
ture was determined by analysis of the structure of the 72
proteins as found in the Protein Data Bank. These values
are represented as a percentage at the primary sequence in-
volved in these 3 structural motifs, such that the sum of all 3
is 100%. The non-af} structural types includes random coil,
loops, turns, etc.

We devided *C-HSQC and ""N-HSQC spectra into
10x10 areas (Figure 1) and determined the fraction of the
total number of peaks within each area for every protein.
The number of peaks in some areas was found to be propor-
tional to the amount of secondary structure the protein had.
The areas that showed a correlation coefficient greater then
0.3 (i.e. moderately correlated according to Anderson and
Finn (1996)) between the fraction of the total peaks within
that area (n;) and the amount of secondary structure (P)
were considered as one individual hint (P;) for the training
procedure for the amount of secondary structure in the pro-
tein.

The slope and the intercept of the regression line fit-
ting the points of each area was substituted into Equation 1a
to calculate the individual hints for each area. The hints
were taken into account using the square of the correlation
coefficient of the correlation curve for each area as a weigh-
ing factor. For the first prediction, the weighted average on
the correlation coefficient for all individual hints was cal-
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Figure 1 - PC-HSQC(A) and "N-HSQC (B) spectra reconstructed from
Star files. *C-HSQC(A) and "N-HSQC (B) spectra of proteins Rous Sar-
coma Virus Capsid Protein (filled circles) and Periplasmic Chaperone
FimC (open circles) were simulated from their Star files. These proteins
are predominantly a-helical and B-sheet, respectively. The spectra were
divided into 100 areas, as shown, and the fraction of the total peaks in each
area was analyzed. Areas used in prediction are shown in Table 1.

culated for both “C-HSQC and ""N-HSQC spectra as
shown in Equation 1b.

P :(ni_bi) (1a)

(1b)

where P; is the individual hint of the area i; n; is the fraction
of peaks that lie on the area i; @; and b; are, respectively, the
slope and intercept of the curve in area #; P is the unrefined
prediction of the amount of the secondary structure and r; is
the correlation coefficient for the area i.

External refinement: as the sum of all types of sec-
ondary structure in protein should be equal to 100%, the
predicted values of the amount of a-helix, B-sheet and
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non-aff structure for each protein were summed and the
values corrected such that to the sum reached 100%. We
corrected the predicted values according to the inverse of
their correlation coefficient using the equation:

P P+ (100—P)Z(F’2) 2)
V.

2.0

where P, is the externally refined value of the prediction;
P is the unrefined value of the prediction; 7, is the sum of the
correlation coefficients of the areas for all three types of
structure and 7; is the sum of the correlation coefficient of
the areas for the secondary structure that is being corrected.

Internal refinement: another refinement was applied
to increase the fidelity of the prediction. The slope and the
intercept values of the correlation plot (between the exter-
nally refined prediction and the real values of secondary
structure) are forced to become 1 and 0, respectively. Thus,
in all data points for the three kinds of structure, the equa-
tion of the straight line formed by the correlation between
the real and the predicted values for each kind of structure
was applied as:

(Pext _bp )

Py =——— )

a,

where P;,; is the amount of secondary structure after inter-
nal refinement, and a, and b, are, respectively, the slope
and the intercept of the linear regression from P,,, predic-
tions.

Many other conditions and refinement methods were
tested (e.g. a different number of areas, etc.) but none of
them gave results as good as those used.

The input for PASSNMR prediction must be a text
peak list files of *C-HSQC and ""N-HSQC spectra but peak
assignment in unnecessary.

Results

To correlate chemical shift dispersion with the
amount of secondary structure, “C-HSQC and "N-HSQC
spectra were constructed based on the assignments ob-
tained from Star files of 72 proteins taken from the Bio-
MagRes Bank. The spectra were divided into areas (Figure
1) and the number of peaks in each area counted. The ratio
of the number of peaks in each area divided by the total
number of cross-peaks in each spectrum was calculated and
found to be proportional to the amount of secondary struc-
ture in each protein obtained from the protein data bank
(q.v. Materials and Methods).

The C-HSQC (A) and ""N-HSQC (B) spectra of
Rous Sarcoma Virus capsid protein (Campos-Oliva et al.,
2000) (Figure 1, filled circles) and Periplasmic Chaperone
FinC (Pellecchia et al., 1998) (Figure 1, open circles) were
divided into areas as described in the Material and Me-
thods.

Secondary structure prediction for structural proteomics

Anderson and Finn (1996) considered that correlation
coefficients of between 0.3 and 0.6 are moderate, so the ar-
eas with correlation coefficients within this range were
used as an individual hint for secondary structure predic-
tion. No area showed a correlation coefficient higher that
0.6 and areas with a correlation coefficient lower than 0.3
were discarded. Areas that displayed moderate correlation
coefficients between the percentage of total peaks and the
amount of secondary structure in the proteins for both in
BC-HSQC and "N-HSQC are shown in Table 1.

Some areas showed opposite correlation with the
amount of a-helix and [-sheet in proteins, i.e., the greater

Table 1 - Correlation coefficients for all the areas used for training the
PASSNMR software. Area B7 was not used because it gave a positive
correlation for both B-sheet and non-af structure.

quadrant correlation coefficient
a-helix B-sheet non-a.§
13C-HSQC A7 - 0.33 -
A8 - 0.40 -
B7* -0.50 0.31 0.42
B8 -0.47 0.42 -
C6 -0.38 - 0.39
C7 - - 0.42
C8 - - 0.39
D8 0.42 -0.38 -
F6 - 0.34 -
G4 0.33 - -
G6 0.30 - -
H5 -0.40 0.39 -
I3 - 0.32 -
13 - 0.31 -
15N-HSQC C7 - 0.32 -
C8 -0.30 0.31 -
D5 -0.34 0.45 -
D6 -0.41 0.45 -
D7 -0.47 0.53 -
D8 -0.51 0.50 -
D9 - 0.33 -
E5 - 0.33 -
E8 -0.47 0.44 -
F6 0.44 -0.40 -
F7 - -0.31 -
G6 0.53 -0.38 -
G7 0.52 -0.53 -
H4 - 0.31 -
H6 - -0.35 -
H7 - -0.32 -

*Area B7 was not used since it gave positive correlation for both B-sheet
and non-o.f3.
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the number of peaks for an a-helical protein, the smaller the
number of peaks for a 3-sheeted protein in the same area,
and vice versa. For instance, area B8 of *C-HSQC showed
negative correlation with a-helix and positive with B-sheet
(Table 1 and Figure 2).

The areas that showed moderate correlation (Table 1)
were selected for coding the software. The slope and inter-
cept obtained for the curve of each area were used to build an
empirical equation (Equations la and 1b, Materials and
Methods). With individual hints weighted with the square of
the correlation coefficient. The square of the correlation co-
efficient indicates the probability of the event predicted in
the correlation (Anderson and Finn, 1996), with the correla-
tion coefficient of 1 indicating a 100% chance of the event
occuring. Area B7 was not used because it gave positive cor-
relation both for B-sheet and non-a§ structure (Table 1).

The correlations between the predictions made by
PASSNMR and the real amount of secondary structure in
the 72 proteins, obtained from PDB, for a-helix, B-sheet
and non-of3 are shown in Figure 3. We named this first pre-
diction as ‘unrefined’, because it was based only on the in-
dividual hints given by each area (Equation 1a and 1b). The
unrefined prediction had good correlation with the real val-
ues for most proteins, with correlation coefficients of 0.84
for the a-helix, 0.86 for the 3-sheet and 0.48 for the non-o.3
structure.

Since the sum of all types of secondary structure in
proteins must reach 100%, we summed the amount of the
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Figure 2 - Selected areas that showed opposite correlation between per-
cent of total peaks and the amount of a-helix (top set) and B-sheet (bottom
set) in both *C-HSQC(A) and ""N-HSQC(B) spectra.
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three types of secondary structure for all proteins and the
values for the unrefined prediction of total structure
rounded 100% (Figure 4). This means that, although the
primary prediction of the three types of secondary structure
was based on three independent parameters, the total
amount of secondary structure of the proteins was very
close to the actual value. This can be used as a first argu-
ment for the reliability of the prediction. The prediction was
refined by correcting the previous unrefined prediction as-
suming that the sum of the predicted percentage for the
three kinds of structure (a-helix, B-sheet and non-o3 struc-
ture) reached 100% in every protein studied. In cases where
that sum was not equal to 100%, the external refinement
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Figure 3 - Unrefined prediction. Prediction of the amount of secondary
structure in proteins from unrefined data as shown in Material and
Methods. The correlation coefficients observed between real and pre-
dicted values were 0.84 for a-helix (A); 0.86 for B-sheet (B) and 0.48 for
non-of3 (C).
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Figure 4 - Sum of the three kinds of secondary structure. The amounts of
a-helix, B-sheet and non-a.f of unrefined prediction were summed and the
total secondary structure rounded 100%. A line was drawn in 100%
merely to guide the eyes.

was applied as in Equation 2. The external refinement (q.v.
Material and Methods) raised the correlation coefficient be-
tween real and predicted values to 0.85 for a-helix, 0.86 for
[-sheet and 0.65 for the non-a structure. Although the ar-
eas correlation coefficients are considered moderated (0.3
to 0.6), the result correlation is strong (>0.6) (Anderson and
Finn, 1996). This was due to the large number of individual
hints for each kind of secondary structure and resulted in a
more reliable prediction.

Internal refinement was then applied to the three
kinds of structure as in Equation 3. Because the correlation
coefficient of a curve is not affected by multiplying it val-
ues by a constant, internal refinement did not improve the
correlation coefficients of predicted data but did improve
the reliability of the prediction. The final correlation after
external and internal refinements between real and pre-
dicted amounts of structure for a-helix, B-sheet and non-a3
strucutre is shown in Figure 5. The same correlation done
exclusively with areas from the "N-HSQC spectra (data
not shown) produced correlation coefficients of 0.70 for
a-helix and 0.71 for B-sheet, but non-of3 structure cannot
be estimated using only "N-HSQC data, so the non-aff
structure values are more reliable if calculed by subtracting
the sum of the values for the o and 3 structures from 100%.

As a test case, we used BioMagRes Bank proteins
with complete assignment and their three-dimensional
structure solved by X-ray crystallography. These proteins
were not used to build PASSNMR because their NMR
structures were not available. The efficiency of the method
is illustrated by the top set data in Table 2. Most of the pre-
dictions are in good agreement with the X-ray structure.
Note that the PASSNMR program was able to identify the
absence of a-helix in domain 1 of CD2. The predictions us-
ing only the "N-edited spectrum were also efficient.

We also used the PASSNMR program to investigate
some proteins that are being studied in our laboratory. The
results were compared with homologous proteins that have
their three-dimensional structure deposited in Protein Data
Bank (PDB). The values for the amount of a-helix, B-sheet
and non-af3 structure for these proteins are given in the
middle and bottom data sets of Table 2. The prediction for

Secondary structure prediction for structural proteomics
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Figure 5 - Prediction of the amount of secondary structure in proteins. Af-
ter external and internal refinements (see material and methods), the cor-
relation coefficients observed between real and predicted values for
proteins secondary structure were 0.85 for a-helix(A); 0.86 for B-sheet
(B) and 0.65 for non-a,p (C) structure.

P. sativum plant defensin was compared both with homolo-
gous proteins and with real values from the NMR structure
determined in our laboratory (Almeida et al., 2002). As can
be seen (Table 2), the predicted values are in good agree-
ment with the PDB data, taking in account the possible
structural differences between the proteins used and their
homologues. Here again the prediction using only '°N-
HSQC data were in good agreement with the actual amount
of secondary structure in the tested proteins. It is worth
mentioning that the PASSNMR program could detect the
absence of a -sheet in the Opaque2 protein. Although the
structure of this protein is not solved it is known to be fully
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Table 2 - Comparison of PASSNMR predictions for selected proteins with full NMR assignments in the BioMagRes Bank and known crystal structure
(top set). The sets with asterisks show PASSNMR prediction for three proteins with unknown structure. These sets present some homologous proteins de-

posited in the Protein Data Bank (PDB). The PDB codes are in parentheses.

PASSNMR (%) 15N PASSNMR (%) Content from PDB data (%)
a-helix  B-sheet  non-af a-helix  B-sheet a-helix ~ P-sheet  non-of

Ovomucoid third domain (20VO) 13 15 76 24 22 17.86 12.55 69.59
Cutinase Fusarium solani (1CUA) 19 18 62 33 26 32.71 12.62 54.67
Domain 1 of rat CD2 (1CDC) 0 40 63 0 60 0 35.35 64.65
Adenilate kinase E. coli / Ap5 (1AKE) 22 22 52 35 31 43.46 15.89 40.65
Pyrophosphokinase E. coli / MgAMPPCP (1EQO) 3 27 73 6 40 28.48 22.78 48.74
plant defensin P. sativum* 13 25 61 21 36 2391 28.26 47.83
y-1-P-thionin T. turgidum (1GPS) 21.28 36.17 42.55
y-1-P-thionin H. vulgare (1GPT) 234 36.17 40.43
antifungal protein 1 R. sativus (1AY]) 21.57 31.37 47.46
yeast thioredoxin* 40 8 45 63 9
thioredoxin B. acidocaldarius (1QUW) 36.19 19.05 44.76
thioredoxin B. reinhardtii (1TOF) 39.29 19.64 41.07
thioredoxin E. coli (1XOA) 36.11 25.93 37.96
thioredoxin H. sapiens (3TRX) 32.28 24.76 42.86
opaque2 CxL* 63 0 24 100 0

*PASSNMR prediction for three proteins with unknown structure.

helical since it is a coiled coil leucine zipper (Moreau et al.,
2004).

Discussion

The chemical shift index is a reliable parameter for
determining the secondary structure in proteins (Wishart
and Sykes, 1994; Wishart, et al., 1992; Wishart et al.,
1991a,b). Although 2D heteronuclear correlation spectrum
by itself provides no information regarding chemical shift
assignments, some data on the secondary structure of pro-
teins can be extracted from spectral chemical shift disper-
sion. In principle, such data contains information relating to
the amount of a-helix and B-sheet present in the protein
(Wishart and Sykes, 1994; Wishart, ef al., 1992; Wishart et
al., 1991a,b).

Many methods have been developed to speeding up
structural characterization of unknown proteins, mainly af-
ter the advent of genome sequencing projects. Most meth-
odologies have the objective of finding structural similari-
ties with known proteins. Primary structure homology has
been used for this purpose and is undoubtedly one of the
most useful methods (Altschul ef al., 1990). Without pri-
mary sequence homology, function can be annotated from
secondary or tertiary homology with known proteins (Bha-
duri et al., 2004; Jung and Lee, 2004; Li and Lu, 2001;
Meiler et al., 2000; Jones, 1999a,b; Rychlewski et al.,
1999; Thompson and Goldstein, 1997; Sander and Schnei-
der, 1991; Kabsch and Sander, 1983). Methods to find sec-
ondary and tertiary structure homology are continuing to be

developed and become more reliable when based on, or as-
sociated to, experimental data. For example, Bujnicki ef al.
(2001) used NMR secondary structure restrains and Monte
Carlo dynamics to make a blind prediction of the tertiary
structure of the N-terminal domain of the I-TEVI homing
endonuclease and Cornilescu et al. (1999) developed a soft-
ware to predict the ¢ and y angles in proteins by searching a
database for chemical shift and sequence homology, while
Ayers et al. (1999) proposed the use of NMR secondary
structure assignments to perform similarity searches and
fold recognition of unknown proteins.

A technique for predicting the amount of secondary
structure based on NMR data without the need of assign-
ments is shown in our paper and resulted in the PASSNMR
program. The reliability of the predictions can be estimated
from the square of the correlation coefficients as 72% for
a-helix, 74% for B-sheet and 42% for non-af but if only
"N-HSQC data is used the correctness of the prediction is
49% for a-helix, 50% for B-sheet.

The prediction of the amount of non-a.f} structure was
not as good due to the lower number of areas showing cor-
relation between the number of peaks and the amount of
non-a} structure (Table 1), possibly because it is a class
with several types of structure (random coil, loops, turns,
etc.). However, this behavior does not decrease the reliabil-
ity of the method since the predicted amount of non-a§
structure can be corrected using the values from o-helix
and B-sheet. Even so, users of PASSNMR program should
note that, in cases where the sum of the three kinds of struc-
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tures is not equal to 100%, the value for the amount of
non-o.f} structure is the less accurate. In fact, after the exter-
nal refinement, only the correlation coefficient for non-a3
structure changes significantly, indicating that the predic-
tion for this kind of structure is based not only on the areas
hints but mainly on the a-helix and -sheet values.

We recently proposed the use of rifampicin for the se-
lective labeling of heterologous proteins expressed in E.
coli (Galvao-Botton et al., 2003; Almeida et al., 2001).
This simple methodology permits very rapid preparation of
uniformly "N/"*C-labeled NMR samples because purifica-
tion is not demanded. It is possible to obtain a good quality
NMR spectrum in few minutes at low cost, preparing the
sample in 20-50 mL of growth media. Serber et al. (2001)
reported the in situ HSQC spectrum of a protein in living
cells. PASSNMR can still give quantitative information on
the secondary structure of the proteins inside the cell.

The PASSNMR program can provide important in-
formation, especially on structural proteomics, by provid-
ing clues on how structured the protein is and which kind of
secondary structure is present. This information can be use-
ful for classifying proteins in structural groups, for testing
the optimal sample conditions (e.g. pH and salt concentra-
tion) and for choosing more structured proteins to high
throughput production for three-dimensional structure de-
termination by NMR spectroscopy or X-ray crystallogra-
phy. One step in target selection which limits the number of
working proteins is the solubilization and formation of
well-diffracting crystals and good NMR spectra (Christen-
dat et al., 2000). The main reason for this limitation may be
the presence of unstructured regions in the proteins. In fact,
the number of deposits in the protein data bank decreases
steeply when the amount of unstructured regions in pro-
teins is higher than 10% (Prestegard et al., 2001). The
PASSNMR program, used in conjunction with the rifam-
picin protocol (Galvao-Botton ef al., 2003; Almeida et al.,
2001), can provide important information on the amount of
protein secondary structure within a few days of protein ex-
pression, small growth media volumes and easy and rapid
NMR methods. This information can be used not only to se-
lect more structured targets for three-dimensional structure
determination, but also to test better sample preparation
conditions to increase the solubility and decrease the flexi-
bility of unstructured regions of the proteins under investi-
gation.

There are several advantages of using the PASSNMR
program over other current methodologies. Wishart et al.
(1991a,b) analyzed the prediction made from circular
dichroism (CD) data for 14 proteins and found about about
32% of precision for a-helix, and a level of precision com-
parable to that of the PASSNMR program for 3-structure.
In addition, CD spectroscopy requires pure protein samples
while PASSNMR prediction can be obtained without pro-
tein purification, making PASSNMR useful in target selec-
tion for structural proteomics.

Secondary structure prediction for structural proteomics

Many algorithms have been developed for the theo-
retical prediction of the protein secondary structure (Liu et
al.,2004; Jones, 1991a,b; Rychlewski ef al., 1999; Thomp-
son and Goldstein, 1997; Sander and Schneider, 1991) and
although most of these algorithms are very accurate and
useful, they provide no information concerning the real
state of the sample because this can be modified by chang-
ing the conditions of the medium (e.g. pH, concentration of
ligands, ionic strength and temperature), so methods such
as PASSNMR, based on experimental data, may be more
reliable than the use of theoretical algorithms.

The use of chemical shift dispersion to perform sec-
ondary structure prediction is not new and has been shown
to be very reliable (Ayers et al., 1999; Osapay and Case,
1994; Spera and Bax, 1991; Wishart et al., 1991a,b; Corni-
lescu et al., 1991). Indeed, the use of the chemical shift in-
dex (CSI) as restrains for structure calculation has been
considered and is a powerful tool to this end (Cornilescu et
al., 1991). However, chemical shift assignments are re-
quested by all methods based on CSI. Although PASSNMR
is less precise than some CSI methods, it has a great advan-
tage that if it is used together with rifampicin protocol
(Galvao-Botton et al., 2003; Almeida et al., 2001) both
chemical shift assignment and protein purification are un-
necessary. Prestegard er al. (2001) proposed the use of
NMR as a tool for target selection for structural proteomics
and, as mentioned above, the PASSNMR program can be
used for structure proteomics without the need for protein
purification because PASSNMR predictions can be made
with the same samples used to test the expression of the
proteins. This is very useful when a fast screening is re-
quired for choosing more structured proteins, such as in the
selection of targets for structural proteomics.

Abbreviations

HSQC: Heteronuclear Single Quantum Coherence;
PASSNMR: Prediction of the Amount of Secondary Struc-
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