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Abstract: The implementation of digital manufacturing technologies (DMTs) represents the 
beginning of transforming a manufacturing system towards a smart manufacturing system (SMS). 
Assessing the performance of the DMTs implemented is essential to meet the objectives in a SMS 
and allows identifying their usefulness. However, estimating this performance is a challenging task 
due to the heterogeneous characteristics of the DMTs, such as the origin of information, capacity, 
connectivity, etc. Although some SMS performance measurement metrics are known, none are 
intended to identify the performance of DMTs. This article follows a methodology for the construction 
of technological performance indicators and proposes a novel indicator based on the individual 
characteristics of the DMTs and the smart factory concept of interoperability. The proposed indicator 
allows approaching the behavior of one or multiple DMTs implemented simultaneously and 
introduces a quantifiable measurement that can be applied to any industrial process. It is noteworthy, 
that such an indicator is not present in the literature and may be of great interest to enterprises 
currently implementing DMTs related to SMS. The applicability of the indicator considering multiple 
DMTs is validated through an illustrative test case. 

Keywords: Digital manufacturing technologies; Smart manufacturing; Indicator; Interoperability, 
Measurement. 

Resumo: A implementação de tecnologias de fabricação digital (DMTs) representa o início da 
transformação de um sistema de fabricação em um sistema de fabricação inteligente (SMS). Avaliar 
o desempenho dos DMTs implementados é essencial para cumprir os objetivos de um SMS e 
permite identificar a sua utilidade. No entanto, estimar esse desempenho é uma tarefa desafiadora 
devido às características heterogêneas dos DMTs, por exemplo, origem da informação, 
capacidade, conectividade etc. Embora algumas métricas de medição de desempenho de SMS 
sejam conhecidas, nenhuma é específica para identificar o desempenho dos DMTs. Este artigo 
segue uma metodologia para a construção de indicadores de desempenho tecnológico e propõe 
um novo indicador baseado nas características individuais dos DMTs e no conceito de 
interoperabilidade de fábrica inteligente. O indicador proposto permite abordar o comportamento de 
um ou vários DMTs implementados simultaneamente e apresenta uma medição quantificável que 
pode ser aplicada a qualquer processo industrial. É imortante destacar que tal indicador não está 
presente na literatura e pode ser de grande interesse para as empresas que estáo atualmente 
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implementam DMTs relacionadas ao SMS. A aplicabilidade do indicador considerando vários DMTs 
é validada através de um caso de teste ilustrativo. 

Palavras-chave: Tecnologias de fabricação digital; Fabricação inteligente; Indicador; 
Interoperabilidade, Medição. 

1 Introduction 

Currently, many industries are transforming into a smart manufacturing system (SMS) 
by adopting advanced Information and Communication Technologies (ICT) to increase 
the level of automation and digitization of production, manufacturing, and industrial 
processes. The ICTs involved in this transformation are known as technological enablers, 
which are pillars of the industry 4.0 (I4.0) concept, such as emerging digital technologies, 
digital manufacturing technologies (DMTs), etc. The DMTs mainly mentioned in the 
literature include the Internet of things (IoT), cloud computing, integration systems, 
industrial robots, simulation, virtual reality, big data, cyber security, additive 
manufacturing, and various analytics techniques (Kamble et al., 2020). 

From the academic point of view, some of the technologies examined are still rapidly 
transforming (Lu, 2017). This is due to the unprecedented increase in the number of 
technology sources and the heterogeneity in their characteristics (e.g., the origin of 
information, capacity, and connectivity). Integrating of the operation of the DTMs and 
their effective use allows achieving the SMS objectives (Wu, 2009). Therefore, 
analyzing the characteristics of DTMs is essential to discover their performance (Wu, 
2009). Furthermore, DMTs can be implemented individually or in combinations, which 
reinforces the importance of exploring the interoperability feature. 

Performance is an expression that compares the achievement of a process, device, 
or product to a given reference level and indicates a deficiency that can then be acted 
upon (Kamble et al., 2020). An exponential increase in the literature on DMTs can be 
seen in this direction. For example, the authors of Büchi et al. (2020) identify the main 
characteristics of I4.0 and its DMTs and verify the causal relationship between the 
degree of openness to I4.0 and performance. In Nara et al. (2021), the authors propose 
a model to analyze the impact of I4.0 technologies on several key performance 
indicators related to sustainable development. In Dalenogare et al. (2018), the authors 
discuss work contributes by examining the real expectations on the industry's future 
performance when implementing DMTs, providing a background to advance in the 
research on tangible benefits of I4.0. These studies mention the characteristics of 
DMTs, their positive relationship between them, their impact, and possible benefits for 
SMS (Büchi et al., 2020; Cugno et al., 2021). The literature reports performance 
measures of some DMTs, such as big data, evaluating characteristics such as volume 
of information, variety, and veracity (Ferrari et al., 2017). Furthermore, IoT performance 
by assessing features such as latency and unlimited throughput (Cappa et al., 2021). 
However, the literature lacks a measurement indicator where the performance is 
considered according to the interaction between different DMTs. 

Therefore, this article proposes a performance indicator for DMTs to ascertain their 
usefulness, considering the individual characteristics of each DMT and the connection 
between them under the concept of interoperability. Compared to the available 
performance measurements of DMTs, the proposed indicator considers the state of 
operation from a technical point of view with a quantitative perspective. This paper uses 
the performance indicator design methodology proposed in Ibarguen-Valverde et al. 
(2017) as a guide, starting with a diagnostic to identify the testing features. Next, it 
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compares of how interoperability between DMTs has been measured in the literature, 
followed by the proposal of the mathematical model. The development of the 
mathematical model was inspired by a structure presented in the Society of Automotive 
Engineers (SAE) J4000 standard developed by the SAE, establishing a numerical 
measure of the expected level and the actual value of a specific element (SAE, 1999). 
Finally, the proposed indicator is tested in an application case. It is noteworthy, that 
such an indicator is not present in the literature and may be of great interest to 
enterprises currently implementing DMTs related to SMS. 

The rest of the paper will be structured is as fallows. In Section 2, an overview of 
the existing literature is presented, where we investigate available approaches to 
measure the performance of DMTs. In Section 3, we present the methodology for the 
construction of the technological performance indicators. Furthermore, we introduce 
the proposed novel indicator based on the individual characteristics of the DMTs and 
the smart factory concept of interoperability. 

2 Theoretical background 

The expected effects of the adoption of DMTs in SMS have been a topic of interest 
during the last years. The positive effects of adopting the DMTs in SMS are associated 
with their correct implementation, prepared human resources, the functionality of the 
technologies, among others (Dalenogare et al., 2018; Nara et al., 2021; Büchi et al., 
2020; Zeid et al., 2019; Silva et al., 2022; Cugno et al., 2021). 

The performance measures have been considered according to the characteristics 
of the DMTs. Some of these characteristics are analyzed from a qualitative point of 
view and others from a quantitative point of view. Quantitatively, the performance of 
DMT Big data has been addressed in (Ferrari et al., 2017), analyzing these three 
characteristics: volume, variety, and veracity. Table 1 shows the proposed measure for 
each feature. 

Table 1. Definitions and Measures for Big Data Volume, Variety, and Veracity from Cappa et al. (2021). 

Big Data 
Dimensions Definition Measure 

Volume Amount of data collected Number of mobile device applications 
downloaded 

Variety Assortment of data collected per 
observation 

Number of types of data collected per 
application 

Veracity Reliability and insightfulness of 
data 

Percentage of employees devoted to big 
data analysis 

Similarly, DMT IoT performance has been addressed in Cappa et al. (2021) through 
latency estimation using the initiator-to-partner round-trip latency indicator (RTL IP) and 
the time offset indicator between Initiator and Partner (OFF IP). The performance of 
DMT Virtual reality has been analyzed based on quantitative characteristics such as 
projection efficiency, which considers the relationship between the spherical surface 
area and the calibrated projection area. Also, qualitative characteristics such as 
subjective quality have been examined (Hu et al., 2021). 

In the vision of DMT functionality, one of the main requirements is to achieve 
interoperability across diverse technologies (Zeid et al., 2019; Frederico et al., 2021). 
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Interoperability is “the ability for two systems to understand one another and to use the 
functionality of one another” (Chen et al., 2008, p. 648). In other words, interoperability 
is the ability of two systems to interchange data, information, and knowledge (Lu, 2017), 
(Guédria et al., 2015). The Institute of Electrical and Electronic Engineers (IEEE) 
defines interoperability as “The ability of two or more systems or components to 
exchange information and use the information that has been exchanged” (Geraci, 1991, 
p. 42. The stated role of interoperability within the needs of SMS is to synthesize 
software components, business processes and application solutions through a 
diversified heterogeneous and autonomous process. To achieve a level of 
interoperability, establishing global standards and architecture guidelines is necessary 
for the development of SMS (Burns et al., 2019; Pedone & Mezgár, 2018). For 
example: Reference Architecture Model for Industry 4.0 (RAMI 4.0), Standards 
Landscape for Smart Manufacturing Systems, and National Smart Manufacturing 
Standards Architecture Construction Guidance. In Saturno et al. (2017) an analysis of 
the level of interoperability between systems within an existing automation platform 
(ISA-95) is presented. This work uses the AHP method for this evaluation, extracting 
criteria from the literature and the experience of experts. 

Interoperability measures can be approached from both qualitative and quantitative 
perspectives. Qualitative measures use a rating scale made up of linguistic variables (for 
example, “Good,” “Optimized,” and “Adaptive”) to rate a system. Qualitative measures 
are commonly used in maturity models. Quantitative measures define numerical values 
to characterize interoperability. In general, the rating scale is from 0 to 100%. For 
example, some approaches use equations to determine interoperability based on the 
“actual/expected” relationship (Pedone & Mezgár, 2018). Another approach is the 
evaluation of interoperability from two criteria: independent and dependent. Independent 
criteria include cost, time, and quality. Dependent criteria include the degree of coupling 
or compatibility, as well as who evaluate the system (Neghab et al., 2015). Formal 
interoperability measures based on the semantic relations between two information 
systems are presented in Table 2 (Yahia et al., 2012). 

Table 2. Interoperability measure from Yahia et al. (2012). 

Indicator Measure 

Maximal potential 
interoperability 

𝑣𝑣1→2 = �𝑅𝑅𝑐𝑐2�

�𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 �

, where 𝑅𝑅𝑐𝑐2 is the semantic relationships and 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  is the total number of the expected semantic 
relationships to fully interoperate. 

Minimal effective 
interoperability 

𝑣𝑣1→2e = �𝑅𝑅𝑐𝑐2e�

�𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 �

, where 𝑅𝑅𝑐𝑐2e is the returned effective semantic 

relationships and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  is the total number of the expected 
semantic relationships to fully interoperate. 

Although the studies discussed above established the relevance of the functionality 
of the DMTs, the measure of this functionality, i.e., performance, for each DMTs is not 
mentioned. Moreover, the measure of interoperability between them is disregarded. 
The cited studies can be seen as a first approach to the study of the performance of 
DMTs. While studies have extensively examined measures of functionality of individual 
DMTs, there is a significant research gap in understanding the overall functionality of 
DMTs through interoperability. Figure 1 illustrates this research gap, highlighting the 
need for more research in this area. 
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Figure 1. Research gap. 

3 Performance indicator of digital manufacturing technologies: design 
and evaluation 

The methodology proposed in Ibarguen-Valverde et al. (2017) for the construction 
of energy performance indicators was adapted for the design of the technological 
performance indicator, as shown in Figure 2. The methodology begins with a diagnostic 
phase that identifies the characteristics of the DMTs with which self-performance will 
be evaluated. In addition to identifying the interoperability characteristics with which 
mutual-performance will be evaluated. This step is followed by establishing the 
mathematical model that quantifies the performance of DMTs against their expected 
performance. The final phase involves the analysis and monitoring of the proposed 
indicator; here the numerical result and its significance is established. 

 
Figure 2. Methodology for the construction of technological performance indicators. 

3.1 Diagnostic phase 

A performance indicator is a quantitative expression that compares the 
achievement of a process, device, or product to a given reference level and indicates 
a deficiency that can then be acted upon (Klovienė & Uosytė, 2019). That is why a 
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performance indicator is proposed to measure DMTs to identify functionality. The 
performance indicator considers the individual characteristics (self-performance) and 
the connection between them (mutual-performance) under the concept of 
interoperability. 

In studies such as Büchi et al. (2020), Bigliardi et al. (2020), Ardito et al. (2018) and 
Mabkhot et al. (2021), the list of DMTs is defined as: advanced manufacturing; additive 
manufacturing; augmented reality; simulation; cloud computing; industrial internet of things; 
cyber security; and big data analysis. These studies also define the characteristics of each 
DMT. A summary of the findings on DMTs is show in Table 3, where the characteristic 
identified in each DMT is evaluated according to the performance. 

Table 3. Summary DMTs. 

i DMT Definition Characteristic 

1 Industrial 
robots 

Intelligent machines capable of performing tasks in 
the world by themselves, without explicit human 

control 

Autonomy 
Perception 

Deliberation 
Productivity 

2 Simulation 

Technologies that reproducing the physical world in 
virtual models and allowing operators to test and 

optimize the settings to obtain materials, productive 
processes (discrete elements), and products 

(finished or distinct elements) 

Representation level 

3 IoT 
This corresponds to a set of devices and intelligent 

sensors that facilitate communication between 
people, products, and machines 

Latency 

Unlimited throughput 

4 Cyber 
security 

Security measures designed to protect the flow of 
information over interconnected corporate systems 

Identification and 
detection 

5 Cloud 
computing 

Technologies facilitate the archiving and processing 
of large quantities of data with high performance in 

terms of speed, flexibility, and efficiency 

Store capacity 
Secure 
Reliable 

6 Additive 
manufacturing 

This additive production process allows for complex 
products by creating layers of materials, including 

such different types of materials as plastics, 
ceramics, metals, and resins, thus eliminating the 

need to assemble the material 

Higher speed in 
prototype 

Productivity 

7 Virtual reality 
This involves a series of devices that enriches (or 
lessens) human sensory perception through the 

access to virtual environments 

Perception of reality 
Latency 

Positioning accuracy 

8 Big data and 
Analytics 

Technologies that capture, archive, analyze, and 
disseminate large quantities of data derived from 
the products, processes, machines, and people 

interconnected in a company 

Volume 
Velocity 

Variety 

9 Integration 
systems 

Integration in two dimensions: internal versus 
external. The first (horizontal integration) concerns 
the integration and exchange of information among 

the different areas in the company. The second 
(vertical integration) concerns the company's 
relationships with its suppliers and customers 

Reference Architecture 

From Zeid et al. (2019), Sun et al. (2020) and Burns et al. (2019) it is evident that 
the concept of interoperability is highly related to the performance of DMTs. Although 
some tools measure the interoperability, none of them is directly designed for its use 
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with DTMs from a technical point of view. Instead, they focus on a semantic vision of 
communication between systems, which results in qualitative characterizations. 
However, in Saturno et al. (2017), an analysis is carried out under the concept of 
interoperability of I4.0 in the areas shown in Table 4. Each area is assigned a value of 
three levels according to its degree of maturity. 

Table 4. Interoperability I4.0 areas from Saturno et al. (2017). 

Area Definition 

Infrastructure 
Define a single standard for networks and communication 
protocols between the interoperable systems facilitating the 
communication between different suppliers for the same solution 

Architecture standard 
An architecture that meets the international standards, with the 
application of open protocols and ease of access to decrease the 
complexity and barriers in the integration of this architecture 

Software platform Flexible software platforms with easy remote access and 
availability of access by Web Services 

Technology update 
Define the potential of future integration with other systems. 
Software updates facilitated and hardware components exchange 
occurs in a modular way. 

Hence, there is a gap in the literature for a quantitative indicator measuring the 
performance of DTMs based on the concept of interoperability. 

3.2 Mathematical model 

The proposed indicator is inspired by a structure presented in the Society of 
Automotive Engineers (SAE) J4000 standard developed by the SAE, which was 
developed to identify and measure companies' best lean manufacturing practices 
(SAE, 1999). The standard establishes a numerical measure of the expected level and 
the actual value of a specific element. In Lucato et al. (2019), the same standard was 
used to define the degree of general readiness for the adoption of I4.0 by a company 
considering all DMTs. However, neither SAE (1999) nor Lucato et al. (2019) measure 
performance directly. 

This paper proposes an indicator based on the parameter introduced in the SAE 
J4000 standard, that provides a performance rate of each DMTs and interaction 
performance rate between pairs of DTMs. 

The proposed indicator, here referred to as 𝑀𝑀𝑀𝑀𝑀𝑀, includes a contribution from the 
arithmetic mean of the performance evaluation of self-performance and the mutual-
performance evaluation of all pairs of technologies, Equation 1: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

ℎ
: 𝑖𝑖 ≤ 𝑗𝑗,  (1) 

where, 
- 𝑛𝑛 is the number of technologies to analyze and 𝑖𝑖, 𝑗𝑗 ∈ {1, 2, … ,𝑛𝑛}, 
- 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 is the rate of performance of the DMT 𝑖𝑖 relative to DMT 𝑗𝑗, 
- and ℎ is the number of elements in the sum. 
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It should be noted that the rate of performance can be expressed as the matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 consisting of all possible values of 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝, Equation 2: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �

𝑟𝑟𝑝𝑝11 𝑟𝑟𝑝𝑝12 …
𝑟𝑟𝑝𝑝21 𝑟𝑟𝑝𝑝22 …
⋮ ⋮ ⋱

 
𝑟𝑟𝑝𝑝1𝑗𝑗
𝑟𝑟𝑝𝑝2𝑗𝑗
⋮

𝑟𝑟𝑝𝑝𝑝𝑝1 𝑟𝑟𝑝𝑝𝑝𝑝2 … 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝
�  (2) 

The sum of all the elements 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is given by ∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 ; the condition 𝑖𝑖 ≤ 𝑗𝑗 in 

Equation 1 removes the elements located above the main diagonal from the sum; this 
is done because the matrix is symmetric (𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝). The number of elements in the 
summation is given by ℎ = 𝑛𝑛(𝑛𝑛+1)

2
. Note that the elements that correspond to 𝑖𝑖 = 𝑗𝑗 

describes the self-performance of each technology. 
Formally, 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝  is represented as the ratio between the length of the projection of the 

vector 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 and the length of 𝑟𝑟𝑒𝑒´, Equation 3. The vector 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 is referred to as the result 
vector and the vector 𝑟𝑟𝑒𝑒´ is termed the standard vector, as shown in Figure 3. 

𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑳𝑳𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆 𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽

𝑳𝑳𝒓𝒓𝒆𝒆´
  (3) 

 
Figure 3. Ratio vector result vs vector standard. 

The vector 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 is composed of the measurements related to each characteristic 
evaluating the performance between DMT 𝑖𝑖 and DMT 𝑗𝑗, Equation 4. This evaluation is 
formally defined as 𝑒𝑒𝑚𝑚, with 𝑚𝑚 representing the number of characteristics considered, 

𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆 = �
𝒆𝒆𝟏𝟏
𝒆𝒆𝟐𝟐
⋮
𝒆𝒆𝒎𝒎
�  (4) 

A characteristic (capacity) has been defined based on the properties of DMTs 
(Büchi et al., 2020; Bigliardi et al., 2020; Ardito et al., 2018; Mabkhot et al., 2021; 
Rubio et al., 2018; Rajan, 2013) for assessing the self-performance of a technology 
(corresponding to the elements 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 for 𝑖𝑖 = 𝑗𝑗): 
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a. Capacity: This measure establishes the degree of fulfilment of the principal 
characteristic of the given technology. These characteristics are shown in Table 5 
related to various DTMs. 

Table 5. Self-performance DMTs characteristic. 

i DMT Characteristic Measure 
1 Industrial robots Productivity Short cycle time 

2 Simulation Representation level 

Product and processes 
Production lines, workstations, 

internal logistics 
Enterprise, operational 

environment 

3 IoT Latency Time transferring data 
(Cappa et al., 2021) 

4 Cyber security Detection 
Physical 

Virtual (Rubio et al., 2018) 

5 Cloud computing Store capacity Substantial quantities of storage 
(Rajan, 2013) 

6 Additive manufacturing Higher speed in prototype Time prototyping (Wong & 
Hernandez, 2012) 

7 Virtual reality Perception of reality Mean Opinion Score (MOS) 
(Hu et al., 2021) 

8 Big data and Analytics Volume Amount of data collected 
(Ferrari et al., 2017) 

9 Integration systems Reference Architecture Architecture application level 

There are four possible responses to each statement that have been defined for 
measuring the characteristics described above. Each response is associated with a 
certain number of points indicating the observed degree of compliance. 

- Level 0 (L0): 0 points, characteristic 𝑚𝑚 is low in DMT i. 

- Level 1 (L1): 1 point, characteristic 𝑚𝑚 is average in DMT i. 

- Level 2 (L2): 2 points, characteristic 𝑚𝑚 is high in DMT i. 

- Level 3 (L3): 3 points, characteristic 𝑚𝑚 is very high in DMT i. 

Similarly, we proposed the analysis of the mutual-performance of DMTs based on 
the definition of interoperability considering four defining characteristics (i.e., 𝑚𝑚 = 4). 
These four characteristics have been previously used in Saturno et al. (2017) for 
analyzing interoperability; however, it must be noted that it is a general approach and 
can be tailored according to specific requirements: 

a. Infrastructure: Network infrastructure level. For example: connection modules, 
smart network. 

b. Standard architecture: Architecture implementation level. For example: 
Industrial Internet Reference Architecture (IIRA), Reference Architecture Model for 
Industry 4.0 (RAMI 4.0), ISA 95, etc. 

c. Software platform: Software implementation level. For example: SCADA, 
Communication between architectures levels, Remote communication between 
architecture levels. 
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d. Technological upgradability: Update level. For example: update between 
current devices, update adding new devices. 
Four possible responses to each statement can be defined to measure each of 

these characteristics (𝐿𝐿 = 4). Each response is associated with a certain number of 
points: 
- Level 0 (L0): 0 points, DMT 𝑖𝑖 does not share the characteristic 𝑚𝑚 with DMT j. 
- Level 1 (L1): 1 point, DMT 𝑖𝑖 partially shares the characteristic 𝑚𝑚 with technology j. 
- Level 2 (L2): 2 points, DMT 𝑖𝑖 almost completely shares the characteristic 𝑚𝑚 with DMT 

j. 
- Level 3 (L3): 3 points, DMT 𝑖𝑖 completely shares the characteristic 𝑚𝑚 with DMT j. 

The standard vector, 𝑟𝑟𝑒𝑒´, is made up of the values that describe the optimal 
performance of the process under evaluation, Equation 5. This vector represents the 
maximum possible number of points that can be obtained. In this case, the maximum 
is 3, thus, 

𝒓𝒓𝒆𝒆´ = �
𝟑𝟑
𝟑𝟑
⋮
𝟑𝟑
�  (5) 

Noting that  cos 𝜃𝜃 =  𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒∙𝑟𝑟𝑒𝑒´

𝐿𝐿𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝑟𝑟𝑒𝑒´
, and 𝐿𝐿𝑟𝑟𝑒𝑒´ =  √32𝑚𝑚, we see that Equation 3 can be 

rewritten as Equation 6, 

𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑 =  𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆∙𝒓𝒓𝒆𝒆´

𝟗𝟗𝒎𝒎
  (6) 

3.3 Indicator analysis and monitoring phase 

The values that the elements of 𝑀𝑀𝑀𝑀𝑀𝑀 can take vary between 0 and 1, where zero 
denotes the lowest level of performance and one the highest. 𝑀𝑀𝑀𝑀𝑀𝑀 depends on the 
range of values that 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 can achieve, which determines the possible vectors of 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒. 

The mutual-performance monitoring of interoperability offered by the performance 
indicator indicates the least robust relationships between DMTs, presenting an 
opportunity to improve technologies efficiency. Similarly, individual DMT evaluation 
enables the identification of strategic actions to enhance their performance levels. 

The 𝑀𝑀𝑀𝑀𝑀𝑀 indicator has been designed to measure the performance of a set of 
technologies and identify areas for improvement in a production system, which can 
ultimately lead to greater efficiency and productivity. This type of indicator is a crucial 
tool for making data-driven decisions and improving overall performance in any 
industry. 

4 Test case 

In this section, we demonstrate how the proposed indicator is implemented. 
Considering a small and medium-sized enterprise manufacturing system for which the 
ISA95 standard has been identified as architecture; a DeviceNet network used to 
connect devices at the plant level; a monitoring and simulation process with online 
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services that have the option to connect to the DeviceNet network. In addition to 
standard manufacturing devices such as milling machines, jointers, conveyors, and a 
manual station. The manufacturing system has an industrial robot in charge of high-
precision tasks, adjustable production speed, and a DeviceNet communication module. 

We identify the DMTs currently available in the process: Industrial Robots and 
Simulation. Therefore, 𝑛𝑛 = 2. Each one of the evaluation characteristics self-
performance are identified. First, we identify the following evaluation characteristics: 
short cycle time for Industrial Robots, and representation level for Simulation. 

The characteristics mentioned above are then graded using the four-point 
evaluation procedure defined in Section 3.2. Here we focus on the process used to 
obtain 𝑟𝑟𝑒𝑒11 related to the Industrial Robots performance. 

𝑒𝑒1 (L3) Short cycle time is very high in the Industrial Robots DMT due to the 
characteristics of the installed robot. 

Similarly, we focus on the process used to obtain 𝑟𝑟𝑒𝑒22 associated with the Simulation 
performance. 

𝑒𝑒1 (L1) Representation level is average in the Simulation DMT due to simulation 
being only of the process. 

Then, each one of the evaluation characteristics mutual-performance are identified: 
DeviceNet communication network for Infrastructure, ISA 95 for Standard architecture, 
and Platform online supervision for Software platform. 

The characteristics mentioned above can then be graded using the four-point 
evaluation procedure, as defined in Section 3.2. Particularly, the procedure used to 
obtain the value of the parameter 𝑟𝑟𝑒𝑒21, which is related to the mutual-performance 
between Industrial Robots and Simulation, is shown below: 

𝑒𝑒1 (L3) Simulation DMT fully shares the DeviceNet network infrastructure with the 
Industrial Robots DMT. Both the simulation software and the industrial robot have 
a DeviceNet network communication module. 

𝑒𝑒2 (L2) Simulation DMT almost entirely shares the ISA 95 standard architecture 
with the Industrial Robots DMT. The architecture defined by the ISA95 standard 
does not directly mention any level of simulation. It can thus be integrated at the 
planning level. 

𝑒𝑒3 (L3) Simulation DMT fully shares a software platform with the Industrial Robots 
DMT. Both are compatible with this platform, and it is possible to communicate 
through the initially defined network infrastructure. 

𝑒𝑒4 (L1) Simulation DMT partially shares Technological upgradability with the 
Industrial Robots DMT. Due to the simulation tool having a finite number of inputs 
to simulate. 

When all the elements 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 have been evaluated, the values of 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 can be obtained 
using Equation 6. Table 6 illustrates this process. 

Table 6. Obtained values of 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝. 

𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆 𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑 

𝑟𝑟𝑒𝑒11 = (3) 1 
𝑟𝑟𝑒𝑒12 = 𝑟𝑟𝑒𝑒21 = (3,2,3,1) 0.75 

𝑟𝑟𝑒𝑒22 = (1) 0.33 
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Finally, using Equation 1 the total performance value can be obtained as in Equation 7 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝

2
𝑗𝑗=1

2
𝑖𝑖=1

3
: 𝑖𝑖 ≤ 𝑗𝑗 = 2.08

3
 = 0.69  (7) 

 
This means that the performance of the DMTs in this manufacturing system is 69%. 

5 Discussion 

It has been found in the literature that performance can be evaluated from differing 
perspectives using various metrics. One of these perspectives concerns the concept of 
interoperability of systems; we focused on this characteristic in this paper due to the 
diversity of the DTMs analyzed and the impossibility of using other performance 
metrics. 

When compared to other indicators such as maximal potential interoperability and 
minimal effective interoperability, the proposed indicator was found to exhibit similar 
behavior to that observed when measuring interoperability between two elements. 
However, the known indicators related to interoperability measure the interoperability 
of systems in computational terms, whereas in the proposed parameterization, the 
interoperability between two technologies is measured in terms of compatibility. It is 
worth noting that the indicator proposed in this work measures the interoperability 
between all possible pairs of DTMs that are present in the process rather than 
individually, as it is done in other methodologies. 

One possible deficiency of the proposed parameterization is that the evaluation of 
the defined characteristics (capacity, digitization, and technological upgradability) may 
be subjective when assessing the self-performance of each individual technology. 

We note that the proposed methodology evaluates the overall performance of the DTMs 
in a SMS and makes it possible to separate the 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 data group; this permits the evaluation 
of individual metrics related to the process. This kind of indicator is intended for use in 
strategies related to continuous improvement and the adoption of DTMs in a SMS. 

6 Conclusion 

Monitoring systems and processes using well-defined metrics can reveals the gap 
between reality and expectations; this is how performance metrics can serve as a 
feedback tool, helping identify and correct potential problems. In this work, performance 
measures were investigated within the field of SMS; we identified performance 
measures of technologies from different perspectives; as a business model, the 
semantic vision of communication and value chain. An indicator was defined as a 
measurement pattern resulting from the observations undertaken in this methodology. 

This work presented a practical approach to the development of a quantifiable 
indicator that can be adjustable to a given environment and manufacturing process; 
this work is based on the premise that the performance of DTMs can be characterized 
by the interoperability of the various technologies present within the process. 

From a theoretical approach, this indicator starts with the identification and analysis 
of existing indicators and measures to estimate the functionality of DMTs. In this 
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analysis, the heterogeneous capacity characteristics for each DMT are highlighted, 
such as latency for IoT, volume for big data, and storage capacity for cloud computing. 

Measuring the performance of DMTs through a quantifiable indicator can have a 
significant impact on understanding how the potential of these technological tools is 
being used and identifying ways to increase their usage. The information obtained 
through the indicator can guide future DMT implementation processes in production 
systems, leading to system improvement and innovation. 

In practical terms, the proposed indicator could aid in the decision-making process 
regarding which DMTs to implement in a production system. This would be done by 
evaluating the capacity characteristics of each DMT and the interoperability 
characteristics of the DMTs as a whole, such as communication architecture and 
standard platform. Furthermore, using the indicator could improve cost evaluation 
during the DMT implementation process by analyzing the interoperability 
characteristics of different devices in the market, enabling the identification of 
compatible devices before installation and potentially reducing technological misusage. 

In future research, the proposed performance indicator could be incorporated into 
a decision-making model for the implementation of DMT in manufacturing systems. 
Evaluating the performance of a DMT assembly can determine its suitability in a 
specific manufacturing system. In addition, it is possible to extend the use in case 
studies with data from real manufacturing systems, performing simulations of the 
manufacturing system to identify the behavior of the process and how it is affected by 
the implementation of DMTs. 
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