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Effect of glazing application side 
and mechanical cycling on the 
biaxial flexural strength and Weibull 
characteristics of a Y-TZP ceramic

Glaze application on monolithic zirconia (Y-TZP) can be a practical 
approach to improve the mechanical properties of this material. Objective: 
Our study evaluated the effect of glazing side and mechanical cycling on 
the biaxial flexure strength (BFS) of a Y-TZP. Methodology: Eighty sintered 
Y-TZP discs (Ø:12 mm; thickness: 1.2 mm - ISO 6872) were produced 
and randomly assigned into eight groups (n=10), according to the factors 
“glazing side” (control – no glazing; GT – glaze on tensile side; GC – glaze 
on compression side; GTC – glaze on both sides) and “mechanical aging” 
(non-aged and aged, A – mechanical cycling: 1.2×106, 84 N, 3 Hz, under 
water at 37°C). Specimens were subjected to BFS test (1 mm/min; 1,000 
Kgf load cell) and fractured surfaces were analyzed by stereomicroscopy 
and SEM. Hsueh’s rigorous solutions were used to estimate the stress at 
failure of glazed specimens. Two-way ANOVA, Tukey’s test (5%), and Weibull 
analysis were performed. Results: The “glazing side”, “mechanical aging” 
and the interaction of the factors were significant (p<0.05). Groups GC 
(1157.9±146.9 MPa), GT (1156.1±195.3 MPa), GTC (986.0±187.4 MPa) 
and GTC-A (1131.9±128.9 MPa) presented higher BFS than control groups 
(Tukey, 5%). Hsueh’s rigorous solutions showed that the maximum tensile 
stress was presented in the bottom of zirconia layer, at the zirconia/glaze 
interface. Weibull characteristic strength (σo) of the GC was higher than all 
groups (p<0.05), except to GT, GTC-A and GTC, which were similar among 
them. The fractography showed initiation of failures from zirconia the tensile 
side regardless of the side of glaze application and fatigue. Conclusion: 
Glazing zirconia applied on both tensile and compression sides improves the 
flexural strength of Y-TZP, regardless the mechanical aging. 
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Introduction

Recent studies have shown that zirconium oxide 

ceramics present higher mechanical properties,1,2 

biocompatibil ity and low bacterial adhesion 

characteristics.3,4 However, considering that the 

conventional zirconia, first generation of yttria-

stabilized tetragonal zirconia polycrystals (Y-TZP), 

has very low translucence, it requires a glass ceramic 

veneering application, which can favor the chipping 

and fracture of veneering ceramic,5 mainly due to the 

low thermal conductivity of zirconia.6 Chipping is one 

of the most predominant failures in bilayer zirconia 

restorations.5,7,8 Therefore, the use of monolithic 

(translucent) zirconia restorations have increased, 9-11 

on which surfaces only polishing12 or glazing13,14 have 

been recommended. Glazing is preferred because it 

prevents surface damages that may lead to phase 

transformation from tetragonal to monoclinic and, 

eventually, to low temperature degradation.15 

The amount of glaze is negligible compared to 

that of glass ceramic on a bilayer zirconia restoration. 

Thus, the residual stresses at the interfaces is probably 

also very lower. So far, there is evidence that the 

application of a glass layer with low elastic modulus to 

zirconia promotes better stress distribution, because 

the maximum tensile stress is directed to the high-

modulus zirconia,16,17 improving the mechanical 

properties of the material.18 Glazing has also been 

applied in the internal surfaces of zirconia crowns 

to improve bonding to resins.19,20 Furthermore, 

considering that one of the main areas subjected to 

tensile stress is the internal surface of the crowns,21 

glaze application in this area can decrease tensile 

stress of the zirconia.16 A low thickness of glaze layer 

can also be applied under connectors areas of FDPs, 

especially in clinical situations where there is lack of 

space for veneering ceramic.

The stress at glaze/zirconia interface can vary 

depending on the side (tensile and/or compression) 

of application. Thus, the effect of glazing side on the 

mechanical properties of monolithic zirconia remains 

unclear. In the present study, it was evaluated the 

influence of glaze side application on the biaxial flexure 

strength (BFS) of 3Y-TZP ceramic, before and after 

cycling, under the following protocols: glaze on the 

tensile side, on the compression side and on the tensile 

and compression sides. The hypotheses were that: 1) 

The application of glaze on tensile and/or compression 

sides increase the flexural strength of Y-TZP; 2) The 

mechanical aging decreases the flexural strength of 

zirconia regardless the glazing application side.

Methodology

Specimen preparation
Blocks of 3Y-TZP (14×15×40 mm, YZ Vita In-

Ceram, Vita Zahnfabrik, Bad Säckingen, Germany) 

were rounded to a 15 mm diameter cylinder using a 

core drill and copious lubricant. Eighty discs (∅: 15 

mm; thickness: 2.30±0.01 mm) were then sectioned 

using a low-speed drill (Isomet, Buehler, Lake Bluff, 

IL, USA). The discs were subsequently polished with 

#600 to #1500 silicon carbide abrasives sand papers.

The specimens were sintered (Zyrcomat, Vita 

Zahnfabrik, Bad Säckingen, Germany) at 17oC/min for 

90 min, 1530°C sintering temperature for 120 min; 

cooling until 400°C, 3.5 h dwell time and 11 h total 

time, resulting in a final dimensions: diameter: 12 

mm; thickness: 1.20 mm - ISO 687222. The discs were 

randomly divided into eight groups (n=10), according 

to the factor “glazing side” (4 levels) and “mechanical 

aging” (2 levels). 

Glazing application 
The zirconia discs were ultrasonically cleaned in 

isopropyl alcohol 9% for 5 min and dried in an oil-free 

air stream at room temperature. The low-fusing glaze 

ceramic (Vita Akzent, Vita Zahnfabrik, Bad Säckingen, 

Germany) was applied to the zirconia discs, according 

to the following groups:

- Control: no glazing.

- Glaze on tensile side (GT): a low-fusing glaze 

ceramic layer was applied to one side of the zirconia 

discs. 

- Glaze on compression side (GC): a low-fusing 

glaze ceramic layer was applied to one side of the 

specimen. 

- Glaze on tensile and compression sides (GTC): 

a low-fusing glaze ceramic layer was applied on both 

sides of the discs.

The low-fusing glaze ceramic (Vita Akzent, Vita 

Zahnfabrik) was applied by means of a brush and 

sintered in the Vacumat 40T furnace (Vita Zahnfabrik, 

Bad Säckingen, Germany) as recommended by 

the manufacturing. The firing schedule was the 

following: initial temperature: 5000C; time at the 
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initial temperature: 4 min; time for temperature 

elevation: 5 to 15 min; temperature elevation rate: 

800C/min; maximum temperature: 9200C; and time 

at the maximum temperature: 1 min.

Mechanical aging in water
Half of the specimens were stored in water at 37°C 

for 24 h and the other half were subjected to 1.2 × 

106 mechanical cycles at 3 Hz and to a load of 84 N, 

under immersion in water at 37°C (A) (ER – 1100 Plus, 

ERIOS Equipamentos Eireli, São Paulo, SP, Brazil). 

The specimens of the GT group had their treated 

side placed opposite to the load during mechanical 

aging. On the other hand, the specimens of the GC 

group had their treated side facing to the load during 

mechanical aging.

Biaxial flexure strength test
The BFS was determined in a piston-on-three-ball 

configuration using a cross-head speed of 1 mm/min 

and 1,000 Kgf load cell at room temperature (25°C). 

A thin acetate film was placed between the specimen 

and the metallic piston (Ø=1.6 mm) for uniform 

distribution of the load and the disc-shaped specimens 

were positioned with the tensile stress on the three 

support balls (Ø=3.2 mm) positioned 10 mm apart in 

a triangular position. The thickness of the specimens 

was measured before and after the test. The BFS of the 

control groups was estimated according to ISO 6872.22

σ is the maximum tensile stress (MPa), P is the 

total load causing fracture (N), b is the thickness of 

the fracture’s origin (mm), and X and Y are estimated 

according to:

v is Poisson’s ratio (0.3), r1 is the radius of the 

support circle (mm), r2 is the radius of the loaded 

area (mm) and r3 is the radius of the specimen (mm).

For the groups treated with glaze, the stress-

moment relation was estimated according to Hsueh’s 

rigorous solutions.23

i denotes the layer number, z* is the position of 

the neutral plane, M is the bending moment per unit 

length, D* is the flexural rigidity and υ is the Poisson’s 

ratio of the multi-layer.

The stress distribution was estimated with Matlab 

(MathWorks, Cambridge, UK) to plot the graphic 

representations of the stresses across the layers, 

which were based on the estimates of top, bottom and 

interfacial stresses obtained from Hsueh’s solutions.23

Fractography analysis
Fractured specimens derived from BFS test were 

evaluated first by optical microscopy (30 ×, Mitutoyo 

Sul Americana, Suzano, São Paulo, Brazil) and then 

by Scanning Electron Microscopy (SEM) (Inspect S50 

– FEI Worldwide Corporate Headquarters, Hillsboro, 

OR, USA) to determine the fracture origins. 

Statistical analysis
We used the OpenEpi website (www.openepi.

com) to determine the power of the study for the BFS 

data (95% confidence interval). The distribution of 

the data was evaluated using the Shapiro-Wilk’s test 

and homogeneity using the Levene’s test. Two-Way 

analysis of variance (ANOVA) and Tukey’s test (5%) 

were performed to compare the effect of glazing region 

and mechanical aging on BFS between all groups. 

Statistical analysis was performed using program 

STATISTIX (Analytical Software Inc., version 8.0, 

2003). We considered a 5% significance level.

Weibull analysis considers Weibull modulus (m) and 

characteristic strength (σo) to evaluate the reliability 

of the BFS of the material. The characteristic strength 

indicates the resistance at a failure probability of 

approximately 63.3%. Weibull modulus indicates the 

structural homogeneity of the material considering 

strength distribution. The calculation Weibull modulus 

and characteristic strength with a confidence interval 

of 95% were estimated by lnσc–ln [ln 1/(1-F(σc)] 

diagram (according to ENV 843-5):

Statistical analysis was performed at Minitab 

software (version 17, 2013, Minitab, State College, 

PA). The level of significance was 5%.
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Results

Biaxial flexure strength
The power of 100% was obtained. Statistical 

assumptions analysis of data indicated a normal 

distribution of the data (p>0.05). The results of 

Levene’s test indicated the homogeneity of the data 

as there was no statistically significant difference 

between the standard deviations (p=0.196). ANOVA 

revealed that the factors “Glazing side” (p<0.00001), 

“Mechanical aging” (p=0.0489) and their interaction 

(p<0.00001) were statistically significant. Considering 

the “Glazing side” factor individually, control group 

showed the lower BFS (737.9B MPa) than the other 

tested groups (GTC: 1059.0A MPa; GC: 1058.3A 

MPa; GT: 1025.6A MPa). Moreover, mechanical aging 

significantly decreased the BFS of Y-TZP (non-aged: 

1005.5A MPa; aged: 941.6B MPa).

When we compared all experimental groups, 

GC (1157.9A±146.9 MPa) showed higher BFS than 

GC-A (958.7±129.1BCD MPa), GT-A (895.0±74.0CDE 

MPa), Control-A (780.8±88.7DE MPa) and control 

(722.0±145.6E MPa) groups. For non-aged groups, 

there was no significant difference for glazing sides 

and glazing increased BFS when compared with 

the control (no glazing). For aged groups, GTC-A 

(1131.9±128.9AB MPa) presented higher BFS than all 

groups, except to GC-A. Only GTC-A glazing increased 

BFS when compared with control-A. Mechanical aging 

significantly decreased BFS of GT and GC groups, 

whereas BFS of GTC and control groups were not 

affected (Table 1).

Figure 1 represents the analytical solutions 

proposed by Hsueh for the piston-on- three ball 

test of bi- and trilayer specimens. As the maximum 

tensile stresses required to fracture the specimens 

always appeared at the lower surface of the zirconia, 

these values were used for statistical estimates. It is 

interesting to note that, in the case of glazed zirconia, 

the stresses across the glaze and zirconia layers can 

be discriminated, and the maximum tensile stress 

occurred in the zirconia material at the zirconia/glaze 

interface, that is, at the bottom surface of zirconia, 

where cracking imitation occurred. 

Weibull Analysis
Table 1 and Figure 2 show the results of Weibull 

analysis are presented. The chi-square test showed 

no significant difference in the Weibull modulus (m) 

(p=0.212) of all groups. For characteristic strength 

(σo), there was significant difference (p<0.0001) 

between the groups. Group GC (1207.6a MPa) showed 

significantly higher characteristic strength than control 

(779.5e MPa), control-A (820.1de MPa), GT-A (928.0cde 

MPa), and GC-A (1011.9bc MPa). Control presented 

lower characteristic strength than all groups, except 

Control-A and GT-A. 

Failure analysis
Figure 3 shows the images of the fractured surfaces. 

The fractured surfaces showed that the glaze and 

zirconia layers were bonded without discontinuities. 

Porosity was observed in the glaze layer. However, 

fracture origins were observed at the lowest zirconia 

Aging 
condition

Glazing side Group
Name

Flexural Strength
(MPa)

Weibull 
Characteristic 
strength (σo) 

(MPa)

95% CI for σo
(MPa)

Weibull
Modulus (m)

95%
CI for m

Non-aged no glazing Control 722.0 ± 145.6E 779.5e 691.6-878.5 5.5α 3.2-9.3

tensile side GT 1156.1 ± 195.3AB 1233.9ab 1118.8-1360.8 6.7α 4.1-10.9

compression side GC 1157.9 ± 146.9A 1207.6a 1131.7-1288.5 10.7α 7.9-14.5

tensile and 
compression sides

GTC 986.0 ± 187.4ABC 1065.5abc 942.6-1204.4 5.4α 2.4-12.0

Aged no glazing Control-A 780.8 ± 88.7DE 820.1de 764.8-879.3 9.4α 4.5-19.7

tensile side GT-A 895.0 ± 74.0CDE 928.0cde 883.5-974.7 13.3α 7.2-24.6

compression side GC-A 958.7 ± 129.1BCD 1011.9bc 936.2-1093.7 8.4α 4.6-15.3

tensile and 
compression sides

GTC-A 1131.9 ± 128.9AB 1185.1ab 1110.1-1265.1 10.1α 6.8-15.1

Table 1- Mean flexural strength (MPa) with standard deviation, characteristic strength (σo), Weibull modulus (m) and respective CI (95%) 
for biaxial flexure strength of experimental groups

Different uppercase letters indicate statistically significant difference for the flexure strength. Different lowercase letters indicate statistically 
significant difference for the Weibull Characteristic strength. Different greek alphabet letters indicate statistically significant difference for 
Weibull Modulus. A: mechanical aging.
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surface, where surface flaws were typically present.

Discussion

In an attempt to increase zirconia strength with a 

procedure that can be easily achieved in a prosthesis 

laboratory, the zirconia surface was glazed on the 

tensile and/or compression side to simulate the 

application of glaze on the inner and occlusal surface, 

respectively. The first hypothesis, which states that the 

glaze on tensile and/or compression increase BFS of 

Y-TZP was partially accepted, since only glaze applied 

on both side showed higher BFS than control groups for 

non-aged and aged conditions. Glaze on compression 

side and tensile side separately increased the BFS of 

Y-TZP only in non-aged condition. In fact, the glazing 

of the porcelain tends to create superficial compressive 

stresses,24 which may be similar to those in zirconia-

glazed specimens, justifying the high strength values 

across the glaze layers. This is particularly important 

because there was no chipping or delamination of the 

glaze, which is commonly seen in veneered specimens 

as a result of thermal stresses caused by coefficient 

of thermal expansion mismatch and zirconia’s poor 

thermal conductivity.25 

Higher BFS of most glazed groups is probably 

due to more favorable distribution of stresses23 

Figure 1- Stresses across the glaze and zirconia layers for the glazed groups. After mechanical ageing, a stress shift to lower strengths 
is seen on the zirconia surface of groups glazed on one side only

LOBO CM, SACORAGUE SC, SILVA NR, COSTA AK, ALVES LM, BOTTINO MA, ÖZCAN M, SOUZA RO, MELO RM
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throughout the tough zirconia layer, as described for 

graded zirconia.16 In this case, the reduced modulus 

in the near-surface regions caused the transfer of the 

majority of stresses to the inner core material, which 

is stiffer,26 with hardly any in the glaze layer, despite 

the pores found therein. In our study, the analysis of 

the stresses across the glaze and zirconia layers for 

the glazed groups showed that the maximum tensile 

stress was presented at the bottom surface of the 

zirconia (tensile side), considering the zirconia/glaze 

interface. In general, the glaze layer survived cyclic 

fatigue loading, and fracture occurred in the bottom 

surface of the zirconia layer, as demonstrated by the 

fracture origins, probably because it is much stiffer 

than the glaze layer.23 

Few information about the effect of glazing side 

were found in the literature.27 Hjerppe, et al.27 (2010) 

reported that the application of glaze on tensile side 

decreased the BFS, whereas glaze on compression 

side was similar to control (no glazing), in non-aged 

condition. These results differ from our study, since 

none of the glazed groups showed BFS lower than 

control. The authors discussed that the residual 

stress caused by the cooling rate of the glaze that 

filled the superficial flaws of the zirconia may increase 

the probability of fracture. Most of the studies that 

investigated the effect of glazing on mechanical 

properties of zirconia applied that glaze in only 

one side.14,28,29 The authors reported increased,14 

decreased30 or similar28,29 mechanical behavior when 

compared with non-glazed zirconia specimens. Further 

studies are necessary to evaluate the application 

of glaze on tensile and compression side of Y-TZP, 

considering the promising results of our study for 

mechanical properties and the advantages for bond 

strength to resin cement.19

The second hypothesis that mechanical aging 

decreases BFS for all groups was partially accepted, 

since aging decreased BFS of GT and GC groups, 

whereas control and GTC groups showed similar BFS 

to non-aged and aged conditions. The decrease in 

strength of specimens glazed only on the tensile or 

compression sides after mechanical aging in water 

is noteworthy. Stress distribution showed lower 

stress values in these groups after mechanical aging. 

Therefore, asymmetric stress distributions caused by 

glazing only in one side and the presence of water may 

be responsible for such decrease in strength, which did 

not occur in the groups glazed on both sides. However, 

this needs further investigation.

Previous studies have reported that mechanical 

aging did not significantly decrease the mechanical 

properties of 3Y-TZP.31-34 The decrease of the flexural 

strength was reported with more aggressive protocols 

of mechanical cycling;35 however, all studies used a 

monolithic zirconia, without glaze application. The 

parameters used in the current study are consistent 

with that of Wiskott, Nicholls and Belser36 (1995), 

Figure 2- Weibull plot for biaxial flexure strength of Y-TZP

Effect of glazing application side and mechanical cycling on the biaxial flexural strength and Weibull characteristics of a Y-TZP ceramic
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which reported that a minimum of 106 cycles should be 

used to simulate the masticatory function. Moreover, 

the mean natural chewing forces range from 70.6–

146.1 N.37 Thus, the 84 N load performed in our study 

is within that range. In our study, mechanical aging 

was performed with samples immersed in water, which 

can negatively influence the mechanical properties of 

the samples.38 Considering that mechanical cycling was 

performed to simulate the aging caused by chewing, 

but without necessarily causing fracture of the samples, 

the parameters of 1.2×106 mechanical cycles, 3 Hz, 

84 N, in water were adopted. Further studies with a 

higher number of mechanical cycles and loads are 

important to investigating the mechanical performance 

of zirconia, simulating more adverse clinical conditions 

such as the presence of parafunctional habits.

We performed the Weibull analysis to compare the 

reliability of the material, depending on the treatments. 

The Weibull moduli were not significantly different 

(shown by the overlapping of the confidence intervals), 

which probably means that glazing could not change 

the original defects, such as by healing of surface 

defects. Moreover, in aged and non-aged conditions, 

glaze on both sides increased characteristic strength. 

Stress distribution possibly worked differently in glaze 

groups and shifted the materials’ strength to higher 

values.16 The current study performed this analysis 

with a sample size smaller than the conventional 

Figure 3- SEM images of fractured disc-shaped ceramic specimens following biaxial flexure strength test. All surfaces seem to present a 
fracture origin irradiating from the bottom (tensile) zirconia surface (the arrows indicate the failure origin site). The fracture origins of glazed 
on tensile side (GT) group (119×) (A).  H and M are fracture marks that stand for Hackles and Mirror, delimited by the curved line (510×) 
(B). Failure originated from the surface, close to an internal defect of glaze on tensile and compression side (GTC) group (666×) (C). Close 
image of internal defect of GTC group (2,551×) magnification (D). Glazed compression side of group GC, where pores are clearly seen, 
but do not seem to initiate failure (900×) (E)

LOBO CM, SACORAGUE SC, SILVA NR, COSTA AK, ALVES LM, BOTTINO MA, ÖZCAN M, SOUZA RO, MELO RM



J Appl Oral Sci. 2020;28:e202004388/9

recommendation of 30 specimens per group.39 Several 

studies have  also performed this analysis with a 

sample size of n=10.40-44 Quinn and Quinn39 (2010) 

stated that bends or wriggles in the trend line could 

be a consequence of small sample sizes; however, this 

was not seen herein.

Increased load-bearing capacity45 was observed in 

full-contour single crowns after However, we emphasize 

that glaze layers can be worn off or partially removed 

with hydrofluoric acid etching.46 Thus, further studies 

should be done with full crowns varying the sides of 

glaze application. Considering the limitations of our 

study, glazing the occlusal and cementation surfaces 

of zirconia may improve the long term performance 

of monolithic zirconia.

 

Conclusion

Based on our research, we conclude that:

- The application of glaze on both tensile and 

compression sides improved the flexural strength of 

3Y-TZP, regardless of the mechanical aging;

- The origin of fractures was on the tensile surface 

of zirconia and not on the glaze layer.

Clinical relevance
Glazing of tensile and compression areas seems to 

be a promising approach to improve zirconia ceramic 

mechanical properties and long-term.
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