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Candida albicans (CA) é considerado como o principal patógeno oportunista em pacientes 
imunossuprimidos. A maior parte dos fármacos disponíveis para o tratamento de cepas resistentes são 
altamente tóxicos ou ineficazes. Uma forma de amenizar esse cenário seria através de modificações 
na estrutura de derivados de azóis que resultassem no aumento da potência e seletividade. Visando 
esclarecer quais propriedades químicas e estruturais são importantes para atividade antifúngica 
de derivados de azol, estudos de QSAR 2D clássico e holograma QSAR (HQSAR) foram 
realizados para um conjunto diverso de 52 derivados de bifonazol com atividade antifúngica. Os 
descritores topológicos utilizados nos estudos de QSAR 2D clássico originaram modelos com 
baixa consistência interna (r2 = 0,38, q2 = 0,27) e poder preditivo nulo (r2

pred 
= −0,6). Por outro lado, 

a utilização de hologramas moleculares possibilitou a criação de modelos de HQSAR robustos  
(r2 = 0,92, q2 = 0,65) e com bom poder preditivo (r2

pred
 = 0,79). 

Candida albicans (CA) has been identified as the major opportunistic pathogen in 
immunosuppressed patients. Most of currently available drugs are either highly toxic or becoming 
ineffective against resistant strains. An approach to overcome this burden relies on azole derivatives 
with increased potency and selectivity. Aiming at shedding some light on structural and chemical 
features that are important for the antifungal activity of azole derivatives, classical 2D QSAR and 
hologram QSAR (HQSAR) studies were performed for a diverse set of 52 bifonazole derivatives 
with antifungal activity. Topological descriptors, employed in Classical QSAR studies, resulted in 
models with low correlation (r2 = 0.38, q2 = 0.27) and lack of predictive power (r2

pred 
=

 
−0.6). On 

the other hand molecular holograms afforded HQSAR models with good correlation coefficients 
(r2 = 0.92, q2 = 0.65) and good predictive ability (r2

pred
 

= 0.79). 
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Introduction 

During the past two decades, the incidence of invasive and 
systemic fungal infections has increased dramatically. This 
fact can be ascribed to acquired immunodeficiency syndrome 
(AIDS), greater use of immunosuppressive drugs and 
chemotherapeutic agents, long term use of corticosteroids, 
and even the indiscriminate use of antibiotics.1-5 

Despite Candida albicans (CA) has been identified as 
the major opportunistic pathogen in many fungal infections, 
the number of infections with other Candida species has 
been increasing.1 Currently available drugs to treat these 
infections include azoles (such as fluconazole, ketoconazole, 
and itraconazole), polyenes (such as amphotericin B 
and nystatin), echinocandins (such as caspofungin and 
micafungin), and allylamines (such as naftifine and 

terbinafine) (Figure 1). Among them, azole derivatives are 
the most common drugs used against fungal infections.2 
The azoles are fungistatic compounds that inhibit the C-14 
lanosterol demethylase, a key enzyme in sterol biosynthesis 
pathway leading to the accumulation of C-14 methyl sterols 
that alter normal membrane function.6,7

Nevertheless, some antifungal drugs are either highly 
toxic (e.g., amphotericin B, AMB) or becoming ineffective 
against resistant strains that affect mostly hospitalized 
patients (e.g., flucytosine and azoles).3 In fact, azole 
resistance is a major concern in long-course treatment 
of AIDS patients. The causes of resistance are generally 
associated with mutations in lanosterol 14α-demethylase 
that reduce azole binding and decreased intracellular drug 
accumulation due to increased expression of efflux pump 
genes.4 Moreover, long-term treatments may also cause 
hepatotoxicity, as azole derivatives can also interact to P450 
enzymes from mammalian cytochromes.8
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Figure 1. Representative examples of currently available drugs employed in fungal infections treatment.
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In order to improve antifungal potency and selectivity, 
efforts have been made to synthesize new classes of 
antifungal agents or modify the structures of so far effective 
azole drugs.5 Indeed, several three-dimensional quantitative 
structure-activity relationship studies (3D QSAR) have 
been reported for different datasets of azole derivatives2,6,9-12 
however, this strategy afforded models with moderate 
robustness and local predictive ability only. For instance, 
Di Santo and co-workers1 report that their CoMFA model 
was contradicted by the synthesis and evaluation of novel 
compounds. This result highlighted that the predictive 
ability of their model was restrict and should not be used 
to guide the development of novel azole derivatives. One 
may argue that alignment rules, based on energy minimized 
or homology model driven conformations contribute 
significantly to this outcome.

Pharmacophore models have also been developed by 
means of docking several antifungal agents to 3D homology 
models of CYP51.2 Although important information regarding 
selectivity towards candidosis or aspergillosis was made 
available, this study did not focus on molecular modifications 
that might increase potency or overcome resistance. One 
of the major limitations faced in the previous studies is the 
lack of accurate 3D structural information from C. albicans 
CYP51. An initial step to overcome this dilemma was the 
resolution of the crystallographic structure of Mycobacterium 
tuberculosis sterol 14α-demethylase (MTCYP51) in 
complex with two azole inhibitors (4-phenylimidazole 
and fluconazole).9 Yet, the bacterial source of this enzyme 

still poses as a problem for the development of 3D QSAR 
(ex.: comparative molecular field analysis –CoMFA) and 
3D pharmacophore models, as these methods are highly 
dependent on molecular alignment.13 

Alternatively, we resorted to 2D QSAR approaches 
that require no explicit 3D information for the ligands (e.g. 
putative binding conformations and molecular alignment), 
employing both classical and fragment-based hologram 
QSAR (HQSAR) methods.14,15 HQSAR is an important 
drug design tool that encodes useful fragment-based 
information of the molecular structures. Nevertheless, 
more robust QSAR analysis can be carried out when 
molecular properties (e.g., physicochemical parameters) 
are also accounted for.16 Such approach highlights the 
complementary nature of classical and HQSAR methods. 
Besides, to the best of our knowledge, no HQSAR 
investigation for this class of antifungal compounds has 
been reported to date. The results of modeling this data 
set are reported herein. 

Experimental 

Data set 

The data set used for the QSAR studies contains 52 
derivatives of bifonazole with antifungal activity that 
were selected from the literature.17,18 The biological 
property of this dataset is reported as MIC values, which 
is the antifungal concentration required to substantially 
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inhibit organism (C. albicans) growth. As most azoles 
are fungistatics, the breakpoints cannot be clearly defined 
as residual growth persists for all concentrations above 
the MIC (National Committee for Clinical Laboratory 
Standards- CLSI M27-A2 document). For this reason 
the 90% growth inhibition (MIC

90
) was considered as an 

accurate measurement of antifungal activity. In order to 
make comparison with the reference compound and other 
results from the literature2,6,9-12 easier, the same relationship 
employed in previous papers (MIC

90
/MIC

90bifonazole
), was 

used to derive 2D QSAR models. 
The structures and corresponding MIC

90
/MIC

90bifonazole
 

values for the whole set of inhibitors are included in Table 1. 
The MIC

90
/MIC

90bifonazole
 values were converted to pMIC

90
/

MIC
90bifonazole

 (−log MIC
90

/MIC
90bifonazole

) values and used as 
dependent variables in the QSAR analyses. 

The chemical structures were drawn in the 2D format 
and converted to 3D, using Sybyl 7.3 plataform (Tripos 
Inc., St. Louis, USA). All structures were single point 
optimized using the AM1 semi-empiric method. A 
hierarquical cluster analysis, carried out with Pirouette 
3.11 software (Infometrix, Washington, USA), using the 
complete linkage clustering method (Euclidean distances) 
and data autoscaling, guided the division of the complete 
dataset into training (compounds 1–43, Table 1) and test 
(compounds 44–52, Table 1) sets. 

Classical QSAR studies 

Classical QSAR studies require the calculation and 
selection of suitable descriptors. The following software was 
employed for this task: DRAGON 5.4 (Talette SRL, Milan, 
Italy) and BUILDQSAR.19 Briefly, 2D molecular descriptors, 
including topological descriptors, connectivity indices, 2D 
autocorrelation descriptors, Burden eigenvalues indices, 
among others, were computed using the software DRAGON 
5.4 and used as independent variables in the QSAR analyses. 
A total of 929 molecular descriptors were calculated. 
Descriptors with zero variance or with poor correlation 
to biological activity (r2 < 0.10) were discarded. Then, 
BUILDQSAR software was employed to systematically 
search for models of up to 4 variables that give rise to 
multiple linear regression (MLR) models with r2 > 0.81.  
All descriptors present in the MLR models were pooled 
together, autoscaled and used for the partial least squares 
(PLS) analysis performed with the PIROUETTE 3.11. 

HQSAR analysis

The HQSAR modeling analyses, calculations and 
visualizations were performed using the SYBYL 7.3 

package (Tripos Inc., St. Louis, USA) running on Red 
Hat Enterprise IV workstations. HQSAR models can be 
affected by a number of parameters concerning hologram 
generation: hologram length, fragment size and fragment 
distinction. The generation of the molecular holograms was 
carried out using several combinations of the following 
fragment distinction: atoms (A), bonds (B), connections 
(C), hydrogen atoms (H), chirality (Ch), and donor/ 
acceptor (DA). The influence of fragment size, which 
controls the minimum and maximum length of fragments 
to be included in the hologram, was further investigated 
for the model with better q2, by using 5 distinct fragment 
sizes over the 12 default series of hologram lengths values 
ranging from 53 to 401 bins. The patterns of fragment 
counts from the training set inhibitors were then related to 
the experimental biological data using the PLS analysis. 

QSAR model validation 

All QSAR models were investigated using full 
cross-validated r2 (q2) PLS. Leave one-out (LOO) cross-
validation has been applied to determine the number 
of principal components that yield optimally predictive 
models. External validation was performed with a test set 
of 10 compounds, which were not considered for QSAR 
model development. The predictive ability of the models 
is expressed by predictive r2 values (r2

pred 
), calculated as 

follows (equation 1):

	 (1)

SD is the sum of squared deviation between the 
biological activities of the test set molecule and the mean 
activity of the training set molecules and PRESS is the 
sum of squared deviations between the observed and the 
predicted activities of the test molecules.20

Fisher’s weight

The Fisher weight is a measure of the distance between 
two categories, it is given by the difference of the mean 
values of each category, divided by the sum of the categories 
variances and can be interpreted as a normalized distance 
between the Classes.21 The Fisher’s weight is defined as:

	 (2)

Where –xp,1, –xp,2 ,  denote the average values of descriptor 
p in class 1 and class 2 respectively, and Sp,1, Sp,2 denote 
the standard deviation of descriptor p in class 1 and class 
2, respectively.22 This value was calculated for every 
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Table 1. Chemical structures and corresponding MIC
90

/MIC
90bifonazole 

values for a series of bifonazole derivatives with antifungal activity

Training Set Compounds

N

N

NY

X

R5

R6 R4

R

R3

R2

R1

Compd. R R1 R2 R3 R4 R5 R6 X Y MIC
90

/MIC
90bifonazole 

1 H H H H H H H CH CH 4
2 H H H H H H CH

3
CH CH 4

3 H H H H H H NO
2

CH CH 4
4 H H H H H H NH

2
CH CH 16

5 H H H H H Cl Cl CH CH 4
6 H H H Cl H H F CH CH 4
7 H H H Cl H H CH

3
CH CH 4

8 H H H Cl H Cl NH
2

CH CH 16
9 H H H Cl Cl H Cl CH CH 1
10 H Cl H H H H H CH CH 1
11 H Cl H H H H Cl CH CH 2
12 H Cl H H H H F CH CH 2
13 H Cl H H H H CH

3
CH CH 2

14 H Cl H H H H NH
2

CH CH 8
15 H Cl H H H Cl Cl CH CH 4
16 H Cl H Cl H H H CH CH 1
17 H Cl H Cl H H F CH CH 2
18 H Cl H Cl H H CH

3
CH CH 1

19 H Cl H Cl H H NO
2

CH CH 4
20 H Cl H Cl Cl H Cl CH CH 1
21 H Cl Cl H H H H CH CH 1
22 H Cl Cl H H H F CH CH 1
23 H Cl Cl H H H CH

3
CH CH 1

24 H H H Cl H H NO
2

CH CH 16
25 H Cl Cl H Cl H Cl CH CH 1
26 H Cl Cl H H Cl Cl CH CH 2
27 H H H Cl H H 1-pyrrolyl CH CH 4
28 H Cl H H H H 1-pyrrolyl CH CH 16
29 H Cl H Cl H H 1-pyrrolyl CH CH 16
30 H Cl Cl H H H 1-pyrrolyl CH CH 16
31 H H H H H H p-Ph CH CH 16
32 H NH

2
H H Cl H Cl CH CH 64

33 H Ph H H Cl H Cl CH CH 2
34 H CF

3
H H Cl H Cl CH CH 2

35 H CN H H Cl H Cl CH CH 8
36 H 1-pyrrolyl H H Cl H Cl CH CH 1
37 H SMe H H Cl H Cl CH CH 2
38 CH

3
Cl H H Cl H Cl CH CH 4

39 H Cl H H Cl H Cl N CH 64
40 H Cl H H Cl H Cl CH N 64

Compd. Structure MIC
90

/MIC
90bifonazole

Compd. Structure MIC
90

/MIC
90bifonazole

41

N

N
H

Cl

N 1 42

O

N

N

Cl

Cl

Cl

Cl

2
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Table 1. continuation

Test Set Compounds

N

N

NY

X

R5

R6 R4

R

R3

R2

R1

Compd. R R1 R2 R3 R4 R5 R6 X Y MIC
90

/MIC
90bifonazole

43 H H H H H H Cl CH CH 8

44 H H H H H H F CH CH 4

45 H H H Cl H H H CH CH 2

46 H H H Cl H H Cl CH CH 1

47 H Cl Cl H H H NO
2

CH CH 16

48 H H H Cl H Cl Cl CH CH 2

49 H Cl H H H H NO
2

CH CH 4

50 H Cl H Cl H Cl Cl CH CH 2

51 H Cl Cl H H H Cl CH CH 1

52 H tert-t-But H H Cl H Cl CH CH 64

descriptor of amino and nitro substituted compounds, in 
order to identify those descriptors that best differentiate 
between them.

Results and Discussion 

Chemical and biological data 

Classical QSAR and HQSAR models were derived for 
a series of bifonazole derivatives with antifungal activity 
(Table 1). An initial exploratory analysis was carried 
out by hierarquical cluster analysis (HCA), available in 
PIROUETTE 3.11 using the complete linkage clustering 
method (Euclidean distances) and data autoscaling. The 
cluster analysis shows 8 distinct clusters at 50% similarity, 
suggesting a reasonable structural diversity of the data set. 
The generation of consistent statistical models is dependent 
on the adequacy of the training and test sets. Therefore, 
molecules from each cluster were randomly assigned to 
either training set (compounds 1-43, Table 1) or test set 
(compounds 44-52, Table 1) so that structurally diverse 
molecules, possessing activities of wide range were used 
for model generation, whereas the 10 inhibitors from test 
set were employed for external validation.

The in vitro MIC
90

/MIC
90bifonazole

 

values employed in 
this work were measured under the same experimental 
conditions,17,18 a fundamental requirement for QSAR 

studies.15,23 Taken together, these two aspects indicate that 
this data set is suitable for QSAR modeling. 

Classical QSAR analysis
 
Classical 2D QSAR studies require the calculation of a 

variety of molecular descriptors (e.g., connectivity indices, 
2D autocorrelation descriptors, Burden eigenvalues) that 
are used as independent variables in QSAR modeling. The 
DRAGON 5.4 software was used to generate the descriptors 
for model development. The selection of the descriptors was 
carried out according to the following criteria. In order to 
reduce the number of descriptors, BUILDQSAR software 
was employed to systematically search for MLR models 
of up to 4 variables with correlation coefficients r2 > 0.81. 
All descriptors present in MLR models (9 ) were pooled 
together, autoscaled and then explored using more robust 
statistical methods such as PCA and PLS, as implemented 
in the PIROUETTE 3.11 software (Table 2).

The PCA results shows that the first principal 
component accounts for 46.7% of total variance, while 
PC2 and PC3 accounts for 25.09% and 5.52% respectively. 
Additional components have insignificant contribution and 
were not considered further. The first PC broadly accounts 
for potency: the less potent inhibitors have positive PC1 
values whereas the most potent ones display negative 
values. These preliminary results prompted us to use the 
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selected descriptors for QSAR modeling studies using PLS. 
Unfortunately, all models show poor statistical parameters 
( best model r2 = 0.38, q2 =

 

0.27) and no predictive power 
at all (r2

pred
 = −0.6) (Table 3). This scenario suggests that 

selected descriptors could not capture chemical features 
that are important for azole derivatives biological activity. 
As pMIC

90
/MIC

90bifonazole
 values are influenced by both 

pharmacokinetics and pharmacodynamics events, and 2D 
descriptors account for whole molecule properties, it is 
difficult to identify which phenomena description should 
be improved.

As an alternative to gain further insight into the 
fragment-based structure-activity relationships for this 

series of bifonazole derivatives with antifungal activity, we 
resorted to another QSAR approach, Hologram QSAR.

HQSAR analysis 

HQSAR relates biological activity to structural 
fragments. Basically, this analysis involve three main 
steps: 1. generation of structural fragments for each azole 
derivative of the training set; 2. the encoding of these 
fragments into a molecular hologram; 3. the statistical 
generation of PLS QSAR models.15

In our studies, the influence of the three parameters: 
fragment distinction, fragment size, and hologram 
length (HL), on the statistical values of our models were 
investigated. Thus, several combinations of fragment 
distinction were considered during the QSAR modeling 
runs using the fragment size default (4-7), as follows: 
ABC, ABCH, ABCChH, ABCChDAH, ABH, ABDA, 
ABCDA, ABHDA, ABCHDA, ABHChDA, ABCChDA, 
and ABCCh. HQSAR analysis was performed over the 12 
default series of hologram lengths of 53, 59, 61, 71, 83, 97, 
151, 199, 257, 307, 353, and 401 bins. The statistical results 
from the PLS analyses for the 42 training set inhibitors are 
summarized in Table 4. 

According to HQSAR analysis, donor/acceptor atoms 
(model 8) or hydrogen atoms (model 2) add no information 
to default fragment distinction (model 1). On the other hand, 
chirality seems to play an important role for antifungal 
activity (compare model 6 and 1). Furthermore, a small 
improvement was achieved by including donor/acceptor 

Table 2. Descriptors selected for QSAR model development

Symbol Definition and Description

nH Number of hydrogen antoms

nN Number of nitrogen atoms

SIC5 Structural information content (neighborhood symmetry 
of 5-order)

CIC5 Complementary information content (neighborhood 
symmetry of 5-order)

BEHm4 Highest eigen value No. 4 of Burden matrix/ Weighted by 
atomic masses

TPSA(NO) Topological polar surface area using N, O polar 
contributions

TPSA(Tot) Topological polar surface area using N, O, S, P polar 
contributions

ALOGP Ghose-Crippen octonal-water partition coeff. (logP)

MLOGP Moriguchi octonal-water partition coeff. (logP)

Table 3. Experimental and predicted activities (pMIC
90

/MIC
90bifonazole

) with 
residual values for the test set compounds

Test Set

Compd. Classical QSAR HQSAR

Experimental Predicted Residual* Predicted Residual*

43 4.62 4.91 –0.29 4.78 –0.18

44 4.9 4.87 0.32 4.87 0.02

45 5.22 5.10 0.12 5.04 0.19

46 5.57 5.18 0.39 5.01 0.56

47 5.3 5.42 –0.12 4.95 0.35

48 4.98 4.34 0.64 4.86 0.12

49 5.34 5.52 –0.18 5.57 –0.23

50 5.6 5.30 0.30 5.37 0.23

51 4.41 4.57 –0.16 4.92 –0.51

52 3.82 4.83 –1.00 4.10 –0.28

* Residual values are calculated from experimental minus predicted 
values.

Table 4. HQSAR analyses for various fragment distinctions on the key 
statistical parameters using fragment size default (4-7)

Model Fragment 
Distinction

q2 r2 HL* PC**

1 A/B/C 0.27 0.75 59 4

2 A/B/C/H 0.22 0.82 151 6

3 A/B/C/Ch/H 0.41 0.79 59 5

4 A/B/C/Ch/DA/H 0.65 0.92 59 6

5 A/B/H 0.22 0.63 61 3

6 A/B/C/Ch 0.36 0.68 59 2

7 A/B/DA 0.22 0.65 199 2

8 A/B/C/DA 0.11 0.66 59 3

9 A/B/H/DA 0.22 0.72 199 4

10 A/B/C/H/DA 0.15 0.75 151 4

11 A/B/H/Ch/DA 0.29 0.75 199 4

12 A/B/C/Ch/DA 0.54 0.92 71 6

*HL stands for Hologram length. **PC stands for number of principal 
components.
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atoms in fragment distinction (model 12). Interestingly, 
when hydrogen atoms were considered, in addition to 
chirality and donor/acceptor atoms, a further improvement 
was observed (model 4). This result is unexpected as 
previous studies have shown that stereochemical features 
do not significant influence the antifungal activity of azole 
derivatives.18,24,25

Nevertheless, lack of stereo selectivity does not 
necessarily indicate that inhibitors´ stereochemistry 
is irrelevant to ligand binding in the active site of the 
putative fungal target, otherwise it might be related to 
other phenomena such as cell uptake or different cellular 
localization. Hence, the importance of chirality in the 
best HQSAR model might be a consequence of structural 
features that are important for azole derivatives interaction 
into lanosterol 14α-demethylase binding site. The influence 
of different fragment sizes, which control the minimum 
and maximum length of fragments to be included in the 
hologram, was further investigated as shown in Table 5, 
but no improvement was achieved.

As the molecular structure encoded within the molecular 
hologram is directly related to anti-Candida activity of 
training set compounds, the HQSAR model should be able 
to predict the activity of new related molecules. Thus, the 
predictive ability of the model was assessed using the same test 
set compounds employed in the classical 2D QSAR studies 
(compounds 43-52, Table 1). The results of the external 
validation for the best predictive model (4, r2

pred
= 0.79)  

are displayed in Table 3 and the graphic results for the 
experimental versus predicted for both training and test 
sets are shown in Figure 2. As can be seen, the predicted 
values are in good agreement with experimental pMIC

90
/

MIC
90bifonazole

 values, deviating by no more than 0.56 log 
units. Therefore, the model presents good correlative and 
predictive abilities. 

Besides predicting the property value of interest of 
untested molecules, HQSAR models should also provide 

hints about the relationships of different molecular 
fragments to biological activity.14,15 HQSAR models can 
be graphically represented in the form of contribution 
maps where the color of each molecular fragment reflects 
the contribution of an atom or a small number of atoms to 
the activity of the molecule under study. The colors at the 
red end of the spectrum (e.g., red, red-orange, and orange) 
reflect poor (or negative) contributions, while colors at 
the green end (e.g., yellow, green–blue, and green) reflect 
favorable (positive) contributions. Atoms with intermediate 
contributions are colored white.

The HQSAR contribution map, Figure 3, shows that 
compounds orto- (compare 45 and 1), or para-substituted 
(compare 10 and 1) at the benzyl ring, next to the pyrrol ring, 
have good activity against C. albicans. Another interesting 
feature, highlighted in contribution maps, is the opposite 
effect of nitro and amine moieties to potency (ex.: 3 and 
4). Unfortunately, HQSAR affords no plain explanation 
for the different contribution of the fragments towards 
potency. The synergic use classical and HQSAR could 
circumvent this sort of limitation,16 but the poor correlation 
of classical QSAR models prevents this approach. Instead, 
topological descriptors computed in the early steps of this 
work were employed to shed some light in this subject. A 
subset of compounds bearing either amine (4, 8 and 14) 
or nitro (3, 24 and 49) moieties, at equivalent positions, 
was investigated in the search for descriptors that could 
discriminate between them. The assumption being that such 
descriptor would somehow explain the different inhibitory 
profile of amine and nitro substituted compounds. In order 
to accomplish this task, a low dimensional classification 
rule (Fisher´s weight) was employed. As seen in Table 6, 
two descriptors are important for class discrimination, 

Table 5. HQSAR analysis for the influence of different fragment sizes on 
the statistical parameters (HL stands for Hologram length and PC stands 
for number of principal components)

Fragment 
Distinction

Model Fragment 
size

q2 r2 HL* PC**

A/B/C/Ch/DA/H 15 2-5 0.43 0.87 71 6

A/B/C/Ch/DA/H 16 3-6 0.47 0.88 59 5

A/B/C/Ch/DA/H 4 4-7 0.65 0.92 59 6

A/B/C/Ch/DA/H 17 5-8 0.57 0.88 53 5

A/B/C/Ch/DA/H 18 6-9 0.41 0.78 71 3

**HL stands for Hologram length. **PC stands for number of principal 
components.

Figure 2. Predicted versus actual pMIC
90

/MIC
90bifonazole

 values for the 
training and test set.
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the Zagreb index by valence vertex degrees (ZM1V) that 
accounts for molecular branching in hydrogen-depleted 
structures26 and the maximum negative intrinsic state 
difference in the molecules (MAXDN), which can be 
related to the nucleophilicity of the molecules.27 The greater 
value of MAXDN suggests that it is the most appropriate 
descriptor to separate amine substituted compounds from 
nitro substituted ones. 

Therefore, it is tentative to assume that better anti-
Candida activity of nitro substituted compounds is 
correlated to selective binding to electrophilic residues 
in the active site of lanosterol 14α-demethylase. This 
hypothesis shed new light on the previous work of Artico 
and co-workers,17 which shows that lipophilicity (logP) is 
responsible for the different potency of nitro and amine 
substituted compounds. This apparent contradiction 
can be reasoned if one considers that azole derivatives 

potency depends on pharmacokinetic (logP) as well as 
pharmacodynamic (MAXDN) factors. 

Conclusions 

Though classical QSAR models were unable to 
describe azole derivatives’ anti-Candida activity, fragment 
based hologram QSAR succeed in this task. The good 
correlation between experimental and predicted anti-
candida activity for 10 test set compounds and the new 
insight into nucleophilicity importance for azole potency 
further highlights the worth of constructed HQSAR 
models. Moreover, HQSAR contribution maps provide 
information about the importance of benzyl substitution 
pattern towards potency. The combined use of these results 
should be useful to develop selective and more potent 
azole derivatives.

Figure 3. Contribution map according do HQSAR model 4. 

Table 6. Comparison of nitro and amine substituted compounds by Fisher´s weight

Compd. pMIC
90

MAXDN BEHe1 MLOGP ALOGP TPSA(NO) ZM1V

3 NO
2

4.93 2.39 4.07 3.24 3.63 79.43 378.00

24 NO
2

4.37 2.40 4.07 3.73 4.30 79.43 385.61

49 NO
2

4.98 2.40 4.07 3.73 4.30 79.43 385.61

4 NH
2

4.29 1.30 4.06 3.70 2.98 4.06 290.00

8 NH
2

4.34 1.36 4.06 3.19 3.65 59.63 297.61

14 NH
2

4.64 1.33 4.06 3.19 3.65 59.63 297.61

Fisher Weight 698.64 0 0.1384 0.1672 0 133.89
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