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As constantes de velocidade da reação do ozônio com 95 alcenos (-logkO3) e do radical 
hidroxila (•OH) com 98 alcenos (-logkOH) na atmosfera foram previstas por modelos de relações 
quantitativas entre estrutura e atividade (QSAR). Cálculos usando a teoria do funcional da densidade 
(DFT) foram realizados para os respectivos alcenos no estado fundamental e para as estruturas 
do estado de transição para o processo de degradação na atmosfera. Técnicas de regressão linear 
múltipla (MLR) e de redes neurais de regressão generalizada (GRNN) foram utilizadas para 
desenvolver os modelos. O modelo GRNN de -logkO3 com base em três descritores e propagação 
ideal σ de 0,09 tem erro quadrático médio (rms) de 0,344; o modelo GRNN de -logkOH  com 
quatro descritores e propagação ideal σ de 0,14 produz um erro rms de 0,097. Comparado com os 
modelos da literatura, os modelos GRNN neste artigo mostram estatísticas melhores. A importância 
dos descritores associados aos estados de transição na previsão de kO3 e kOH nos processos de 
degradação atmosférica foi demonstrada.

The reaction rate constants of ozone with 95 alkenes (-logkO3) and the hydroxyl radical (•OH) 
with 98 alkenes (-logkOH) in the atmosphere were predicted by quantitative structure-activity 
relationship (QSAR) models. Density functional theory (DFT) calculations were carried out on 
respective ground-state alkenes and transition-state structures of degradation processes in the 
atmosphere. Stepwise multiple linear regression (MLR) and general regression neural network 
(GRNN) techniques were used to develop the models. The GRNN model of -logkO3 based on three 
descriptors and the optimal spread σ of 0.09 has the mean root mean square (rms) error of 0.344; 
the GRNN model of -logkOH having four descriptors and the optimal spread σ of 0.14 produces 
the mean rms error of 0.097. Compared with literature models, the GRNN models in this article 
show better statistical characteristics. The importance of transition state descriptors in predicting 
kO3 and kOH of atmospheric degradation processes has been demonstrated.

Keywords: atmospheric degradation, general regression neural network, quantitative structure-
activity relationship, reaction rate constant, transition states

Introduction

Organic compounds emitted into the atmosphere can 
result in many adverse effects, such as photochemical 
air pollution, acid deposition, long-range transport of 
chemicals, changes of the stratospheric ozone layer and 
global weather modification, through a complex array of 
chemical and physical transformations.1 The reactions of 
chemicals with OH radicals and ozone (O3) during the 
daytime and NO3 radicals at night are the most important 
degradation processes in the troposphere, so the lifetime 
and the upper concentration limit of the individual 

chemicals is assessed by determining their reaction rate 
constants with •OH, •NO3 and O3. These reaction rate 
constants can be obtained from experiments that may 
be quite costly, time-consuming, and laborious. But the 
experimental rate constants are available for only a limited 
number of organic compounds. Thus, it is useful to develop 
theoretical models predicting these reaction rate constants. 
Quantitative structure–activity relationship (QSAR) 
models are regression models describing the relationships 
between chemical structures and activities in a data-set of 
chemicals.2 Once a QSAR model is developed successfully, 
it can be used to predict the activity of new chemicals.

In recent years, several QSAR models predicting reaction 
rate constants kO3 of O3 have been reported. Pompe and 
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Veber described a 6-parameter model for logkO3 of O3 and 
117 organic compounds using multiple linear regression 
(MLR) analysis. The prediction capabilities of selected MLR 
model were evaluated by performing 10-fold cross-validation 
procedure. The average root-mean squared (rms) error in 
prediction of logarithm of reaction rate constants (logkO3) was 
0.99.3 Gramatica et al. produced models for the estimation 
of -logkO3 of O3 with 125 heterogeneous chemicals. The 
optimum MLR model contained six parameters and had a 
rms error of 0.73.4 Fatemi introduced a 6-parameter model 
for -logkO3 of 137 organic compounds, by using artificial 
neural networks (ANN). The rms errors for the training, 
prediction and validation sets were 0.357, 0.460 and 0.481, 
respectively.5 Ren et al. developed models of -logkO3 for 
116 organic compounds with projection pursuit regression 
(PPR) and support vector regression (SVR). The PPR model 
based on 7-descriptor had a rms error of 1.041 for the test 
set, which are smaller than the results obtained by the two 
SVR models (1.339 and 1.165, respectively).6 Recently, 
Yu et al. used the radicals from organic compounds to 
calculate quantum chemical descriptors and developed 
3-parameter SVR model for -logkO3. The rms errors for 
the training, validation and test sets were 0.680, 0.777 and 
0.709, respectively.7 In addition, two MLR model of -logkO3 
in aqueous solution were, respectively, built for 39 aromatic 
pollutants organic compounds and 26 substituted phenols. 
The square regression coefficients R2 were 0.791 and 0.826, 
respectively.8,9

Besides the most widely referenced AOPWIN model in 
EPI Suite that can be used for the calculations of reaction 
rate constants kOH and the accuracy of kOH was approximately 
90% at 25 oC,10,11 numerous QSAR studies have also been 
reported for predicting the rate constants kOH of organic 
compounds. Gramatica et al. reported three QSAR models 
for kOH with the prediction rms errors above 0.400.12,13 
Öberg constructed a model with the prediction standard 
error of 0.501 log units, through selecting 333 descriptors 
and compressing to 7 latent variables.14 Böhnhardt et al. 
predicted the kOH with the semiempirical AM1 method. 
The AM1-MOOH model yielded an overall rms error of 
0.32 log units.15 Wang et al. used 22 molecular structural 
descriptors to obtain a QSAR model with a rms error of 
0.430 for the external validation set.16 Fatemi and Baher 
developed six QSAR models of kOH for 98 alkenes with 
linear and nonlinear techniques. These models based on 
five molecular descriptors were evaluated by a leave-24-out 
cross-validation test and had errors of rms ≥ 0.16.17 Toropov 
et al. examined the kOH of 78 organic aromatic pollutants 
and developed a model with correlation coefficients (r2) 
for the test sets of the four random splits were 0.75, 0.91, 
0.84, and 0.80.18 

All these models stated above are based on descriptors 
from the ground states of molecules (or radicals). According 
to classical chemical theory, reaction rate constants correlate 
with the ground-state reactants and the structures of transition 
states (or energy-rich intermediates). These models above 
should be defective when only the ground-state descriptors 
were used. What is certainly true is that techniques for finding 
a transition state are more difficult than finding a ground-state 
structure.19 First, relatively little is known about transition-
state geometries, at least by comparison with our extensive 
knowledge about ground-state molecules. Second, finding a 
saddle point is probably (but not necessarily) more difficult 
than finding a minimum due to theories and techniques. 
Third, the energy surface in the vicinity of a transition state 
is likely to be more “shallow” than that of a minimum. This 
“shallowness” suggests that the former is likely to be less 
well described in terms of a simple quadratic function than 
the latter. Last, the transition-state calculation, in the case 
of radical-molecule reactions, must be carried out on open-
shell system with an odd number of electrons and correlation 
energy must be taken into account in those calculations 
since it plays a vital role for the transition-state properties. 
Therefore, transition-state calculation is extremely hardware 
intensive and time-consuming. For example, transition-state 
optimization typically requires two to three times the number 
of steps as geometry optimization.19

The gas-phase reactions of the alkenes with O3 and 
hydroxyl radicals are of importance as atmospheric loss 
processes, since the available data shows that the kO3 and 
kOH values at room temperature are in the ranges of 10-15 
to 10-20 and 10-10 to 10-11 cm3 molecule-1 s-1, respectively, 
which are larger than the values of other compounds, such 
as alkanes. The purpose of this work is to produce QSAR 
models for kO3 of 95 alkenes and for kOH of 98 alkenes. 
Quantum chemical descriptors used are calculated from 
ground-states of reactants and energy-rich transition states 
of degradation processes in the atmosphere.

Methods

Statistical methods

Stepwise multiple linear regression (MLR) is used 
widely in seeking an optimum linear combination of 
variables from the subsets of the N variables.20,21 This 
technique only adds one parameter to a model at a time 
and always in the order from most to least important. 
Some important statistical parameters, the correlation 
coefficient R, standard error se, t-test, Sig.-test (or p-value), 
and variance inflation factor (VIF), were used to evaluate 
the statistical quality. A good QSAR model will have a low 
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value for se and a high R close to 1. The t-test measures the 
statistical significance of variables. The larger (in absolute 
terms) a test statistic value is, the more significant the 
associated variable will be. All variables with the p-values 
below a specified α cutoff values (the default level, 0.05) 
indicate that statistical significance is kept in the model. 
VIF can be used to identify whether excessively high 
multicollinearity coefficients exist among the descriptors. 
Generally, descriptors with VIF < 10 show multicollinearity 
coefficients for descriptors do not exceed 0.90, which 
indicates these descriptors may be acceptable. 

General regression neural network (GRNN), proposed 
by Specht as the category of probabilistic neural networks, 
is a very useful tool to perform predictions and comparisons 
of system performance in practice.22 Compared with other 
neural networks, such as back propagation, the GRNN 
paradigm has the advantages that it requires no iterative 
training and that it is unnecessary to define the number of 
hidden layers or the number of neurons per layer in advance. 

The basic idea of GRNN is that each (x, y) data point for 
an input vector to be evaluated is computed as a mean value 
weighted by the influence which each Parzen window has on 
the input vector.22 Suppose that f(x, y) represents the known 
joint continuous probability density function of a vector 
random variable, x, and a scalar random variable, y, and let X 
be a particular measured value of the random variable x, the 
regression of y on X, i.e., the conditional mean, is given by:

	  (1)

where Ŷ is the estimate output of Y, by considering X as 
the system input.

The sample values Xi and Yi of the random variables 
x and y can be used to estimate the density f(x, y), by 
introducing a nonparametric strategy based on Parzen’s 
window.

	 (2)

where n is the number of samples, p is the dimension of the 
vector variable x, and σ is the spreading factor (smoothing 
parameter or width coefficient) of Gaussian function.

By using Parzen windows estimation, the GRNN 
estimator can be expressed as follows:

	  (3)

where Di
2 is a scalar function.

	  (4)

As the spreading factor σ becomes very large, Ŷ assumes 
the mean value of the observed, Yi, and as σ goes to 0, Ŷ 
assumes the value of the Yi associated with the observation 
closest to X. For intermediate values of σ, all values of Yi 
are taken into account, but those corresponding to points 
closer to X are given larger weight values.22 For GRNN, 
only the spreading factor σ needs to be tuned. For a bigger 
σ value, the possible representation of the point of sample 
evaluated is possible for a wider range of X. For a small σ 
value the representation is limited to a narrow range of X.

Figure 1 shows the basic structure of a GRNN including 
the input, pattern, summation and output layers.22 The input 
layer has a full interconnection to the pattern layer and 
brings all of the (scaled) measurement variables X into the 
network. The input neurons are merely distribution units, 
which are equal to the dimension of the vector variable x. 
The pattern layer contains the Parzen windows (Gaussian 
activation function, exp(-Di

2/2σ2), which approximates 
a density function by constructing it out of many simple 
parametric probability density functions. The width of 
these Parzen windows is specified by the spreading factor 
σ. The number of units equals to the number of sample 
observations. The summation layer consists of two types of 
nodes. One belongs to the denominator nodes and the other 
belongs to the numerator nodes. The output unit yields the 
desired estimate of Ŷ values.

Data set

Supplementary Information Table S1 listed the rate 
constants (kO3) for the reaction of ozone with 95 alkenes,7 
which were measured at 25 oC and 101.3 kPa. The 
experimental data, reported in cm3 s-1 molecule-1, were 
transformed to logarithmic units and multiplied by -1 to 

Figure 1. Structure model of a GRNN model.
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obtain positive values. The minimum and maximum values 
of -logkO3 were 13.1 for α-Terpinene (No. 39) and 20.4 
for 1,1-dichloroethene (No.7), respectively. The former 
has 10 carbon atoms and the later has 2 carbon atoms. The 
experimental -logkO3 values in Table S1 were randomly 
split into a training set (60 alkenes) and a prediction set 
(35 alkenes). 

Supplementary Information Table S2 listed the 
experimental rate constants (logkOH) for the reactions of the 
OH radical with 98 alkenes at 25 oC and 101.3 kPa. These 
experimental logkOH data have been studied by Fatemi and 
Baher.17 Both the training and test sets consist of 49 alkenes. 
The training sets in Tables S1 and S2 were used to develop 
models, which were tested with respective prediction set. 

Quantum chemical descriptors

The reactions between O3 and alkenes proceed by initial 
O3 addition to the bond to yield an energy-rich ozonide 
which rapidly decomposes to a carbonyl and an initially 
energy-rich biradical.1 The degradation reaction process of 
alkenes with O3 can be expressed with Scheme 1.

Thus the structures of the ground-states (R1R2C1=C2R3R4) 
and energy-rich transition states (R1R2C1C2(O3)R

3R4) 
should correlate with the reaction rate constants (kO3). 
The transition-state complexes, characterized by a single 
imaginary vibrational frequency, were fully optimized 
and followed by frequency calculations. Nine quantum 
chemical descriptors were calculated for each transition 
state. These descriptors include the molecular average 
polarizability (αI), the molecular dipole moment (μI), 
the energy of the lowest unoccupied molecular orbital 
(EILUMO), the energy of the highest occupied molecular 
orbital (EIHOMO), the most positive net atomic charge on 
hydrogen atoms in a molecule (qIH), the net charge of the 
most negative atom (qI

-), the total energy (EIT), the sum of 
the Mulliken charges of O1 and O2 (QIO12), the sum of the 
atomic polar tensor (APT) charges on C1 and C2 (qIC12). 
Seven quantum chemical descriptors were derived for each 
ground state, which are the molecular average polarizability 
(αG), the molecular dipole moment (μG), the energy of the 

lowest unoccupied molecular orbital (EGLUMO), the energy 
of the highest occupied molecular orbital (EGHOMO), the 
most positive net atomic charge on hydrogen atoms in a 
molecule (qGH), the net charge of the most negative atom 
(qG

-), and the total energy (EGT). All these calculations 
were performed using density functional theory (DFT) in 
Gaussian 09 program (Revision A.02), at the B3LYP level 
of theory with 6-31G(d) basis set.

To fit logkOH, we calculated 12 quantum chemical 
descriptors from the energy-rich transition states, 
R1R2•C1C2(OH)R3R4, formed from the reactions of the OH 
radical with alkenes (R1R2C1=C2R3R4). These descriptors 
are αI, µI, EIαHOMO and EIαLUMO (for alpha spin states), 
EIβHOMO and EIβLUMO (for beta spin states), qIH, qI

-, EIT, QIO12, 
qIC12, and QIC12 (the sum of the APT charges on C1 and 
C2 with hydrogens summed into heavy atoms). For each 
ground-state alkene, the same seven descriptors (αG, μG, 
EGLUMO, EGHOMO, qGH, qG

-, and EGT) were calculated. The  
DFT/UB3LYP/6-31G(d) and DFT/B3LYP/6-31G(d) 
methods in Gaussian 09 program were respectively adopted 
to optimize and calculate radical transition states and 
ground-state alkenes.

Results and discussion

Models for reaction rate constants −logkO3

By correlating the rate constants -logkO3 of 95 organic 
compounds in Table S1 to the 16 descriptors calculated 
in this article with stepwise regression analysis,20,21 five 
MLR models (in Table 1) were obtained. In order to make 
a comparison with previous studies, the three parameters 
in Model 3 were taken as the optimal subset of descriptors, 
since the previous SVR model has minimum descriptors 
(n = 3).7 The calculation values of three parameters EGHOMO 
(the energy of the highest occupied molecular orbital 
of ground-state alkenes), QIO12 (the sum of the Mulliken 
charges on O1 and O2 of intermediates), and qIC12 (the 
sum of the atomic polar tensor (APT) charges on C1 and 
C2 of intermediates) are listed in Table S1. The statistical 
parameters corresponding to the standardized and non-

Scheme 1. Degradation reaction process of alkenes with O3.
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standardized regression equations based on the training 
set in Table S1 were summarized below:

-logkO3 = -0.562EGHOMO + 0.207 qIC12 + 0.319 QIO12	 (5)

-logkO3 = 12.344 - 43.576EGHOMO + 0.809 qIC12  
+ 12.188 QIO12	  (6)

R = 0.926, R2 = 0.857, se = 0.558, F = 120.064, N = 60, 
where R is the correlation coefficient, se is the standard 
error of estimation, F is the Fischer ratio, N is the number 
of compounds used. 

The standardized coefficients in Equation 5 measure 
the relative importance of different variables, i.e., the 
larger the standardized coefficient (in absolute value) 
is, the more significant the variable will be. Usually, the 
non-standardized regression equations are used to predict 
the values of the dependent variable. The rate constants 
-logkO3 calculated with Equation 6 are listed in Table S1 
and depicted in Figure 2, whose error bars give a good 
representation of the typical 5% error in the measurement 
of the rate constants. The statistical results of Equation 6 are 
listed in Table 2. Sig.-test suggests that the three descriptors 
EGHOMO, QIO12, and qIC12 are significant descriptors and 
the VIF-test shows that the descriptors are not strongly 
correlated with each other. 

As can be seen from standardized coefficients in 
Equation 5 or t-test values in Table 2, the most significant 
descriptor appearing in Equation 5 is the descriptor EGHOMO, 
i.e., the energy of the highest occupied molecular orbital 
of ground-state molecules. This descriptor denotes the 
energetics of the reactant molecular orbitals involved in 
the reaction: the more reactive molecules possess a high 
EHOMO. Therefore, the alkene molecule with a larger EHOMO 
tends to lose electrons and leads to increased susceptibility 
of O3 attacking which result in a larger kO3 value. The next 
two significant descriptor are QIO12 (the sum of the Mulliken 
charges of O1 and O2 of energy-rich intermediates) and qIC12 
(the sum of the atomic polar tensor charges of C1 and C2 
of energy-rich intermediates), respectively. The smaller 
QIO12 and qIC12 are, the larger kO3 will be. An energy-rich 
intermediate with the more positive net charges on C1 and 

C2 or on O1 and O2 indicates that the intermediate lies in 
higher energy-rich state. Thus the reaction will be relatively 
slow, and its kO3 will decrease.

We used the function newgrnn in MATLAB (R2012a 
for Windows) to build general regression neural networks 
(GRNN).22 The best subset of descriptors (EGHOMO, QTO12 
and qTC12) selected for the MLR models were fed to GRNN 
as input vectors, and the reaction rate constants -logkO3 
were taken as the output. The 30-fold (or leave-two-out) 
cross-validation strategy was used to train GRNNs and 
the circulation method was used to find the optimal spread 

Table 1. Model summary for -logkO3

Model R R square
Adjusted R 

square
Std. error of 
the estimate

1a 0.873 0.763 0.760 0.672

2b 0.903 0.815 0.811 0.596

3c 0.920 0.847 0.842 0.545

4d 0.929 0.864 0.858 0.518

5e 0.933 0.871 0.864 0.506

aPredictors: (Constant), EGHOMO; bpredictors: (Constant), EGHOMO, QIO12; 
cpredictors: (Constant), EGHOMO, QIO12, qIC12; 

dpredictors: (Constant), EGHOMO, 
QIO12, qIC12, EGLUMO; epredictors: (Constant), EGHOMO, QIO12, qIC12, EGLUMO, αI.

Table 2. Descriptor coefficients in MLR models of -logkO3

Descriptor
Unstandardized 

coefficients
Std. error

Standardized 
coefficients

t Sig. VIF

Constant 12.344 2.581 / 4.783 1.297 × 10-5 /

EGHOMO -43.576 5.751 -0.562 -7.577 3.858 × 10-10 2.155

QIC12 0.809 0.220 0.207 3.686 5.164 × 10-4 1.236

QIO12 12.188 2.712 0.319 4.495 3.545 × 10-5 1.975

Figure 2. Predicted vs. experimental -logkO3 values from the MLR model 
for -logkO3. Error bars represent the typical 5% error in the measurement 
of the rate constants.



QSAR Models of Reaction Rate Constants of Alkenes with Ozone and Hydroxyl Radical J. Braz. Chem. Soc.1786

parameter σ, which varied from 0.01 to 2 with the step being 
0.01. The mean square error (MSE) was used to evaluate the 
accuracy of GRNN models. In the end, the optimal spread 
σ is determined as 0.09 and the minimum MSE value of 
two validation samples is 0.0041. The results from the 
optimal GRNN method are listed in Table S1 and depicted 
in Figure 3, which indicate that the predicted -logkO3 values 
are close to the experimental values. The rms errors of the 
training and test sets are 0.265 and 0.448, respectively, 
and the mean rms error of 95 chemicals is 0.344. These 
results are smaller than the corresponding values (0.540, 
0.540 and 0.540, respectively) obtained from the MLR 
model, i.e., Equation 6. Thus the GRNN model has better 
prediction accuracy than the MLR model, although the 
latter is accurate and acceptable when compared to the 
previous models.3-7 

We further predicted rate constants -logkO3 for the 
test set in Table S1 with the approaches reported by 
Yu et al.7 The MLR and SVR models from the training 
set in Table S1 produced rms errors of 0.681 and 0.663, 
respectively, which are larger than that (rms = 0.448) of the 
present GRNN model (σ = 0.09). Therefore, combining 
the quantum chemical descriptors from the ground-states 

and the energy-rich intermediates to predict -logkO3 of 
alkenes is feasible.

Models for reaction rate constants −logkOH

Similar analysis methods were used to develop QSAR 
models for -logkOH of 98 alkenes in Table S2. The optimal 
standardized and non-standardized regression equations 
were, respectively, 

-logkOH = - 0.254μI - 0.183 EIβHOMO - 0.551 EGHOMO  
+ 0.556 QIC12	 (7)

-logkOH = 5.219 - 0.215μI - 4.284 EIβHOMO  
- 16.187 EGHOMO + 1.253 QIC12	 (8)
R = 0.940, R2 = 0.884, se = 0.153, F = 83.692, N = 49.

The MLR model (i.e., Equation 8) of -logkOH includes a 
subset of descriptors: the molecular dipole moment of energy-
rich intermediates (μI), the energy of the lowest unoccupied 
molecular orbital for alpha spin states of intermediates 
(EIαLUMO), the sum of the APT charges on C1 and C2 with 
hydrogens summed into heavy atoms of intermediates (QIC12), 
and the energy of the highest occupied molecular orbital of 
ground-state alkenes (EGHOMO). Table 3 shows the descriptors 
in the MRL model all are significant descriptors and do not 
contaminate each other. As stated above, the descriptors 
EIβHOMO, EGHOMO, and QIC12 are correlated with the reaction 
rate constants. In addition, the dipole moment descriptor μ 
can reflect the polarity of a molecule. A larger descriptor μI 
indicates a higher reactivity, which leads to a high kOH value.

The values of four descriptors and predicted -logkOH 
were listed in Table S2 and depicted in Figure 4 (for the 
MLR model) and Figure 5 (for the GRNN model). For the 
GRNN model with the optimal spread σ of 0.14, the rms 
errors of the training and test sets are 0.069 and 0.119, 
respectively, which are smaller than the corresponding rms 
values (0.144 and 0.134, respectively) of the MLR model 
(i.e., Equation 8) in this article. The mean rms errors of the 
MLR and GRNN models are 0.140 and 0.097, respectively. 
These rms errors are lower than the results (0.16-0.28) 

Figure 3. Predicted vs. experimental -logkO3 values from the GRNN model 
for -logkO3. Error bars represent the typical 5% error in the measurement 
of the rate constants.

Table 3. Descriptor coefficients in MLR model of -logkOH

Descriptor
Unstandardized 

coefficients
Std. error

Standardized 
coefficients

t Sig. VIF

Constant 5.219 0.394 / 13.257 5.718 × 10-17 /

μI -0.215 0.057 -0.254 -3.762 4.955 × 10-4 1.728

EIβHOMO -4.284 2.057 -0.183 -2.083 4.311 × 10-2 2.928

EGHOMO -16.187 2.116 -0.551 -7.650 1.290 × 10-9 1.968

QIC12 1.253 0.188 0.556 6.676 3.420 × 10-8 2.628
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of the six QSAR models in the literature.17 Moreover, 
compared to the literature models,17 our models have fewer 
descriptors (4:5) and use more samples for the test set. 

We also predicted rate constants -logkOH for the test 
set in Table S2 with the Atkinson scheme.11,15,23,24 The rms 
error of the test set is 0.210, which are larger than the 
results of 0.134 from the present MLR model and 0.119 
from the present GRNN model (σ = 0.14). Therefore, both 
the MLR and GRNN models of -logkOH based on quantum 
chemical descriptors from ground states of reactants and 
radical transition states are successful in predicting -logkOH 
values of alkenes.

Conclusions

QSAR models based on the MLR and GRNN 
approaches were successfully developed for reaction rate 

constants -logkO3 of 95 alkenes and -logkOH of 98 alkenes. 
Quantum chemical descriptors used were obtained from the 
ground-states of alkenes and energy-rich transition states 
of degradation processes in the atmosphere. The present 
work tests that transition states have important effects on 
kO3 and kOH of alkenes in degradation processes. Our models 
overcome the defects of the existing models only based 
on ground-state descriptors. The optimal GRNN models 
in this investigation are expected to have good predictive 
performance.

Supplementary Information

Tables S1 and S2 showing experimental rate constants 
and descriptors used are available free of charge at http://
jbcs.sbq.org.br as PDF file.
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Table S1. Quantum chemical descriptors and -logkO3 values for 95 alkenesa

No. Name EGHOMO / a.u. qIC12 / a.u. QIO12 / a.u. -logkO3 (exp.) -logkO3 (pred.)b -logkO3 (pred.)c

Training set

1 1,3-Cyclohexadiene -0.205526 0.687946 -0.608815 14.7 14.44 14.93

2 Bicyclo(2.2.1)-2-heptene -0.230909 0.539394 -0.603226 14.7 15.49 14.86

3 1,3-Cycloheptadiene -0.208367 0.726131 -0.599350 15.8 14.71 15.55

4 Carvomenthene -0.230995 0.712092 -0.565545 15.3 16.09 15.82

5 Terpinolene -0.215923 0.683347 -0.615165 14 14.81 14.06

6 Tetrafluoroethene -0.254209 2.531489 -0.530281 19 19.01 19.00

7 1,1-dichloroethene -0.266297 1.353019 -0.453706 20.4 19.51 20.31

8 2-methyl-1-butene -0.239266 0.688732 -0.553380 16.8 16.58 16.48

9 Hexafluoropropene -0.281063 1.928487 -0.532637 19.1 19.66 19.10

10 2-(chloromethyl)-3-chloro-1-propene -0.277909 0.622758 -0.539928 18.4 18.38 18.40

11 1.2-Propadiene -0.262966 0.788560 -0.561417 18.72 17.60 18.72

12 1-Methyl-1-cyclopentene -0.223285 0.689486 -0.590023 15.17 15.44 15.40

13 2-Methyl-1.4-pentadiene -0.241725 0.684857 -0.537600 16.89 16.88 16.94

14 1.2-Dimethylcyclohexene -0.216046 0.690035 -0.591053 15.68 15.11 15.44

15 Trans-3-Hexene -0.235597 0.681452 -0.556782 15.77 16.38 16.09

16 3-methyl-1-butene -0.249284 0.692447 -0.530566 16.96 17.30 16.99

17 Trans-2,5-Dimethyl-3-hexene -0.235390 0.658580 -0.566235 16.39 16.23 16.06

18 Cis- +trans-3,4-Dimethyl-3-hexene -0.215528 0.709946 -0.592469 15.42 15.09 15.44

19 Cis-Cyclooctene -0.231456 0.726928 -0.558084 15.43 16.22 15.87

20 Propene -0.249793 0.721658 -0.524060 16.9 17.43 16.95

21 Cis-2-Butene -0.233323 0.762977 -0.561473 15.8 16.29 15.91

22 1-Pentene -0.246525 0.709157 -0.531907 17 17.18 16.98

23 Trans-2-Pentene -0.230672 0.711240 -0.555324 15.5 16.20 15.87

24 1-Hexene -0.246307 0.708191 -0.532102 16.9 17.17 16.98

25 2-Methyl-1-pentene -0.238959 0.703121 -0.542675 16.8 16.71 16.77

26 Trans-3-Methyl-2-pentene -0.217403 0.707823 -0.592823 15.2 15.17 15.41

27 2-Heptene -0.230412 0.711206 -0.560874 16.1 16.12 15.83

28 β-Pinene -0.233026 0.654833 -0.576236 16.5 16.01 16.15

29 β-Phellandrene -0.213644 0.708764 -0.557507 15.7 15.43 15.76

30 Trans-cyclooctene -0.231075 0.726928 -0.558084 16.54 16.20 15.86

31 2,4,4-trimethyl-2-pentene -0.226734 0.705376 -0.587445 15.85 15.64 15.59

32 Trans-5-decene -0.229245 0.689435 -0.564497 15.89 16.01 15.79

33 1-Methyl-1-cyclohexene -0.224367 0.687781 -0.570094 15.78 15.73 15.61

34 2.5-Dimethyl-1.5-hexadiene -0.235703 0.728943 -0.557431 16.85 16.41 16.09

35 1-Octene -0.246141 0.726278 -0.546258 17.1 17.00 17.07

36 1,3-Butadiene -0.228950 0.757909 -0.521879 17.1 16.57 16.80

37 Dihydromyrcene -0.225079 0.698931 -0.530083 15.2 16.26 15.93
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No. Name EGHOMO / a.u. qIC12 / a.u. QIO12 / a.u. -logkO3 (exp.) -logkO3 (pred.)b -logkO3 (pred.)c

Training set

38 Cis-Ocimene -0.219579 0.719544 -0.528799 14.7 16.05 15.04

39 α-Terpinene -0.192386 0.696624 -0.636419 13.1 13.54 13.10

40 1,1-Difluoroethene -0.262252 1.613112 -0.527680 18.7 18.65 18.70

41 Cis-1,3-dichloropropene -0.266567 0.951379 -0.479781 18.8 18.88 18.79

42 Acrolein -0.257123 0.558858 -0.487809 18.3 18.06 18.30

43 Methyl vinyl ketone -0.247851 0.547462 -0.558508 17.4 16.78 17.39

44 2-cyclohexen-1-one -0.236331 0.578369 -0.519273 17.7 16.78 17.69

45 3.3-Dimethyl-1-butene -0.249533 0.662849 -0.539712 17.28 17.18 17.10

46 Cis-5-Decene -0.231212 0.722127 -0.563115 15.92 16.14 15.84

47 Cis-3-Hexene -0.231830 0.710888 -0.561279 15.82 16.18 15.86

48 Ethene -0.266547 0.702671 -0.504672 17.7 18.38 17.70

49 2.3-Dimethyl-1.3-butadiene -0.224837 0.690641 -0.548631 16.58 16.01 16.29

50 2-methyl-1,3-butadiene -0.226117 0.696111 -0.525793 16.89 16.35 16.24

51 Cis-2,trans-4-Hexadiene -0.208020 0.773115 -0.549613 15.5 15.34 15.67

52 Cycloheptene -0.230329 0.701853 -0.562377 15.5 16.10 15.82

53 1,4-Cyclohexadiene -0.226180 0.653269 -0.611527 16.2 15.28 16.08

54 Bicyclo(2.2.2)-2-octene -0.234554 0.703257 -0.600302 16.1 15.82 16.03

55 1,3,5-Cycloheptatriene -0.212641 0.746006 -0.544032 16.3 15.58 16.07

56 d-Limonene -0.225634 0.715009 -0.574389 15.2 15.75 15.56

57 Trifluoroethene -0.254416 2.080157 -0.533009 18.9 18.62 18.90

58 Methacrolein -0.255129 0.558435 -0.517032 18 17.61 17.97

59 Vinyl chloride -0.262460 1.064558 -0.470593 18.6 18.91 18.61

60 Cis-1,2-dichloroethene -0.259607 1.323410 -0.446518 19.2 19.29 19.29

Test set

61 Trichloroethene -0.261331 1.615179 -0.431117 19.5 19.79 19.33

62 Octafluoro-2-butene -0.303156 1.409374 -0.534576 20.2 20.18 19.10

63 Cyclopentene -0.232844 0.693015 -0.564597 15.56 16.17 15.89

64 2.3-Dimethyl-2-butene -0.217788 0.749722 -0.580553 14.82 15.37 15.43

65 2-Ethylbutene -0.238800 0.682848 -0.553128 16.89 16.56 16.44

66 2.4-Dimethyl-1.3-butadiene -0.215685 0.795419 -0.538723 16.1 15.82 15.91

67 Trans-4-Octene -0.234244 0.696825 -0.560270 15.85 16.29 15.97

68 3-methyl-1-pentene -0.248993 0.699206 -0.535291 17.31 17.24 17.03

69 Trans-2,2-Dimethyl-3-hexene -0.235538 0.651240 -0.601851 16.38 15.80 15.89

70 1,3,5-Hexatriene -0.209225 0.751076 -0.536485 16.6 15.53 16.02

71 2-Methyl-2-propene -0.239539 0.717789 -0.545965 16.9 16.71 16.71

72 Trans-2-Butene -0.235027 0.740022 -0.550173 15.6 16.48 16.12

73 cis-2-Pentene -0.232569 0.723065 -0.543939 15.7 16.43 16.00

74 2-Methyl-2-butene -0.225635 0.748689 -0.578196 15.4 15.74 15.51

75 4-Methyl-1-pentene -0.249099 0.705650 -0.522110 17 17.41 16.95

76 Cis-3-Methyl-2-pentene -0.224347 0.734981 -0.566204 15.3 15.81 15.67

77 1-Heptene -0.246201 0.707874 -0.532087 16.9 17.16 16.98

78 α-Pinene -0.218341 0.770965 -0.591064 15.7 15.28 15.39

79 D3-Carene -0.224523 1.025169 -0.532474 15.9 16.47 16.33

80 γ-Terpinene -0.217922 0.685046 -0.580884 15.6 15.32 15.44

81 3-methyl-2-isopropyl-1-butene -0.237362 0.622156 -0.560336 17.48 16.36 16.20

82 4-Methyl-1-cyclohexene -0.233595 0.688425 -0.555796 16.09 16.31 15.96

83 2.3.3.-Trimethylbutene -0.239373 0.647121 -0.559572 17.08 16.48 16.37

84 1-Butene -0.246661 0.707276 -0.521192 16.9 17.31 16.94

85 1-Decene -0.246066 0.712919 -0.522230 17 17.28 16.94

86 Myrcene -0.222559 0.699391 -0.530152 14.9 16.15 15.53

87 Vinyl fluoride -0.260366 1.174156 -0.532133 18.2 18.15 18.70

88 Trans-1,2-dichloroethene -0.259885 1.295515 -0.474002 18.7 18.94 19.10

Table S1. continuation
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Table S1. continuation

No. Name EGHOMO / a.u. qIC12 / a.u. QIO12 / a.u. -logkO3 (exp.) -logkO3 (pred.)b -logkO3 (pred.)c

Test set

89 Cis-1,2-difluoroethene -0.254139 1.645013 -0.523658 18.6 18.37 18.70

90 Trans-1,3-dichloropropene -0.262766 1.039316 -0.457231 18.2 19.06 18.60

91 2.3-Dimethyl-1-butene -0.239239 0.669720 -0.558808 16.89 16.50 16.37

92 3-penten-2-one -0.240713 0.554961 -0.538358 16.7 16.72 16.94

93 Cis-4-Octene -0.233860 0.714750 -0.546147 16.02 16.46 16.06

94 Trans-2,trans-4-Hexadiene -0.207551 0.781737 -0.562995 15.4 15.16 15.59

95 Cyclohexene -0.233459 0.706416 -0.545016 15.9 16.45 16.04
aExperimental data taken from: Yu, X.; Yi, B.; Wang, X.; Chen, J.; Atmos. Environ. 2012, 51, 124; b-logkO3 values predicted from the MLR model for 
-logkO3; 

c-logkO3 values predicted from the GRNN model for -logkO3.

Table S2. Quantum chemical descriptors and -logkOH values for 98 alkenesa

No. Name μI / Debye. EIβHOMO / a.u. EGHOMO / a.u. QIC12 / a.u. -logkOH (exp.) -logkOH (pred.)b -logkOH (pred.)c

Training set 

1 α-Phellandrene 1.4824 -0.231877 -0.201328 0.386365 9.5 9.64 9.54

2 Ocimene 1.7247 -0.223650 -0.214890 0.348628 9.6 9.72 9.75

3 α-Humulene 0.8406 -0.219121 -0.216163 0.306492 9.65 9.86 9.65

4 Myrcene 2.0283 -0.227171 -0.222559 0.337243 9.67 9.78 9.74

5 3-7-Dimethyl-1-6-Octadiene 1.7370 -0.227728 -0.223194 0.337042 9.74 9.86 9.77

6 β-Phellandrene 1.4332 -0.251327 -0.213643 0.379030 9.78 9.92 9.91

7 2-4-Dimethyl-1-3-butadiene 1.5318 -0.241135 -0.214725 0.378989 9.8 9.87 9.88

8 Limonene 1.8410 -0.223396 -0.225634 0.370411 9.84 9.90 9.80

9 3-Methyl-1-3-Pentadiene 1.5915 -0.231610 -0.213908 0.340018 9.87 9.76 9.85

10 Trans-trans-2-4-Hexadiene 1.6603 -0.242251 -0.205513 0.425635 9.87 9.76 9.88

11 Trans-3-Methyl-2-Pentene 1.5760 -0.263403 -0.217403 0.396933 9.91 10.02 9.98

12 2-5-Norbornadiene 1.4479 -0.234600 -0.216970 0.296089 9.92 9.80 9.89

13 1-2-Dimethylcyclohexene 1.2055 -0.254068 -0.216046 0.512535 9.93 10.19 9.93

14 Trans-1-3-5-Hexatriene 1.5081 -0.246912 -0.209238 0.377880 9.95 9.81 9.92

15 Cis-1-3-5-Hexatriene 1.5697 -0.227117 -0.209994 0.377086 9.96 9.73 9.87

16 Cis-Ocimene 1.8549 -0.219184 -0.219579 0.312578 9.98 9.70 9.86

17 2-carene 1.3670 -0.249451 -0.214811 0.364724 10 9.93 9.91

18 Cis-1-3-Pentadiene 1.7194 -0.260118 -0.218090 0.396585 10 9.99 10.03

19 1-3-5-Cycloheptatriene 1.5436 -0.246124 -0.212641 0.450317 10.01 9.95 9.94

20 2-Methyl-1-5-Hexadiene 1.2764 -0.243735 -0.241347 0.319746 10.02 10.30 10.02

21 Cis-3-Methyl-2-Pentene 1.4481 -0.260926 -0.224349 0.420357 10.03 10.18 10.05

22 1-Methyl-1-Cyclopentene 1.4843 -0.256565 -0.223283 0.407197 10.04 10.12 10.05

23 2-Ethylbutene 1.5531 -0.265850 -0.238794 0.305473 10.05 10.27 10.21

24 D3-Carene 1.7846 -0.244998 -0.224523 0.394391 10.06 10.01 10.07

25 Trans-3-Hexene 1.5012 -0.263229 -0.229750 0.326852 10.08 10.15 10.16

26 Cis-5-Decene 1.7345 -0.260888 -0.231210 0.341035 10.12 10.13 10.18

27 Cis-3-Hexene 1.5511 -0.260855 -0.231830 0.315984 10.13 10.15 10.18

28 Methylketene 4.3775 -0.268694 -0.222801 0.998893 10.16 10.29 10.16

29 1,3-butadiene 1.6159 -0.258498 -0.228950 0.357837 10.17 10.13 10.17

30 Cyclopentene 1.4046 -0.258164 -0.232844 0.343862 10.17 10.22 10.20

31 Trans-2-heptene 1.6931 -0.259383 -0.230412 0.341409 10.17 10.12 10.18

32 2-methyl-1-pentene 1.4380 -0.264791 -0.238959 0.344140 10.2 10.34 10.21

33 1,5-hexadiene 1.8494 -0.251802 -0.249422 0.338346 10.21 10.36 10.32

34 4-methyl-1-cyclohexene 1.3811 -0.256752 -0.233595 0.390818 10.21 10.29 10.23

35 3-methyl-1,2-butadiene 1.8010 -0.234038 -0.235227 0.276072 10.24 9.99 10.24
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No. Name μI / Debye. EIβHOMO / a.u. EGHOMO / a.u. QIC12 / a.u. -logkOH (exp.) -logkOH (pred.)b -logkOH (pred.)c

Training set 

36 a-pinene 1.7989 -0.254171 -0.218341 0.393235 10.26 9.95 10.11

37 Cis-2-butene 1.7860 -0.262610 -0.233323 0.408649 10.26 10.25 10.21

38 Camphene 1.4010 -0.263749 -0.233314 0.272334 10.27 10.17 10.19

39 2,3-dimethyl-1-butene 1.6013 -0.266191 -0.239239 0.314830 10.28 10.28 10.21

40 2,3,3-trimethylbutene 1.6417 -0.263018 -0.239358 0.328902 10.3 10.28 10.23

41 Cis-Cyclooctene 1.6066 -0.253752 -0.231830 0.347259 10.38 10.15 10.22

42 Bicycle(2, 2, 2)-2-Octene 1.4061 -0.255391 -0.234580 0.460586 10.39 10.38 10.30

43 4-methyl-1-pentene 1.5886 -0.262981 -0.249101 0.338715 10.42 10.46 10.46

44 1-Decene 1.8493 -0.258003 -0.246066 0.335645 10.43 10.33 10.42

45 1-Butene 1.8309 -0.259331 -0.246661 0.324568 10.5 10.34 10.43

46 3,3-Dimethyl-1-Butene 1.5682 -0.263495 -0.249531 0.304249 10.55 10.43 10.47

47 Cis-1,3-Dichloroperopene 3.2949 -0.294107 -0.266567 0.944536 11.08 11.27 11.08

48 1-Chloroethene 1.9759 -0.279475 -0.262491 0.632896 11.18 11.03 11.18

49 Cis-1,2-Difluoroethene 1.8755 -0.314502 -0.254139 1.325095 12.15 11.94 12.15

Test set

50 α-Terpinene 2.0858 -0.232670 -0.192386 0.435730 9.44 9.43 9.54

51 Trans-Ocimene 1.7246 -0.223649 -0.214890 0.348622 9.6 9.72 9.75

52 Terpinolene 1.3946 -0.228190 -0.215923 0.490789 9.65 10.01 9.86

53 1-3-5-Hexatriene 1.5081 -0.246912 -0.209238 0.377880 9.66 9.81 9.92

54 2-5-Dimethyl-2-4-Hexadiene 1.9270 -0.235355 -0.194584 0.439269 9.68 9.51 9.58

55 γ-Terpinene 1.7112 -0.232884 -0.217922 0.401595 9.75 9.88 9.81

56 1-3-Cyclohexadiene 2.2179 -0.243968 -0.205526 0.411646 9.79 9.63 9.88

57 Cis-2-trans-4-Hexadiene 1.3842 -0.238352 -0.207100 0.424245 9.81 9.83 9.85

58 1-3-Cycloheptadiene 1.6743 -0.233355 -0.216948 0.337400 9.86 9.79 9.84

59 4-Methyl-1-3-Pentadiene 1.6156 -0.233286 -0.207910 0.359410 9.88 9.69 9.84

60 2-3-Dimethyl-1-3-Butadiene 1.8076 -0.248685 -0.224837 0.372377 9.91 10.00 10.11

61 β-Caryophyllene 1.2463 -0.221001 -0.219970 0.304256 9.92 9.84 9.74

62 2-5-Dimethyl-1-5-Hexadiene 1.8965 -0.238133 -0.233258 0.350638 9.92 10.05 10.21

63 Trans-1-3-Hexadiene 1.8150 -0.264811 -0.215871 0.359915 9.95 9.91 10.00

64 2-3-Dimethyl-2-Butene 1.4108 -0.259953 -0.217816 0.516044 9.96 10.20 9.96

65 Dimethylketene 4.7987 -0.261749 -0.211921 1.031781 9.97 10.03 10.16

66 2-Methyl-1-3-Butadiene 1.3600 -0.258270 -0.226117 0.348285 10 10.13 10.12

67 1-4-Cyclohexadiene 1.5143 -0.236744 -0.226180 0.330141 10 9.98 9.90

68 Trans-1-3-Pentadiene 1.5856 -0.263320 -0.216601 0.311442 10 9.90 9.97

69 2-3-Dimethyl-2-Pentene 1.5624 -0.258862 -0.211185 0.464335 10.01 9.99 9.94

70 1-Methylcyclohexene 1.2382 -0.254919 -0.224366 0.418505 10.03 10.20 10.05

71 2-Methyl-2-Pentene 1.5670 -0.263738 -0.221978 0.403204 10.04 10.11 10.01

72 Trans-1-4-Hexadiene 1.8623 -0.240840 -0.230689 0.343403 10.04 10.01 10.15

73 2-Methyl-2-Butene 1.7199 -0.255803 -0.225635 0.412442 10.06 10.11 10.12

74 2-Heptene 1.6930 -0.259383 -0.230412 0.341406 10.07 10.12 10.18

75 2-Methyl-1-4-Pentadiene 1.3669 -0.243179 -0.239354 0.339253 10.1 10.27 10.04

76 Cycloheptene 1.4482 -0.256849 -0.232142 0.381290 10.13 10.24 10.21

77 Cis-4-octene 1.3845 -0.261839 -0.231550 0.312938 10.14 10.18 10.17

78 Trans-4-octene 1.6524 -0.258211 -0.229560 0.398424 10.16 10.18 10.18

79 Cyclohexene 1.7324 -0.255118 -0.233459 0.329525 10.17 10.13 10.22

80 Trans-2-pentene 1.4261 -0.262505 -0.230681 0.334536 10.17 10.19 10.16

81 Cis-2-pentene 1.6360 -0.259237 -0.232569 0.396460 10.18 10.24 10.21

82 Trans-2-butene 1.6587 -0.260163 -0.235027 0.361226 10.22 10.23 10.21

83 2-methyl-1-butene 1.4756 -0.265263 -0.239266 0.333624 10.22 10.33 10.21

84 Trans-4-methyl-2-pentene 1.4187 -0.259956 -0.235456 0.378799 10.22 10.31 10.21

85 Sabinene 1.9228 -0.254161 -0.221302 0.396345 10.25 9.97 10.14

86 2-methyl-1-propene 1.5207 -0.265485 -0.239567 0.359728 10.26 10.36 10.22

Table S2. continuation
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No. Name μI / Debye. EIβHOMO / a.u. EGHOMO / a.u. QIC12 / a.u. -logkOH (exp.) -logkOH (pred.)b -logkOH (pred.)c

Test set

87 Trans-4,4-dimethyl-2-pentene 1.5498 -0.260832 -0.232897 0.293190 10.26 10.14 10.18

88 1,4-Pentadiene 1.7022 -0.252850 -0.240502 0.307939 10.27 10.21 10.31

89 Bicycle(2, 2, 1)-2-heptene 1.5115 -0.258902 -0.230925 0.305581 10.31 10.12 10.18

90 Longifolene 1.5343 -0.258575 -0.229710 0.287896 10.35 10.08 10.17

91 1-Heptene 1.8080 -0.261668 -0.246201 0.315476 10.39 10.33 10.43

92 1-Octene 1.5705 -0.262658 -0.246141 0.326022 10.4 10.40 10.41

93 1-Hexene 1.8387 -0.258431 -0.246307 0.335618 10.43 10.34 10.42

94 3-methyl-1-Butene 1.7204 -0.260006 -0.249824 0.309133 10.49 10.39 10.45

95 1-Pentene 1.8387 -0.258858 -0.246525 0.335080 10.5 10.34 10.42

96 Ketene 2.5412 -0.303842 -0.240468 0.703868 10.76 10.75 11.18

97 1-Bromoethene 1.8529 -0.276904 -0.254441 0.577348 11.17 10.85 11.18

98 Trans-1,2-Difluoroethene 1.4297 -0.322054 -0.253777 1.301103 12.13 12.03 12.15
aExperimental data taken from: Fatemi, M. H.; Baher, E.; SAR QSAR Environ. Res. 2009, 20, 77; b-logkOH values predicted from the MLR model for -logkOH; 
c-logkOH values predicted from the GRNN model for -logkOH.

Table S2. continuation


