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Irisin and troponin I expression in dialysis patients submitted 
to remote ischemic preconditioning: a pilot study

Expressão de irisina e troponina I em pacientes em diálise submetidos 
a pré-condicionamento isquêmico remoto: um estudo piloto

Introdução: A terapia de substituição re-
nal continua associada a altas taxas de 
hospitalização e baixa qualidade de vida. 
A morbimortalidade por todas as causas 
na terapia de substituição renal é supe-
rior a 20% ao ano, sendo 44 vezes maior 
quando a diabetes está presente e mais de 
10 vezes a da população em geral. Inde-
pendentemente do tratamento, a sobrevi-
da em 5 anos é de 40%, superando muitos 
tipos de câncer. A irisina é um hormônio 
que converte tecido adiposo branco em te-
cido adiposo bege, agregando efeitos po-
sitivos como o controle de massa gorda, 
tolerância à glicose, resistência à insulina, 
prevenção de perda muscular e redução 
da inflamação sistêmica. Objetivos: Deter-
minar os níveis séricos de troponina I em 
pacientes em hemodiálise submetidos ao 
pré-condicionamento isquêmico remoto 
(PCIR) associado à expressão da irisina. 
Métodos: Estudo clínico prospectivo, ran-
domizado, duplo-cego, com pacientes com 
doença renal crônica submetidos à hemo-
diálise por um período de 6 meses. Os ní-
veis de troponina I, IL-6, uréia, TNF-α e 
creatinina foram determinados a partir de 
amostras de sangue. As expressões de irisi-
na, tioredoxina, Nf-kb, GPX4, selenopro-
teína e GADPH foram também avaliadas 
por RT-PCR. Resultados: Foram analisa-
das amostras de 14 pacientes hipertensos, 
9 (64,3%) dos quais eram diabéticos tipo 
2, com idades entre 44 e 64 anos e 50% 
de cada gênero. A diferença entre os níveis 
pré e pós-intervenção de troponina I não 
foi significativa. Não houve diferenças en-
tre os grupos PCIR e controle, exceto pela 
IL-6, embora tenha sido observada corre-
lação significativa entre irisina e troponina 
I. Conclusão: O pré-condicionamento is-
quêmico remoto não modificou a expres-
são de irisina ou troponina I, independen-
temente do tempo de coleta.

Resumo

Palavras-chave: Diálise Renal; Hiperten-
são; Diabetes Mellitus; Análise Química 
do Sangue; Troponina I.

Background: Renal replacement 
therapy continues to be related to high 
hospitalization rates and poor quality of 
life. All-cause morbidity and mortality 
in renal replacement therapy in greater 
than 20% per year, being 44 times greater 
when diabetes is present, and over 10 
times that of the general population. 
Regardless of treatment, the 5-year 
survival is 40%, surpassing many types of 
cancers. Irisin is a hormone that converts 
white adipose tissue into beige adipose 
tissue, aggregating positive effects like fat 
mass control, glucose tolerance, insulin 
resistance, prevention of muscle loss, 
and reduction in systemic inflammation. 
Objectives: To determine the serum 
levels of troponin I in hemodialysis 
patients submitted to remote ischemic 
preconditioning (RIPC) associated with 
irisin expression. Methods: This was a 
prospective, randomized, double-blind 
clinical trial with patients with chronic 
kidney disease submitted to hemodialysis 
for a 6-month period. Troponin I, IL-6, 
urea, TNF-α, and creatinine levels were 
determined from blood samples. The 
expressions of irisin, thioredoxin, Nf-
kb, GPX4, selenoprotein and GADPH 
were also evaluated by RT-PCR. Results: 
Samples from 14 hypertensive patients 
were analyzed, 9 (64.3%) of whom 
were type 2 diabetics, aged 44-64 years, 
and 50% of each sex. The difference 
between pre- and post-intervention 
levels of troponin I was not significant. 
No differences were verified between 
the RIPC and control groups, except for 
IL-6, although a significant correlation 
was observed between irisin and 
troponin I. Conclusion: Remote ischemic 
preconditioning did not modify irisin or 
troponin I expression, independent of the 
time of collection.
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Introduction

Despite the recent improvements in the dialysis process, 
renal replacement therapy continues to present high hos-
pitalization rates, which is related to poor quality of life. 
All-cause morbidity and mortality in renal replacement 
therapy is greater than 20% per year, being 44 times gre-
ater when diabetes is present and over 10 times that of 
the general population1,2. Regardless of treatment, the 
5-year survival is 40%, which surpasses that of nume-
rous types of cancers3,4. In hemodialysis patients, car-
diovascular mortality accounts for 40% of all deaths, 
mostly due to heart failure, acute myocardial infarction, 
and fatal cardiac arrhythmia3,5. During prolonged treat-
ment, these patients are susceptible to morphofunctio-
nal alterations. Quantification of myocardial blood flow 
(MBF) by positron emission tomography (PET) during 
hemodialysis of patients with no significant angiographic 
coronary lesion evidence alterations in the left ventricu-
lar (LV) segmental contraction that were correlated with 
the reduction in both global and segmental MBF, pro-
moting contractile dysfunction6. Reduction in segmental 
MBF is associated with circumscribed areas of necrosis, 
altered permeability, elevated circulating levels of cardiac 
troponin (cTnT), together with LV hypokinetic regions 
detected by echocardiography. Recurrent ischemic episo-
des during hemodialysis promote myocardial injury with 
functional irreversibility6.

Myocardial ischemia can be triggered by several 
factors: high prevalence of coronary atheroma, left 
ventricular hypertrophy, intradialytic hypotension, 
and reduced reserve coronary flow (RRF), even in 
the absence of stenosis7,8. Left ventricular hypertro-
phy (LVH), which often occurs in renal failure, in-
creases the ventricular end-diastolic pressure, the 
parietal stress that compromises MBF, particular-
ly in the subendocardium9. Myocardial stunning of 
LV dysfunction due to transient ischemia associated 
with hemodialysis is frequently prolonged but rever-
sible6,10. Ischemic episodes due to hemodialysis play 
an important role in the development of heart failure 
and cardiac arrhythmias11,12. Thus, reducing ischemia 
following hemodialysis seems to be a desirable thera-
peutic target13.

Irisin is a hormone identified in muscle cells of trans-
genic mice expressed by Ppargc1a, which encodes the co-
activator-1α of the γ receptor activated by peroxisome 
proliferator (PGC-1α). In turn, PGC-1α stimulates the 
gene expression of the transmembrane protein fibronec-
tin type III domain-containing protein 5 (Fndc5). When 
Fndc5 undergoes proteolytic cleavage, it is released into 

the bloodstream with a fragment containing 112 residual 
amino acids. It binds to unidentified receptors on the cell 
surface of adipose tissue14. Irisin converts white adipose 
tissue into beige adipose tissue, which aggregates positi-
ve effects like fat mass control, glucose tolerance, insu-
lin resistance, prevention of muscle loss, and reduction 
in systemic inflammation15,16. Irisin has the therapeutic 
potential to prevent and treat obesity and diabetes17. In 
humans, FNDC5 is strongly expressed in skeletal mus-
cle, heart, tongue, and rectum. FNDC5 expression is 
decreased in the pancreas, liver, and organs involved in 
glycolytic homeostasis18. In humans, FNDC5 expression 
in adipose tissue is up to 200 times lower than that of 
skeletal muscle18,19. Circulating levels are modulated by 
factors that include diet, obesity, exercise, pharmacologi-
cal agents, and different pathological conditions. Remote 
ischemic preconditioning (RIPC) is a non-invasive, non-
-pharmacological intervention of myocardial protection 
induced by transient interruption of the blood flow in 
one limb by a blood pressure cuff, which shows a pro-
tective effect against myocardial ischemia (reperfusion 
injury)18,20,21. RIPC is associated with a reduction in tro-
ponin I release, lower elevation in the ST segment of the 
ECG, and lower adverse cardiovascular events following 
percutaneous coronary intervention (PCI)19,22. In corona-
ry artery bypass graft surgery, RIPC was shown to sig-
nificantly reduce the release of cardiac troponin (cTnT) 
6, 12, 24, and 48 h after the surgical procedure11,23. This 
study aimed to determine the behavior of serum tropo-
nin I levels in hemodialysis patients submitted to RIPC 
associated with irisin expression.

Materials and methods

A prospective, randomized, double-blind clinical trial 
was conducted by the Laboratory of Clinical Analysis 
of ABC Medical School (FMABC), in patients with 
chronic renal disease under hemodialysis for a period 
of six months. The procedures followed the princi-
ples of the Declaration of Helsinki and were appro-
ved by the Research Ethics Committee of Paulista 
University (UNIP), under protocol no. 2.424.258. 
Eligibility consisted of patients submitted to outpa-
tient hemodialysis therapy, who were 18 years old 
or over, and diagnosed with chronic renal failure ac-
cording to the Kidney Disease Initiative for Global 
Outcomes (KDIGO). Patients who presented neopla-
sia, infection, and were HIV+ were excluded. Blood 
samples were collected to determine troponin I levels 
using quantitative immunochromatographic metho-
ds (Human Quit). IL-6 and TNF-α were analyzed 
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using a chemiluminescent immunoenzymatic method 
(Simens). Urea and creatinine quantifications were 
performed using a colorimetric enzymatic method 
in a fully automated spectrophotometer (COBAS 
6000 Roche). Good practices in clinical analysis we-
re followed in all analyses performed in this study. 
For analysis of gene expression, RNA was extrac-
ted using the Trizol® technique. One microgram of 
cDNA was converted using the Invitrogen Reverse 
Transcriptase Superscript II RNAse kit, according to 
the manufacturer’s recommendations.

The qRT-PCR technique was applied to the cDNA 
sequence obtained so that irisin GADPH, thioredoxin, 
Nf-kb, GPX4, and selenoprotein could be analyzed as 
follows: 1X of buffer 2X SYBR Green PCR Master 
Mix, 2.0 μL of cDNA and 0.4 mM of RT-PCR Primer 
Assay resulting in 15 μL of final reaction volume. The 
volume was completed using deionized water. The re-
action was run in a Cycler 7500 (Applied Biosystems) 
using the following program: 95°C for 10 min; 40 
cycles of 95°C for 15 s and 60°C for 60 s. The sequen-
ce of primers used is presented in Table 1.

The intervention group was submitted to RIPC 
on the right arm using a sphygmomanometer at 
200 mmHg for 5 min, followed by 5 min of de-
flation, repeated three times for a total of 30 min, 
during three consecutive hemodialysis sessions. 
The control group was not submitted to any addi-
tional intervention. Blood samples were collected 
before the start of the first and third weekly ses-
sions. Blood urea nitrogen (BUN) was measured 
to calculate the single pool Kt/v, and irisin and 
troponin I to assess cardiac compromise due to 

Gene Sequence

GSH
FOW 5’CTACGGACCCATGGAGGAG 3’

REV 5’AGGCCATGGGACCTTCCT 3’

SE-P
FOW 5’GGTTTGCCTTTTTCCTTCCT 3’

REV 5’GCTCCTGGTTGCTGATTCTC 3’

TRX1
FOW 5’ GCCATTGGCGATATATTGGA 3’

REV 5’ CTCTTGACGGAATCGTCCAT 3’

NF-kβ
FOW 5’ CTCTGTCATTCGTGCTTCC 3’

REV 5’ CATCCCATGGTGGACTACC 3’

Irisin
REV 5’ GATCCAGCCATCAAGGACAT 3’

REV 5’TTGTCCAAGCTAGCATTTCTGA 3’

GAPDH
FOW 5’CTGTGAGGTAGGTGCAAATGC 3’

REV 5’GCCCACTTCACCGTACTAACCA 3

Table 1	 Primers sequence

hemodialysis. The primary outcome was mortality, 
while the secondary outcomes were acute myocar-
dial infarction, stroke, and thromboembolic event. 
Serum levels of TNF-α, selenoprotein, thioredoxin, 
and NFκB indicated an inflammatory profile. Urine 
samples were taken to determine the albumin/cre-
atinine ratio and beta-trace protein (BTP) of the 
first urination. The estimated glomerular filtration 
rate (eGFR) was calculated using the Modification 
of Diet in Renal Disease Study equation for adults.

Statistical analysis

Qualitative variables are presented as absolute and re-
lative frequency. The Shapiro-Wilk test was used to de-
termine quantitative variables showing non-normal data 
distribution (p < 0.05), and are presented as median va-
lues, 25th and 75th percentiles and 95% confidence in-
terval. The Student’s t-test and Wilcoxon test were used 
to analyze inter-group and intra-group expression of the 
biomarkers pre- and post-intervention. The Spearman 
test was used to analyze the correlation between the bio-
markers. Stata version 11.0 was used for all analyses.

Results

This study included 14 hypertensive patients of equal 
numbers of each sex, 9 (64.3%) of whom were type 2 
diabetics (T2DM), aged 44-64 years. There were three 
deaths due to non-cardiovascular events, one in the in-
tervention group and two in the control group (Table 2). 
The difference between pre- and post-intervention (RIPC) 
levels of troponin I were not significant (p = 0.28). No 
significant difference was observed between the pre- 
and post-collection points for individual biomarkers. In 
addition, no difference was observed between the RIPC 
and control groups, except for IL-6 (p = 0.039), when 
analyzing the collection points and the presence or ab-
sence of RIPC (Table 3). The Spearman correlation test 
indicated a significant association (p = 0.56) between iri-
sin and troponin I (Table 4).

Variables Patients (n = 14)

Gender (male) 7 (50%)

Hypertension 14 (100%)

Death 3 (21.4%)

Diabetes 9 (64.3%)

Age* 52 (44 - 64)

Table 2	 Demographic characteristics of the 		
	 patients

*Values expressed as mean and 95%CI.
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Biomarkers
HD without RIPC HD with RIPC p*

Average (95%CI)

Δ Ureia 64.00 (43.00; 107.80) 61.00 (21.90; 115.80) 0.051

Δ Troponin I -0.01 (-0.03; 0.05) 0.00 (-0.01; 0.01) 0.361

Δ TNF-α -0.30 (-3.51; 2.76) 0.55 (-2.69; 9.61) 0.606

Δ IL6 -0.05 (-12.11; 2.54) 5.50 (-1.15; 9.39) 0.039

Δ Irisin 2.29 (-9.90; 14.47) -1.40 (-14.61; 38.72) 0.698

Δ Tiorredoxin -1.53 (-23.80; 42.14) -0.08; (-3.86; 7.53) 0.439

Δ NF-Kβ -0.66 (-31.81; 42.99) 0.15 (-4.53; 6.95) 0.796

Δ GPX4 1.06 (-2.52; 6.76) 1.26 (-2.55; 12.86) 0.796

Δ Selenoprotein 5.14 (-10.29; 39.05) 0.61 (-12.89; 14.90) 0.439

Table 3	A ssociation between biomarkers of the group with and without remote ischemic preconditioning 		
	 (RIPC)

*Mann-Whitney’s; 95%CI: 95% confidence interval.

Biomarkers
Irisin Tiorredoxin NF-Kβ GPX4 Selenoprotein

Spearman’s 
rho

p Spearman’s 
rho

p Spearman’s 
rho

p Spearman’s 
rho

p Spearman’s 
rho

p

Ureia 0.147 0.615 -0.007 0.982 0.323 0.260 0.213 0.464 0.222 0.446

Troponin I -0.171 0.558 0.082 0.780 0.284 0.325 -0.246 0.396 0.-242 0.405

TNF-α 0.123 0.674 -0.247 0.395 -0.163 0.578 0.223 0.445 0.478 0.084

IL6 0.393 0.164 -0.108 0.714 0.090 0.759 -0.503 0.067 0.125 0.670

Table 4	C orrelation between serum biomarkers

Discussion

This study aimed to establish the relationship between 
irisin expression and troponin I levels in hemodialysis 
patients submitted to RIPC. The negative correlation be-
tween these variables is in disagreement with the current 
literature. Hyperglycemic dogs submitted to intravenous 
dextrose or chemically induced diabetes showed an in-
crease in the extent of myocardial infarction, in addition 
to annulling the protection resulting from preconditio-
ning31. These findings confirm preclinical and clinical 
evidence that elucidate the adverse interaction between 
hyperglycemia and cardioprotective pathways. Research 
conducted on rats, rabbits, dogs, sheep, and humans had 
very similar findings24-28. This information may explain 
the lack of correlation found, since our sample was com-
posed of diabetics (64.3%) and hypertensive patients 
(100%), in contrast to the literature, which consists of 
40% diabetics29 and 32% hypertensive indivduals30. 
Disparate data likely occurred due to the small sample 
size.

In diabetic rats, the cardioprotective effect of RIPC 
was restored, increasing the number of cycles to obtain 
the desired effect, which indicates that diabetes increases 
the threshold for preconditioning31. In a murine model 

of ischemia and reperfusion, it was the number and du-
ration of the cycles, rather than the number of limbs 
exposed to RIPC that determined its effectiveness. The 
window of early protection disappeared between 1.5 and 
2 hours after the end of the stimulus32. In a study from 
2018, hemodialysis patients submitted to RIPC for three 
successive sessions did not achieve myocardial protection 
compared to the control group33; however, Park et al. did 
achieve such protection after twelve sessions34. The in-
consistency in these findings may be due to the number 
and/or duration of the sessions.

It has been suggested that poor cardioprotection 
in diabetics is due to the altered function of the ATP-
dependent potassium channel (KATP channel) or the 
decrease in phosphorylation of important signaling 
kinases, including Akt (serine/threonine kinase pro-
tein) and glycogen synthase (GSK-3)35,36. Currently, 
prospective data support the possible role of inflam-
mation in diabetogenesis, which is consistent with 
earlier hypotheses that type 2 diabetes mellitus may 
be a manifestation of the acute cytokine-mediated 
response of the innate immune system37. In this scena-
rio, positive associations were observed between IL-6 
and PCR that remained after adjusting for body mass 
index, family history of diabetes, smoking, exercise, 
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alcohol use, and hormone replacement therapy. The 
multivariate relative risks for the highest versus the 
lowest quartiles were 2.3 for IL-6 (95%CI, 0.9-5.6, 
p tending toward = 0.07) and 4.2 for PCR (95%CI, 
1.5-12.0, p tending toward = 0.001)38,39.

Regarding mortality in the proposed six-month 
follow-up period, three (21.4%) non-cardiovascular 
deaths occurred, one in the intervention group and two 
in the control group. This corroborates data regarding 
the duration of hemodialysis that ascertained the rela-
tionship between the duration of hemodialysis therapy 
and mortality as a primary outcome in 11 countries; 
mortality rate (deaths/100 patient-years) was 16.9% 
(95%CI, 16.2-17.6) for a period of 121-365 days40. In all 
countries, mortality was higher at baseline compared wi-
th the intermediate period, but the intermediate and late 
periods were similar. Within each period, a higher mor-
tality occurred in the United States compared to most 
other countries. Thus, internationally, the initial period 
of hemodialysis constitutes the period of high risk in the 
countries studied, and substantial differences in mortali-
ty have been reported among these. In conclusion, inde-
pendent of the time of collection, RIPC did not modify 
the levels of irisin and troponin I, even though both are 
known biomarkers.
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