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Abstract
Beta-ketothiolase deficiency is an inherited disorder of ketone body metabolism and isoleucine catabolism. It typically
manifests as recurrent ketoacidotic episodes with characteristic abnormalities in the urinary organic acid profile.
However, several challenges in the diagnosis of beta-ketothiolase deficiency have been encountered: atypical
presentations have been reported and some other disorders, such as succinyl-CoA:3-oxoacid CoA transferase and
2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiencies, can mimic the clinical and/or biochemical signs of beta-
ketothiolase deficiency. A final diagnosis of beta-ketothiolase deficiency requires an enzymatic assay and/or a molecular
analysis, but some caveats must be considered. Despite the reported missed cases, screening programs have successfully
identified an increasing number of patients with beta-ketothiolase deficiency. Early diagnosis and management of beta-
ketothiolase deficiency will enable prevention of its serious acute and chronic complications and ultimately improve the
prognosis.
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Introduction

Beta-ketothiolase deficiency (Online Mendelian Inheritance in

Man [OMIM] 203750) is an autosomal recessive disease caused

by a defect of mitochondrial acetoacetyl-CoA thiolase (T2). This

disorder affects ketone body metabolism and isoleucine catabo-

lism. Beta-ketothiolase deficiency is also known by other names

including T2 deficiency, mitochondrial acetoacetyl-CoA thiolase

deficiency, 3-oxothiolase deficiency, 3-ketothiolase deficiency,

and 2-methyl-3-hydroxybutyric acidemia.1-3 In this review, beta-

ketothiolase is abbreviated as T2.

T2 and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)

lyase (OMIM 246450) deficiencies are the most common dis-

orders of ketone body metabolism.2 Since the first description

of T2 deficiency in 1971,4 more than 100 cases have been

reported worldwide, with no ethnic predisposition.1 T2 defi-

ciency is estimated to be a very rare disease with an incidence

of less than 1 per 1 million newborns.5

In this review, we provide an overview on T2 deficiency, illus-

trate challenges in diagnosis, and clarify ways to overcome these

challenges; a diagnostic flow chart for T2 deficiency is provided.

Biochemistry

The ketone bodies acetoacetate (AcAc) and 3-hydroxybutyrate

(3HB) are important substitutes for glucose. They are pro-

duced in the liver and can be utilized as energy sources by

most tissues except the liver itself. They are especially

important for the brain as the only substitutes for glucose.1,2

1 Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag,

Egypt
2 Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu,

Japan
3 Department of Biomedical Sciences, College of Life and Health Sciences,

Education and Training Center of Medical Technology, Chubu University,

Kasugai, Japan

Received November 12, 2015, and in revised form January 31, 2016. Accepted

for publication February 1, 2016.

Corresponding Author:

Elsayed Abdelkreem, Department of Pediatrics, Faculty of Medicine, Sohag

University, Nasser City 82524, Egypt.

Email: d.elsayedmohammed@med.sohag.edu.eg

Journal of Inborn Errors of Metabolism
& Screening
2016, Volume 4: 1–9
ª The Author(s) 2016
sagepub.com/journalsPermissions.nav
DOI: 10.1177/2326409816636644
iem.sagepub.com

This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any
use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

http://www.sagepub.com/journalsPermissions.nav
http://iem.sagepub.com
http://www.creativecommons.org/licenses/by/3.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2326409816636644&domain=pdf&date_stamp=2016-03-30


As shown in Figure 1, ketone body metabolism starts in the

hepatocytes with b-oxidation of free fatty acids (FFA), sup-

plied from adipose tissues, to produce acetyl-CoA and

acetoacetyl-CoA (AA-CoA). T2 can convert acetyl-CoA to

AA-CoA and vice versa. Mitochondrial HMG-CoA synthase

condenses acetyl-CoA and AA-CoA to form HMG-CoA.

HMG-CoA is converted by HMG-CoA lyase to AcAc, which

is partially reduced to 3HB by 3-hydroxybutyrate dehydrogen-

ase. AcAc and 3HB are transferred to extrahepatic tissues via the

bloodstream, where 3HB is converted back to AcAc. Succinyl-

CoA:3-oxoacid CoA transferase (SCOT) activates AcAc to

AcAc-CoA, which is then cleaved by T2 into acetyl-CoA.1,2

Hence, T2 is important in both ketogenesis in the liver and keto-

lysis in the extrahepatic tissues. Another thiolase, mitochondrial

3-ketoacyl-CoA thiolase, can compensate for T2 deficiency in

ketogenesis but to a lesser extent in ketolysis. As a result, defi-

ciency of T2 leads to ketosis.1-3 Monocarboxylate transporter 1

(MCT1), a transmembrane transporter, has been shown to trans-

port monocarboxylates, including ketone bodies, into extrahepa-

tic tissues. This is essential for ketolysis, particularly during

periods of catabolic stress.6

In isoleucine catabolism, T2 is responsible for thiolysis of

2-methylacetoacetyl-CoA (2MAA-CoA) to acetyl-CoA and

propionyl-CoA. The 2 upstream reactions, conversion of

tiglyl-CoA to 2-methyl-3-hydroxybutyryl-CoA (2M3HB-CoA)

and conversion of 2M3HB-CoA to 2MAA-CoA, are reversible;

the latter reaction is catalyzed by 2-methyl-3-hydroxybutyryl-

CoA dehydrogenase (MHBD). Consequently, T2 deficiency

leads to accumulation of 2MAA-CoA, 2M3HB-CoA, and

tiglyl-CoA, whereas MHBD deficiency results in accumulation

of only the latter 2 metabolites.1-3

Clinical Presentation: Diagnostic Challenges

Clinical Presentation

Typical presentation. T2 deficiency classically manifests between

6 and 18 months of age with recurrent ketoacidotic attacks; patients

are generally asymptomatic between attacks. Ketoacidotic epi-

sodes are often triggered by fasting, fever, infections, or other

ketogenic stresses. Coma, convulsions, and even death are possible

acute complications, whereas neurodevelopmental impairments

are possible long-term complications, mainly as sequelae of severe

metabolic decompensations. The severity of the disease varies

among cases, but the overall prognosis is usually good.1,3,7,8

Atypical presentation. Some patients with T2 deficiency having

atypical presentation exhibit signs and symptoms at an earlier

age, even in the neonatal period,1 whereas others experience

their first attack at an older age.8 Furthermore, some patients

present with neurological symptoms before the onset of ketoa-

cidotic attacks.9 In contrast, some asymptomatic patients with

T2 deficiency have been identified by screening, either because

of the existence of an affected family member or as a result of

newborn screening (NBS) programs.10-14

Diagnostic Challenges

Metabolic disorders should be suspected in ketoacidotic

patients. Therefore, critical samples (blood, serum, and urine)

should be collected, and routine laboratory tests should be

performed before treatment is started3; however, unwary pedia-

tricians may not do so. Symptomatic management of
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Figure 1. Summary of ketone body metabolism and isoleucine catabolism. 2M3HB indicates 2-methyl-3-hydroxybutyryl; 2MAA,
2-methylacetoacetyl; 3HB, 3-hydroxybutyrate; 3HBD, 3-hydroxybutyrate dehydrogenase; AA, acetoacetyl; AcAc, acetoacetate; CoA, coenzyme
A; FFA, free fatty acids; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGCL, HMG-CoA lyase; HMGCS, mitochondrial HMG-CoA synthase;
MHBD, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase; SCOT, succinyl-CoA:3-oxoacid CoA transferase; T2, mitochondrial acetoacetyl-CoA
thiolase; TCA, tricarboxylic acid.
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dehydration, acidosis, and hypoglycemia (if present) may lead

to improvement in the condition. The patient may then be dis-

charged without receiving a final diagnosis.15 There are many

examples in the literature of failure to diagnose patients with

T2 deficiency during their first presentations. Such patients

received attention only when they had a second episode or

when there was a similar presentation in another family mem-

ber.16-18

A second possibility is that the patient will be seen by a

consultant who will order many metabolic investigations (if

applicable). Such investigations may lead to the diagnosis of

a metabolic disorder, but T2 deficiency might be missed (dis-

cussed later).19 Conversely, the patient may die during the

acute attack. An important finding in many cases of T2 defi-

ciency is a positive family history of unexplained sibling

deaths.20-23 The siblings might have had undiagnosed T2 defi-

ciency as well.3

The following are some possible solutions for the aforemen-

tioned clinical challenges:

1. Education of health-care staff, especially those working

in emergency wards, to improve their knowledge of T2

deficiency, ketone body disorders, and metabolic dis-

orders in general, and provision of diagnostic guidelines

that identify the circumstances in which ketone body

disorders should be suspected and what should then be

done.1,3 T2 deficiency should be considered in the fol-

lowing situations: (a) infants and children with an acute

attack of metabolic acidosis following prolonged fast-

ing, acute gastroenteritis, respiratory tract infections, or

other febrile states and (b) patients with severe ketosis

exceeding predicted values in the context of the clinical

circumstances (discussed later); and (c) sick neonates

with metabolic acidosis.1

2. Establishment of 1 or 2 metabolic centers in countries

with a highly consanguineous population, where the

incidence of genetic and metabolic diseases, including

T2 deficiency, is expected to be high.24,25

Investigations: Diagnostic Challenges

Investigations

Routine laboratory investigations. During ketoacidotic attacks, a

blood total ketone body (TKB) concentration >7 mmol/L is the

major finding. Blood sugar is typically normal, but hypoglyce-

mia or hyperglycemia has been reported.3 Blood ammonia is

usually normal, but it may be slightly elevated in some cases.1,3

Urinary organic acid and blood acylcarnitine profiles. T2 deficiency

is usually suspected during acute ketoacidotic attacks when

there is increased urinary excretion of 2-methylacetoacetate

(2MAA), 2-methyl-3-hydroxybutyrate (2M3HB), and tiglyl-

glycine (TIG). Blood acylcarnitine analysis usually reveals

increased tiglylcarnitine (C5:1) and 2-methyl-3-hydroxybu-

tyryl-carnitine.1

Diagnostic Challenges

When ketosis is associated with hypoglycemia, several disor-

ders are considered, including ketotic hypoglycemia, endocr-

inal disorders (eg, Addison disease), and metabolic disorders of

glucose and glycogen metabolism (eg, glycogen synthase defi-

ciency).3 The severity of ketoacidosis in T2 deficiency may

distinguish this disorder from other causes of ketotic hypogly-

cemia (Figure 2).2 The highest reported plasma glucose level in

patients with T2 deficiency is 14.1 mmol/L.15 Ketoacidosis

with hyperglycemia, mimicking diabetic ketoacidosis, has been

reported in some organic acidemias, although diabetic ketoa-

cidosis is usually associated with much higher plasma glucose

levels than ketoacidosis caused by organic acidemias. In such

cases, glycated hemoglobin or glycoalbumin levels may help

distinguish them (Figure 2).26 When ketoacidosis is associated

with hyperammonemia, organic acidemias are suspected. Such

suspicion can be excluded by urinary organic acid analysis.1,3

Individuals with SCOT deficiency (OMIM 245050) may

present with ketoacidotic attacks mimicking T2 deficiency.3

SCOT deficiency has 3 important characteristics: (1) neonatal

onset in 50% of cases, (2) permanent ketosis, even postpran-

dially, and (3) lack of a characteristic urinary organic acid

profile.1,2 Given that (1) T2 deficiency may manifest in the

neonatal period,1,2 (2) permanent ketosis is not a feature in all

cases of SCOT deficiency,2 and (3) some cases of T2 defi-

ciency show only subtle biochemical abnormalities in the urin-

ary organic acid profile,1,19 the 2 conditions may be very

similar at both the clinical and biochemical levels. Actually,

both conditions should be suspected and investigated in cases

of unexplained and/or recurrent ketoacidotic attacks. The con-

ditions can be differentiated by enzymatic assay and/or mole-

cular analysis.1-3

MCT1 deficiency (OMIM 616095) is a novel disorder of

ketone body utilization. After confirmation of the diagnosis in

the index patient, pathogenic mutations, both homozygous and

heterozygous, in the MCT1 gene (SLC16A1) were identified in

an additional 7 of 96 patients who had unexplained recurrent

episodes of severe ketoacidosis. The extent of ketonuria varies

during episodes, and the blood pH is normal between episodes.6

Regarding urinary organic acids, several caveats must be

noted: (1) the aforementioned characteristic abnormalities,

which are typically present during acute attacks, may be subtle

in stable conditions, especially in individuals with mild muta-

tions.1-3,19 This can lead to the usual scenario described earlier,

in which undiagnosed T2 deficiency is neither suspected nor

investigated during the first acute attack.16,17,27 The results of

any subsequent investigations might be inconclusive if samples

were obtained after stabilization of the patient’s condi-

tion.2,19,28 (2) In some reported cases, there were only subtle

abnormalities in urinary organic acid and blood acylcarnitine

profiles during the acute ketoacidotic episode.10,19 (3) Even in

the presence of increased urinary excretion of 2M3HB and

TIG, a diagnosis of T2 deficiency cannot be confirmed.

MHBD deficiency (OMIM 300438) is a neurodegenerative

disorder with a variable clinical presentation that is usually
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different from that of T2 deficiency. However, a case of

MHBD deficiency mimicking T2 deficiency both clinically

and in terms of the urinary organic acid profile (increased

excretion of 2M3HB and TIG) has been reported.2,29 More-

over, MHBD deficiency may produce the same abnormal

results as T2 deficiency in a coupled assay.1,30 Differentiation

between T2 and MHBD deficiencies is based on the following:

(1) MHBD deficiency is an X-linked disorder; (2) urinary

excretion of 2MAA does not increase in MHBD deficiency,

even after an oral isoleucine challenge (100 mg/kg body

weight), although isoleucine challenge is usually not neces-

sary3; and (3) the potassium-dependent AA-CoA thiolase assay

gives a normal result in cases of MHBD deficiency.28

To overcome the aforementioned challenges, a number of

procedures should be followed. Blood gases, electrolytes, glu-

cose, ammonia, TKB (or 3HB if TKB is not available), and

FFA are the most important initial investigations during acute

attacks. Lactate and pyruvate concentrations should also be

measured during the first crises of undiagnosed patients with

T2 deficiency to exclude congenital lactic acidosis.3 The col-

lection of plasma or serum samples for acylcarnitine analysis

and aminogram as well as urine samples for organic acid anal-

ysis is important at this stage. For accurate evaluation, samples

for these analyses should be obtained before glucose infu-

sion.1,2,19 Enzymatic assays for both T2 and SCOT deficiencies

should be performed in suspected cases even in the absence of

typical biochemical abnormalities.1,10

It is worth emphasizing the importance of TKB levels in the

diagnosis of T2 deficiency and other ketone body disorders.

Total ketone body should be interpreted in light of clinical

factors, such as fasting time and any ketogenic stresses, and

biochemical factors, especially blood glucose and FFA. The

FFA/TKB ratio is a useful tool; being lower than 0.3 in the

early fasting stage in patients with T2 deficiency and other

ketolytic disorders, it differentiates such conditions from phy-

siological ketosis due to fasting.31 In the case of associated

hypoglycemia, the marked increase in TKB in relation to blood

glucose differentiates T2 deficiency (and other ketolytic dis-

orders) from ketotic hypoglycemia.2 Figure 2 shows a diagnos-

tic flow chart for T2 deficiency.

Molecular Analysis: Diagnostic Challenges

Molecular Analysis

The structure of the human T2 gene (gene symbol ACAT1) was

determined in 1991. The gene is located on chromosome

11q22.3 to q23.1 is 27-kb in length and is composed of 12

exons and 11 introns.32 Genetic mutations resulting in T2 defi-

ciency are highly heterogeneous, with no clear genotype–phe-

notype correlation. To date, more than 50 different mutations

have been discovered and at least 9 novel mutations have been

reported in the last 6 years. To our knowledge, apart from the

common R208X mutation that has been identified in
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Figure 2. Diagnostic flow chart for beta-ketothiolase (T2) deficiency. An FFA/TKB cutoff of 0.3 is not an absolute value. Fasting for too long may
decrease the ratio, and glucose infusion reduces FFA faster than TKB, also decreasing the ratio. Dotted lines indicate rare but possible
consequences. Extreme hyperglycemia with elevated HbA1c is usually diagnosed as diabetic ketoacidosis; however, ketoacidosis mimicking
diabetic ketoacidosis has been reported in some organic acidemias. Hence, although HbA1c is a good marker for diabetic ketoacidosis, normal
HbA1c levels cannot exclude diabetic ketoacidosis conclusively (indicated by a dotted line). If the urinary organic acid profile is nonspecific during
ketoacidosis, T2 and SCOT should be analyzed by enzyme assay or gene analysis, since patients with T2 deficiency could have a nonspecific
urinary organic acid profile (indicated by a dotted line). FFA/TKB indicates free fatty acids/total ketone body; HbA1c, glycated hemoglobin;
MCT1, monocarboxylate transporter 1; MHBD, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase; SCOT, succinyl-CoA:3-oxoacid CoA trans-
ferase; T2, mitochondrial acetoacetyl-CoA thiolase.

4 Journal of Inborn Errors of Metabolism & Screening



Vietnamese cases, no other common mutations have been

determined.1,4,7-15,17,20-25,28,29,33-59

T2 deficiency can be confirmed if genomic DNA analysis

reveals mutations in ACAT1 gene that were previously identi-

fied as causative for T2 deficiency in a mutant complementary

DNA (cDNA) expression assay. Screening of other family

members for these mutations can identify asymptomatic

patients without the need for other sophisticated biochemical

or enzymatic assays. Unfortunately, because of the high hetero-

geneity of mutations in T2 deficiency, this is not the usual

scenario.19

Diagnostic Challenges

DNA analysis of suspected patients with T2 deficiency may

reveal novel variants in ACAT1 gene that have never been

reported or studied. This is usually enough for a justifiable

diagnosis when such variants have not been reported as

polymorphisms. However, confirmation of the diagnosis at

the molecular level requires mutant cDNA expression assays

to verify that these variants are responsible for T2 defi-

ciency.3 In the absence of any mutations in the coding

regions (exons) of the genomic DNA, there are multiple

possibilities that must be ruled out before T2 deficiency can

be excluded. Although homozygous mutations involving

nucleotide substitutions can usually be detected by tradi-

tional genomic DNA analysis, heterozygous mutations may

be missed. Moreover, copy number variants, small or large

heterozygous deletions, and heterozygous or homozygous

whole exon duplications cannot be detected by this

method.55,58

Multiplex ligation-dependent probe amplification is a

semiquantitative technique by which the relative copy number

of multiple DNA sequences can be determined in a single

polymerase chain reaction (PCR). By this technique, hetero-

zygous deletions and heterozygous or homozygous exon

duplications can be detected.60 Multiplex ligation-dependent

probe amplification for the human ACAT1 gene has already

been achieved, and it helped in the detection of a heterozy-

gous deletion including exons 3 to 4 in a patient with T2

deficiency.58 Real-time PCR can also be used to determine

the copy number of each exon. However, neither technique is

widely applied.60,61

Aberrant splicing has been identified in 20% of mutations in

the ACAT1 gene.57,58 Following analysis of genomic DNA,

obvious exonic mutations may be reported as silent mutations

or polymorphisms if we do not realize their impact on splicing.

To discover the effects of mutations on splicing, we have to

directly analyze messenger RNA structure.57

Enzymatic Assay: Diagnostic Challenges

Enzymatic Assay

Enzymatic assay, which is often required to confirm a diagno-

sis of T2 deficiency,2 can be performed by different methods:

(1) the potassium-dependent AA-CoA thiolase assay is based

on the fact that T2 is the only thiolase that is activated in the

presence of potassium ions62; (2) the use of 2MAA-CoA as a

substrate provides a more sensitive and specific method for the

study of residual T2 enzymatic activity3; and (3) the coupled

assay for the detection of defects in isoleucine catabolism distal

to enoyl-CoA hydratase, using tiglyl-CoA as a substrate, was

described as a rapid, straightforward screening test for isoleucine

catabolic pathway defects.30 This procedure has been widely

used in the United States and Europe for T2 enzymatic assay.51

Based on the enzymatic activity detected upon expression of

mutant cDNAs, patients have been divided into 2 groups:

patients with 2 null mutations and patients in whom at least

one of the 2 mutations allows some residual T2 activity. The

latter was designated as patients with mild mutations.7 Patients

with T2 deficiency with mild mutations develop ketoacidotic

attacks as severe as those in patients with null mutations, but

their blood acylcarnitine and urinary organic acid profiles may

show only subtle abnormalities even during acute attacks.1,2,19

Diagnostic Challenges

The potassium-dependent AA-CoA thiolase assay using blood

mononuclear cells is possible, but correct evaluation is difficult

if the cell preparation includes a lot of erythrocytes. Thus,

enzyme assays using fibroblasts are recommended for correct

evaluation of T2 enzymatic activity.3 2MAA-CoA is, unfortu-

nately, neither stable nor marketed.3 The coupled assay test has

2 substantial flaws: (1) it cannot differentiate T2 deficiency

from MHBD deficiency30 and (2) cases involving mild muta-

tions, where there is residual T2 enzymatic activity, may not be

detected by this test. In fact, based on normal results obtained

from this test, some patients with T2 deficiency were initially

excluded as having the disorder but were later diagnosed with

T2 deficiency based on results of the potassium-dependent AA-

CoA thiolase assay.51

Because the coupled assay alone may give false-negative

results in cases with residual enzymatic activity and 2MAA-

CoA as a substrate is neither stable nor marketed, the

potassium-dependent AA-CoA thiolase assay, either alone or

combined with the coupled assay, remains the gold standard for

T2 enzymatic assay.3

Screening: Diagnostic Challenges

Screening

Mass screening. Newborn screening programs are invaluable

preventive health measures that enable early detection of seri-

ous and treatable disorders in the first few days of life before

the appearance of any clinical manifestations.63,64 However,

some NBS programs in developing countries are very limited,

including only a few disorders.64,65

Two cases of T2 deficiency were identified by NBS in North

Carolina from 1997 to 2005 (by tandem mass spectrometry);

however, a missed case (false negative) was identified later, at

Abdelkreem et al 5



15 months of age. That missed case showed an increased C5:1

level only during acute attacks.13 In a similar NBS program in

Minnesota, from January 2001 to November 2010, 1 case was

identified, whereas 2 missed cases were discovered later.10 In

an expanded pilot NBS program (liquid chromatography–tan-

dem mass spectrometry) in the Campania region, southern

Italy, from 2007 to 2009, 1 case was identified, which led to

a diagnosis of T2 deficiency in the patient’s older sister as

well.14 In an interesting study in New South Wales (Australia),

an NBS program (April 1998 to March 2002) resulted in a

substantial increase in the detection of T2 deficiency to 7 cases

compared with only 1 case in the period from April 1974 to

March 1998.66 In that study, there were also 3 missed cases that

were discovered later.67

The results of previous NBS studies have some substantial

implications: (1) NBS represents a valuable tool for the detection

of T2 deficiency10,13,14,66 and (2) NBS studies have shown a

higher incidence of T2 deficiency than previously reported and

provide strong evidence for the underestimation of T2 deficiency.

The incidence of T2 deficiency in North Carolina from 1997 to

2005 was nearly 1 per 313 000 newborns, whereas that in Min-

nesota from January 2001 to November 2010 was 1 per 232 000

newborns.10,13 Both figures are much higher than the previously

estimated incidence of less than 1 per 1 million newborns.5

Selective screening. Selective screening provides a valuable

alternative diagnostic method for the identification of inborn

errors of metabolism in developing countries that lack NBS

programs. The results may help in preventing further deteriora-

tion of the patient and in screening other family members.65 For

example, selective screening of high-risk neonates and children

by tandem mass spectrometry in Oman (1998-2008) identified

2 cases of T2 deficiency.68 In a similar Egyptian study (2008-

2013), 6 cases were identified.25

Diagnostic Challenges

Newborn screening may yield false-negative results, and thus,

exclusion of suspected T2 deficiency should not be based on

normal NBS results.2,10 In some countries, such as Japan,

where most cases are of the mild genotypic type, the yield of

NBS programs is expected to be low, with a high false-negative

percentage.1,28

Selective screening has 2 major flaws. First, if tests are per-

formed under stable clinical conditions, patients with T2 defi-

ciency who lack biochemical abnormalities between attacks will

be missed.1,3 Second, screening may be based on the presence of

clinical findings, and some of these findings, such as mental

retardation, may be irreversible. In such cases, diagnosis through

an NBS program might result in a better prognosis.25,65,68

Management

The management of T2 deficiency includes prevention of fur-

ther ketoacidotic attacks, treatment of acute attacks, and

screening of other family members.

General Measures for Prevention of Further Ketoacidotic
Attacks

Avoidance of prolonged fasting is the cornerstone to prevent

further ketoacidotic attacks of T2 deficiency. In case of fever

and/or vomiting, increased carbohydrate intake is advised, and

intravenous glucose infusion should be considered in such con-

ditions. Monitoring of urinary ketone bodies is advised, and

medical advice should be obtained in case of moderate or

severe ketonuria. Mild protein restriction, avoidance of a fat-

rich diet, and L-carnitine supplementation, particularly in cases

with a low carnitine level, are also advised1,3; however, no

evidence support the effectiveness of these measures.

Treatment of Acute Attacks

In the event of an acute ketoacidotic attack, administration of

intravenous glucose should be started—even in cases with a

normal blood glucose level—to keep blood glucose at the

upper range of the normal level. This will help suppress keto-

genesis. Second, appropriate intravenous fluids and electro-

lytes should be administered to maintain good urine output

and keep serum electrolytes within normal limits. Third, if

blood pH is < 7.1, a small bicarbonate bolus (1 mmol/kg over

10 minutes) can be given, followed by continuous infusion.

This should be guided by frequent monitoring of blood gases

and electrolytes to avoid hypernatremia or rapid correction of

acidosis.1 Finally, L-carnitine supplementation or other suppor-

tive measures, such as peritoneal dialysis or mechanical venti-

lation, may be required.1,3

Screening of Other Family Members

Screening of family members of a patient diagnosed with T2

deficiency can detect asymptomatic individuals before the

development of any acute or chronic clinical manifestations.3,8

Summary and Conclusions

For 45 years, there have been many challenges in the diagnosis

of T2 deficiency and underestimation of its incidence.

Improvement in T2 diagnosis together with expansion of NBS

programs to more countries will maximize the detection of

previously undiagnosed cases. Early diagnosis and manage-

ment of T2 deficiency enable prevention of its serious acute

and chronic complications and remarkably improve the

prognosis.
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