Acessibilidade / Reportar erro

Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate

Abstract

Semi-analytical equations are developed for aiding the process of designing terahertz graphene-based rectangular dipole antennas lying on glass substrates. It directly provides the dipole length required for obtaining resonance at a desired frequency since antenna width and graphene chemical potential are known. By using the finite-difference time-domain (FDTD) method, a large number of computational simulations were performed considering several combinations of antenna dimensions and chemical potential values. The simulation results were used along with graphene electrostatic scaling law combined with the least squares method to optimize the formulation coefficients. With the optimized coefficients, we obtain very satisfying accuracy levels. In the frequency range from 0.5 THz to 3.0 THz, the average relative absolute error is 1.50%, with maximum relative absolute error of 6.77%.

Index Terms
Graphene Dipole Antenna; Engineering Design; Resonance Frequency; Terahertz Radiation

Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo Praça Mauá, n°1, 09580-900 São Caetano do Sul - S. Paulo/Brasil, Tel./Fax: (55 11) 4238 8988 - São Caetano do Sul - SP - Brazil
E-mail: editor_jmoe@sbmo.org.br