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Abstract 
This paper presents a study on the gap dependent bifurcation 
behavior of an electro statically-actuated nano-beam. The size-
dependent behavior of the beam was taken into account by apply-
ing the couple stress theory. Two small and large gap distance 
regimes have been considered in which the intermolecular vdW 
and Casimir forces are dominant, respectively. It has been shown 
that changing the gap size can affect the fundamental frequency of 
the beam. The bifurcation diagrams for small gap distance re-
vealed that by changing the gap size, the number and type of the 
fixed points can change. However, for large gap regime, where the 
Casimir force is the dominant intermolecular force, changing the 
gap size does not affect the quality of the bifurcation behavior.  
 
Keywords 
Nano-beam, electrostatic, stability, bifurcation, couple Stress. 

 
 
Gap Dependent Bifurcation Behavior of a Nano-Beam  
Subjected to a Nonlinear Electrostatic Pressure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 INTRODUCTION 

Nowadays, with the rapid development in nano technology, the nano electro-mechanical systems 
(NEMS) have become one of the hottest research topics. High speed, accuracy and performance and 
low energy consumption have increased the possibility of substituting the nano technology with 
micro technology. 
 NEMS devices such as random access memory, nano tweezers, super sensitive sensors, resona-
tors, etc are widely designed, analyzed, fabricated and used (Adu et al., 2001; Collins et al., 2000; 
Kim and Lieber, 1999; Mobki et al., 2013; Rueckes et al., 2000; Tahami et al., 2009).  
There are several actuation mechanisms used in micro and nano electromechanical systems (MEMS 
& NEMS) such as electrostatic, piezoelectric, thermal, etc (Rezazadeh et al., 2011).  
Electrostatically actuated devices form a broad class of MEMS& NEMS devices due to their sim-
plicity, as they require few mechanical components and small voltage levels for actuation (Senturia, 
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2011). In such circumstances, a conductive flexible beam or plate is suspended over a ground plate 
and a potential difference is applied between them. As the microstructure is balanced between elec-
trostatic attractive force and mechanical (elastic) restoring force, both electrostatic and elastic re-
storing forces are increased by the upsurge of the electrostatic voltage. When the voltage reaches 
the critical value, pull-in instability will occur. Pull-in is the point at which the elastic restoring 
force can no longer balance the electrostatic force. Further increasing the voltage, gives rise to the 
dramatic displacement jump in the structure, causing structure collapse and fail. Pull-in instability 
is a snap-through like behavior and a saddle-node bifurcation type of instability (Zhang et al., 
2006). 
 In NEMS devices, by decreasing the geometric dimension, intermolecular surface forces such as 
van der Waals force and Casimir force can affect the structure behavior. vdW force and Casimir 
force can both be connected with the existence of zero-point vacuum oscillations of the electromag-
netic field (Batra et al., 2007; Bordag et al., 2001; Klimchitskaya, 2000; Lifshitz, 1956; Moeenfard et 
al., 2012). 
 The microscopic approach to the modeling of both vdW and Casimir forces can be formulated in 
a unified way using Quantum Field Theory (Bordag et al., 2001; Klimchitskaya, 2000; Lamoreaux, 
2005; Lifshitz, 1956). Batra et al. (2008) have reported that the Casimir force is generally effective 
at larger separation distances between the bodies than the vdW force. Whereas the Casimir force 
between semi-infinite parallel plates is inversely proportional to the fourth power of the gap, vdW 
force is inversely proportional to the third power of the gap. The dependence of these forces on the 
dielectric properties of the plates and the filling medium is studied in detail by Bordag et al. (2001). 
It is important to note that vdW and Casimir forces cannot in general be considered to simultane-
ously act in MEMS, since they describe the same physical phenomenon at two different length 
scales (Batra et al., 2008). 
 Although these forces have been explored for decades but they are rarely considered in analyzing 
the mechanical behavior and calculating the Pull-in voltage of the NEMS systems (Tahami et al., 
2009).  
 Lin et al. (2005) have studied the pull-in phenomena and calculated the pull-in voltage for a 
nano-electromechanical switch with the assumption of one degree of freedom for a nano switch 
without taking into account the effect of vdW force. Dequesnes et al. (2002) have calculated the 
pull-in voltage for carbon-nanotube-based nano-electromechanical switchs. They have considered 
the vdW force in their model and introduced an analytical formula for pull-in voltage of a lumped 
model of the switch. They haven’t considered the Casimir force in their model. Moeenfard et al. 
(2012) have investigated the static behavior of nano and micro-mirrors under the effects of Casimir 
force. Palasantzas and DeHosson (2005) have explored the influence of self-affine roughness on the 
pull-in parameters for nanoelectromechanical switches in the presence of the Casimir force. Tahami 
et al. (2009) studied static and dynamic pull-in phenomena of a capacitive nano-switch considering 
both Casimir and vdW effects. They have considered both vdW and Casimir forces in all gap dis-
tances between two parallel plates. But, as said before, many researchers such as Batra et al. 
(2007), Palasantzas et al . (2008), Boström et al. (2012) and Lambrecht and Reynaud (2000) have 
clarified that at smaller distances dominant force is the vdW force whereas for larger distances the 
Casimir force is dominant and there is a regime in which the transition from vdW to Casimir force 
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takes place. Palasantzas et al. (2008) have shown that the transition from vdW to Casimir regime is 
rather weak. They have obtained for two parallel gold surfacesabout 18 nm gap distance for the 
crossover from vdW to Casimir regime, whereas Lambrecht and Reynaud (2000) have predicted 
theoretically about 13 nm for the transition. 
 On the other hand, many researches showed that in micro and nano scales the materials have 
strong size dependence in deformation behavior (Papargyri-Beskou et al., 2003; Lazopoulos and 
Lazopoulos, 2010; Asghari et al., 2010; Park and Gao, 2006; Fu and Zhang, 2011; Kong et al., 2008, 
2009; Fathalilou et al., 2011). Size-dependent behavior is an inherent property of materials, which 
appears for a beam when the characteristic size such as thickness or diameter is close to the internal 
length-scale parameter of materials (Fathalilou et al., 2011). However, in some materials, remarka-
ble discrepancies are observed between the experimental results and those obtained using classical 
elasticity theory. These discrepancies are mainly due to the dominance of atomic structures of the 
material neglected in classical elasticity (singh, 2008). So, the static or dynamic behavior of these 
structures cannot be correctly described by the classical linear elasticity and higher order mechani-
cal theories must be applied (Papargyri-Beskou and Beskos, 2008). 
 Voigt was the first who tried to correct these shortcomings of the classical elasticity by taking 
into account of the assumption that interaction between the two parts through an area element 
inside the body is transmitted not only by a force vector but also by a moment vector giving rise to 
a 'couple stress theory' (Voigt, 1887). The complete theory of asymmetric elasticity was developed 
by Cosserat and Cosserat (1909), which was non-linear from the beginning. They assumed that each 
material point of a three dimensional continuum is associated with a 'rigid triad' and during the 
process of deformation; it can rotate independently, in addition to the displacement (singh, 2008). 
After a gap of about fifty years, Cosserats theory drew attention of researchers and several Cosse-
rat-type theories were developed independently, e.g., Gunther (1958), Grioli (1960), Ra- jagopal 
(1960), Palmov (1964), Aero and Kuvshinskii(1960), Mindlin and Tiersten (1962), Toupin (1962), 
Eringen (1962), Koiter (1964), Nowacki (1974) among several others. Later, the general Cosserat 
continuum theory acquired the name of 'micropolar continuum theory' following Eringen (1966), in 
which the micro-rotation vector is taken independent of the displacement vector. Eringen and Su-
hubi (1964) and Suhubi and Eringen (1964) developed a non-linear theory for 'micro-elasticity', in 
which intrinsic motions of the microelements were taken into account. The general theory of 
Mindlin (1964) includes three equivalent forms which are defined on the basis of three different 
expressions for the strain energy density (Papargyri-Beskou and Beskos, 2008). The first expression 
involves gradients of displacements, the second one the gradients of strain, and the third one the 
gradients of rotation. The couple stress theory is based on the third expression of the strain energy 
density while second form gives rise to the gradient elastic theory. 
 Recently, some researchers have applied the non-classic theories of elasticity to study the me-
chanical behavior of electrostatically actuated micro and nano beams Asghari et al., 2010; Fu and 
Zhang, 2011; Kong et al., 2008, 2009; Fathalilou et al., 2011). 

In spite of the mentioned works about the electrostatically actuated nano-beams, there is no 
comprehensive study about their stability from bifurcation view point. In this paper, distributed as 
well as the lumped models of the nano-beam with electrostatic actuation are introduced, considering 
the couple stress theory of elasticity. The vdW and Casimir forces are taken into account for small 
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and large gap distances, respectively. It is obtained that the fundamental frequency of the nano-
beam can be gap dependent. Also, it is understood from bifurcation analysis that changing the ini-
tial gap size can changes the number and type of bifurcation points. 
 
2 MATHEMATICAL MODELING AND NUMERICAL SOLUTION 

2.1 Distributed model 

Figure 1 shows an electrostatically actuated fixed-fixed Euler-Bernoulli nano-beam. The device con-
sists of a beam, suspended over a dielectric film deposited on top of the center conductor and fixed 
both ends to the ground conductor. When a direct voltage (DC voltage) is applied between the 
upper and lower electrodes, the upper deformable beam is pulled down due to the electrical force.  
 

 
 

Figure 1: An electrostatically actuated fixed-fixed nano-beam. 
 
The rectangular cross-section beam is considered with length L, thickness h, and width b, and ini-
tial gap of 0g . The nano-beam is assumed to be isotropic with Young modulus E and density  .  

Together with the attractive electrostatic force, the vdW and Casimir forces pull the nano-beam 
down towards the substrate. Minimum length of the nano-beam in which vdW and Casimir forces 
lead the nano-beam to collapse on the substrate (in lack of the electrostatic force) is known as the 
detachment length (Tahami et al., 2009). 

In the linear couple stress theory the strain energy of the deformed body is assumed to depend 
upon the strain  and the rotation gradient , so that the associated stress quantities are the sym-
metric Cauchy stress tensor  and the deviatoric couple stress tensor  (Mindlin, 1964). It follows 

that the strain energy sE  in a deformed isotropic linear elastic material occupying region V will be: 

1
( )

2s ij ij ij ij

V

E dvs e m k= +ò (1)

Also, the kinetic energy of the body motion is as following: 

1

2k i i

V

E u u dvr= ò  
(2)

The constitutive equations of the theory are given considering the following expression for the strain 
energy density se  (Mindlin, 1964): 

1
2 2

2s ii jj ij ij ij ij ij jie le e me e hk k h k k¢= + + + (3) 
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where and  are two Lame’s constants of the classical elasticity whereas  andare two non-

classic Lame-type material constants which introduce the couple stress effects. 
Eq. (3) leads to the following constitutive equations: 

  2s
ij ij kk ij

ij

e
s ld e me

e

¶
= = +

¶
 

4 4s
ij ij ji

ij

e
m hk h k

k
¶

¢= = +
¶

(4) 

It is time now to introduce the governing equation for the beam of Figure 1 considering couple 
stress effects. Primarily, it is mentioned that i, j and k indices vary from 1 to 3; representing the var-
iables in x, y and z directions in Cartesian coordinates, respectively. Using the coordinate system 
(x,z) shown in Figure 1, where x-axis coincides with the centroidal axis of the un-deformed beam 
and z-axis is the symmetry axis, the displacement components of an Euler-Bernoulli beam, neglect-
ing the mid-point displacement in x direction can be represented by (Park and Gao, 2006):  

,   0,    ( , )
w

u z v w w x t
x

¶
= - = =

¶ (5) 

where u, v and w are, respectively, the (x, y) and z components of the displacement vector. 
Considering Eq. (5), the components of the symmetric strain tensor for the plane stress and plane 
strain conditions are as following, respectively: 
 

2

2xx
u w

z
x x

e
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= = -
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Plane stress:
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Plane Strain:
2
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= = = = =
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(6) 

 

The components of the rotation vector can be written as: 
 

,       0y x z
w

x
q q q

¶
= - = =

¶ (7) 
 

Now, the components of the asymmetric rotation-gradient tensor are as following: 
 

2

2xy
w

x
k

¶
= -

¶
 

0xx yy zz yx xz zx zy yzk k k k k k k k= = = = = = = =  
(8) 

 

Substituting Eqs. (6) and (8), into Eq. (4) the following relation is obtained for the strain energy 
density of the plane strain condition: 
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 (9) 
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where is the shear modulus and ( ) ( )2 2 21 2 1 2 1 1 1 EEl n n m n n n
æ ö÷ç- - + + - = - =÷ç ÷çè ø

, is the elasticity 

modulus of the material in plane strain condition. As seen in this relation, the strain energy in beam 
model does not depend on , and one non-classical material constant only appears in this model 

which is defined as: 
2lh m=  (10)

 

where l is the material length scale parameter (Anthoine, 2000; Mindlin, 1964). 
Considering mentioned relations and applying the Hamilton principle the governing equation with 
couple stress is obtained as following: 
 

4 2
2

4 2
4 ext

w w
EI b l bh

t
qh

x
m r

¶ ¶é ù+ + =ê úë û ¶ ¶
 (11)

 

with the following boundary conditions: 
 

0
w

w
x

¶
= =

¶
    at   0,   x L=  (12)

 

Clearly, when the couple stress effect is suppressed by letting l=0, the present model defined by Eq. 
(11) will reduce to the classical Euler-Bernoulli beam model. In Eq. (11), extq  is considered as the 

sum of the electrostatic, vdW and Casimir forces as following (Tahami et al., 2009): 
 

ext e v Cq q q q= + +  (13) 

where 
 

2 2
0

2 3 4
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In these equations, 12 2 1 2
0 8.854 10 C N me - - -= ´  is the permittivity of vacuum within the gap, V is 

the applied direct voltage, 341.055 10h Js-= ´  is the Planck's constant, 8 12.998 10c ms-= ´ is the 

light speed, and 2 2
1A Cp r=  is Hamaker constant which lies in the range of 19(0.4 4) 10 J-- ´

(Tahami et al., 2009). For convenience, Eq. (11) may be cast into a non-dimensional form; in par-
ticular, both the transverse displacement, wand the spatial coordinate, x are normalized by charac-
teristic lengths of the system and the gap size, and beam length, respectively, according to:

0ˆ /w w g= and ˆ /x x L= . Time t in non-dimensional form is given as: *ˆ /t t t= where 

* 4 1/2( / )t bhL EIr=  is the classic characteristic fundamental period of the system. Substituting 

these parameters into Eq. (11), the following non-dimensional equation is obtained: 
 

2

4 2 3 4

4 2

2̂ (1 ) (1 ) (1

ˆ ˆ
(1 )

ˆ ˆ ˆˆ )

w w

x w w

V

wt
a

b g h¶ ¶
+ +

- - -
+ + =

¶ ¶
 (15)

 
 
 



2432     M. Fathalilou et al./ Gap Dependent Bifurcation Behavior of a Nano-Beam Subjected to a Nonlinear Electrostatic Pressure 
 

 

Latin American Journal of Solids and Structures 11 (2014) 2426-2443 
 

The parameters α, β, γ and η appeared in Eq. (15) are: 
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3 3
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3 3
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The static equation can be derived by dropping the time dependent terms from the dynamic equa-
tion of motion: 
 

4

4

2

2 3 4(1 ) (1 ) (

ˆ
(1 )

ˆ ˆ )ˆ 1 ˆ
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Due to the nonlinearity of the derived static equation, the solution is complicated and time consum-
ing. Direct application of either Galerkin or finite difference methods will produce a set of nonlinear 
algebraic equation. To avoid this problem, we adopted the step-by-step linearization method 
(SSLM) (Rezazadeh et al., 2011), followed by Galerkin method to solve the obtained linear set of 

algebraic equations.  For using SSLM, it is assumed that ˆkw  is the displacement of the beam due to 

the applied voltage kV . The vdW and Casimir forces only depend on the non-dimensional gap size 
and their value cannot be controlled manually. In order to solve this problem, it is assumed that 
these forces being applied gradually in a virtual manner. For this purpose, a virtual variablel is 
introduced which varies from zero to one. Multiplying this variable by vdW and Casimir forces, the 
assumption of the step by step change of the load can be satisfied (Zarei and Rezazadeh, 2008). 

Now, ˆkw is defined as the non-dimensional displacement of the nanostructure when subjected to kV  

under the virtual nano scaled vdW and Casimir forces. Then by increasing the voltage and conse-
quent virtual force variablel , the deflection of the (k+1)th step can be obtained as: 
 

1k kV V Vd+ = +    &   1k kl l dl+ = +    &   1ˆ ˆ ˆ ˆk k kw w w wd y+ = + = +  (18) 
 

where Vd and dl  are the voltage and virtual force variable, changing between two successive steps, 
respectively. By considering a small value of Vd and dl  the y  will be small enough so that we can 

use the first term of the Taylor expansion in each step instead of exact main excitation function. 
The equation for kth step is: 
 

24
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and for (k+1)th step: 
 

1 24
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(20) 

 

Subtracting Eq. (19) from (20) and considering Eq. (18), we have: 
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The obtained linear differential equation is solved by Galerkin method. ˆ ( )xy having basis in function 

space, may be expressed as:  

( ) ( )
1

ˆ ˆj j
j

x a xy f
¥

=

= å (22)

The ˆ( )j xf  is  jth shape function which satisfies the given boundary conditions. In this paper, the 

shape functions are selected as the linear undamped natural mode shapes of the beam. 
The unknown ˆ ( )xy  is approximated by truncating the summation series to a finite number, n: 

( ) ( )
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ˆ ˆ
n

n j j
j

x a xy f
=

= å  
 
(23)

Substituting Eq. (23) into (21), multiplying by ˆ( )j xf  as a weight function in Galerkin method and 

integrating the outcome from ˆ 0 to 1x =  a set of linear algebraic equation is generated as: 

1
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(25)

 

Dynamic loading response may be obtained using Galerkin-based reduced order model (Nayfeh and 
Mook, 1979). Due to the non-linearity of the external forces, direct application of the reduced order 
model to the dynamic equation (Eq. (15)) leads to generation of n nonlinear-coupled ordinary differ-
ential equation. To solve this difficulty, the forcing terms in Eq. (15) is considered as a constant in 
each integration time step, which takes the value of the previous step. Selecting time steps small 
enough, leads to satisfactory results. To achieve a reduced order model, ( )ˆ ,̂ ˆw x t may be approximat-

ed as: 

( ) ( )
1

ˆ ˆˆ ˆ ˆ, ( )
n

j j
j

w x t T t xf
=

= å  
           
(26) 
 

By substituting Eq. (26) into Eq. (15) and multiplying by ˆ( )i xf  as a weight function in Galerkin 

method and integrating the outcome from ˆ 0  to 1x  , the Galerkin based reduced order model is 
generated as: 
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1 1
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n n
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(27) 
 

 

where M and K are mass and mechanical stiffness matrices, respectively. Also F  introduces the 
forcing vector. The mentioned matrices and vector are given by: 

1

0

ˆij i jM xdf f= ò
 

1

0

[(1 ) ] ˆij
iv

i jK xdf a f= +ò
    ,   

1

0

ˆi i extF q dxf= ò
 

         

(28) 

 

Now, Eq. (27) can be integrated over time by various integration methods such as Runge-Kutta 
method where extq in each time step of integration takes the value of previous step.  

 

2.2 Lumped model 

A lumped model can be helpful to gain a rough quantitative estimation for the response of a wide 
range of electrostatically-actuated micro and nano-structures (Rezazadeh et al., 2011). The lumped 
model shown in Figure 2 is utilized to represent a NEMS device employing electrostatic actuation. 
The device has a movable nano-beam of mass m, which forms one side of a variable capacitor. A 
spring with coefficient k is used to model the effective stiffness of the nano-beam, which is due to 
the elastic restoring force (Rezazadeh et al., 2011). 
 

 

Figure 2: A lumped model of the nano-beam. 
 

Considering the couple stress theory, the equivalent mass (m) and stiffness (k) for a lumped model 

of the fixed-fixed nano-beam are considered as: 0.41m   bhLr= & 2 3384( 4 ) /k EI Gbhl L= +  (Rezaza-

deh et al., 2011).   
Using the equivalent mass and stiffness, the equation of motion for lumped mass-spring model 

of the nano-beam can be written as following: 
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22 2
0

2 2 3 4
0 0 02( ) 6 ( ) 240( )

bLVd z AbL b hcL
m kz

dt g z g z g z

e p

p
+ = + +

- - -
(29)

where z introduces displacement of the mass defined to be positive downward. 
For adjusting the lumped model with distributed one, a model corrective coefficient 1.11a = can be 
multiplied to k to obtain a modified stiffness (Rezazadeh et al., 2011). 
For convenience in analysis, Eq. (29) can take a nondimensional form with nondimensional varia-
bles as following: 

0

ˆ
z

z
g

=   and  ˆ t
t

t*
=  (30)

where 
*t is the characteristic time and equal to /m k . 

Using the nondimensional parameters, the governing equation is rewritten as following: 
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where 1 2 , D D  and 3D are nondimensional parameters and defined as following: 
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The static equation of deflection can be obtained by dropping time from Eq. (31) as following: 
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z

z z z
= + +

- - -
(33)

 

Using this equation, one can obtain the fixed points of the system by changing voltage as a parame-
ter control. For analyzing the stability of the fixed points, a phase diagram for each voltage can be 
plotted. To this end, Eq. (31) can be solved by various methods such as Runge-Kutta method. 
 
3 RESULTS AND DISCUSSION 

In order to validate our results, the obtained pull-in voltages are compared to those obtained by 
Tahami et al. (2009) for a fixed-fixed silicon nano-beam with 0 10  and 6 g nm h nm= = . They have 

considered classic elasticity theory to obtain their results. They have obtained 6.78 V for pull-in 
voltage of this beam by considering the vdW force when the length is taken as 180 L nm= . Also, 
for 230 L nm= , they obtained 4.11 V. Our results are 6.77 V and 4.11 V for these two cases, re-
spectively. As seen, there is a good agreement among the results. 

For analyzing the bifurcation behavior, a capacitive gold nano-beam is considered with geome-
tries and material properties as shown in Table 1. The length scale parameter is taken as 0.5 h . It 
is considered two gap distance regimes which in small distances, 0 10 g nm< , the only intermolecu-

lar force is vdW force whereas in large distances, 0 15 g nm> , the Casimir force is the only domi-

nant intermolecular force (Palasantzas et al., 2008).   
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Design Variable Value 

L 600 nm 
b 50 nm 
h 10 nm 
E 111 GPa 
ρ 19320 kg/m3 
ν 0.44 

 

Table 1: Geometrical and material properties of the gold nano-beam. 
 
As mentioned the vdW and Casimir forces pull down the movable beam. So it is expected that con-
sidering these forces changes the fundamental frequency of the beam. Figures 3a and b show the 
gap dependent fundamental frequency (̂ ) of the nano-beam without an electrostatic actuation for 
small and large gap regimes, respectively. As illustrated, for small gaps the rate of increasing the 
fundamental frequency with increasing the gap is higher than large distances. Also, for the beam 
with mentioned specifications, after the gap of 30 nm the frequency converges to a constant value. 
 

 
(a) 

 
(b) 

 

Figure 4 shows the bifurcation behavior of the nano-beam in state-control space for 0 6 g nm= . It 

can be seen that for applied voltages smaller than pull-in voltage, there are two fixed points. For 
voltages between 0.7 1.7 V- , no fixed points are observed in this space. For voltages higher than 
1.7 V  two fixed points are observed again, but for 1z > , which is physically impossible. 

Figure 5 illustrates the stability of these fixed points. Figures 5a, b and c include phase diagram 
of the nano-beam for 0 ,  1  and 2V V V V V V= = = , respectively. In Figure 5a, it can be found 

that the first equilibrium position is a stable centre point (CP) and the second is an unstable sad-
dle-node (SN). As shown in this Figure, there are two basins of attraction of stable centers and a 
basin of repulsion of unstable saddle node. The first basin of attraction of the first stable center is 
bounded by a closed orbit and the second basin of attraction of the second stable is an unbounded 
region. Depending on the location of the initial condition the system can be stable or unstable. Fig-

Figure 3: Variation of the nondimensional fundamental frequency versus Center gap; 
a) small distance gap, b) large distance gap. 
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ure 5b, confirms that there is not any types of fixed points at above or under the substrate for 
1V V= . As shown in Figure 5c, for 2V V= , there are mathematically stable center and saddle 

node under the substrate which are physically impossible.  
In addition as shown in Figure 4, in the state-control space, the stable and unstable branches of 

the fixed points with changing applied voltage meet together at a saddle-node bifurcation point. 
The voltage corresponding to the saddle-node bifurcation pointon the upper side of the substrate is 
a critical value, which is known as static pull-in voltage in the MEMS and NEMS Literature. In 
other words, when the applied voltage equal to the static pull-in voltage there is no any basin of 
stable attractors on the upper side of the substrate and the micro-beam is unstable for every initial 
condition. Now, with attention to Figure 5, the stable and unstable branches (S.B and U.S.B) of the 
bifurcation diagram can be determined. Also, it must be mentioned that for a given voltage there is 
a singular point (SP) at z=1. It must be mentioned that as seen in Figure 4, for V=0V, the stable 
fixed point is not displaced in not displaced position (z=0). This is due to the existence of the in-
termolecular force, which has displaced the mass initially. 

 

 
Figure 4: Variation of the center gap of the nano-beam with applied voltage for 0 6 g nm=  

 
 

 
(a) 

 
(b) 
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(c) 

Figure 5: Phase diagram of the nano-beam for 0 6 g nm=  and various initial 

conditions, a) V=0V, b) V=1V, c) V=2V.
 
In Figure 6 the state-control space is plotted when 0 8 g nm= . As shown, besides increasing the 

pull-in voltage, the voltage ranges in which no fixed points are observed have became smaller. 
 

Figure 6: Variation of the center gap of the nano-beam with applied voltage for 0 8 g nm= . 
 

It can be understood that by increasing the gap distance the voltage range with no fixed points 
tends to zero and even for some ranges four fixed points can be seen in state-control space. As an 
instant this problem can be seen in Figure 7, where the gap size is 0 10 g nm= . 

Figures 8a, b and c illustrate the stability of these fixed points for 0 , 2  and 2.5V V V V V V= = = , 
respectively. As shown, for 0V V= the stable center point and saddle node appear only on upper 
side of the substrate, whereas for 2.5V V= the center point and saddle node exist under the sub-
strate which as mentioned is physically impossible. But, for 2V V= as illustrated in Figure 8b, 
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both side of the substrate include a center point and a saddle node which is in agreement with Fig-
ure 7. 
 

Figure 7: Variation of the center gap of the nano-beam with applied voltage for 0 10 g nm= . 
 
 

 
      (a) 

 
      (b) 

 

 
(c) 

Figure 8: Phase diagram of the nano-beam for 0 10 g nm=  and various initial conditions, 
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a) V=0V, b) V=2V, c) V=2.5V.

 
For large gap distance regime, the Casimir force is only considered in addition to the electrostatic 
force. Figures 9 and 10 illustrate the bifurcation diagram of the nano-beam with 0 15 g nm= and

0 25 g nm= , respectively. It is understood that for all gaps above 15 nm there are three fixed 

points before pull-in voltage. One of them is under the substrate which is physically impossible, but 
other two points are above the substrate. On the other hand, for voltages higher than pull-in volt-
age there is only one fixed point which is under the substrate. To investigate the stability of these 
fixed points, the phase diagram for 0 15 g nm= is plotted in Figure 11. As shown, for V=0V, the 

first fixed point is a stable center point, the second is a saddle node which are on upper side of the 
substrate and the third one is a mathematically stable center which is physically impossible. 
 

Figure 9: Variation of the center gap of the nano-beam with applied voltage for 0 15 g nm= . 

 

Figure 10: Variation of the center gap of the nano-beam with applied voltage for 0 25 g nm= . 
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Figure 11: Phase diagram of the nano-beam for various initial conditions for 0 15 g nm= and V=0V. 

 
4 CONCLUSIONS 

In presented work, gap dependent bifurcation behavior of an electrostatically-actuated gold nano-
beam was studied. Both distributed and lumped models were introduced to explain the nano-beam 
deformation considering the couple stress theory. The results showed that fundamental frequency of 
the nano-beam can be gap dependent and the rate of the change in the frequency was higher for 
small gap regimes than large distances. In the bifurcation analysis, the following results were ob-
tained: 
1. In the both small and large gap regimes, for the voltages lower than the pull-in voltage, two 
stable and unstable fixed points appear on upper side of the beam. 
2. For the small gap regime, a voltage range can be found in which no fixed point appears, whereas 
for large gaps there is not such a range. 
3. For the large gap distances, for all voltages, there is one mathematically stable fixed point under 
substrate plate which is physically impossible, whereas for the small gaps we have two voltage 
ranges; in first range, there is not any fixed pint under the substrate and in second one two mathe-
matically stable and unstable branches meet together in a saddle node. In this case the distance 
between two saddle nodes on the upper and lower sides of the substrate plate varies with changing 
gap size. 
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