
259

online | memorias.ioc.fiocruz.br

Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 104(Suppl. I): 259-262, 2009

The importance of apoptosis for immune regulation in Chagas disease
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Host cell apoptosis plays an important immune regulatory role in parasitic infections. Infection of mice with 
Trypanosoma cruzi, the causative agent of Chagas disease, induces lymphocyte apoptosis. In addition, phagocytosis 
of apoptotic cells stimulates the growth of T. cruzi inside host macrophages. In spite of progress made in this area, 
the importance of apoptosis in the pathogenesis of Chagas disease remains unclear. Here we review the evidence of 
apoptosis in mice and humans infected with T. cruzi. We also discuss the mechanisms by which apoptosis can influence 
underlying host responses and tissue damage during Chagas disease progression.
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Programmed cell death by apoptosis is a biological 
response relevant for development, tissue renewal and 
homeostasis of the immune system. Defects in the regu-
lation of apoptosis can lead to disease (Rudin & Thomp-
son 1997). Apoptosis can also be induced in unicellular 
parasites, including Trypanosoma cruzi (Ameisen et al. 
1995, Piacenza et al. 2001). Apoptosis of a proportion of 
Leishmania parasites is required for successful establish-
ment of infection in the vertebrate host (van Zandbergen 
et al. 2006). In addition, infective forms of Leishmania 
spp. and T. cruzi display extracellular phosphatidylser-
ine, a marker of apoptotic cells that is involved in host 
macrophage inactivation and increased parasite repli-
cation (de Freitas Balanco 2001, Damatta et al. 2007). 
Upon infection with parasites, host leukocyte apoptosis 
plays an important immune regulatory role (DosReis 
et al. 2007). In spite of progress made in this area, the 
importance of apoptosis for the pathogenesis of Chagas 
disease remains unclear. Here we review the evidence 
of apoptosis in mice and humans infected with T. cruzi. 
We also discuss the mechanisms by which apoptosis can 
influence host responses and tissue damage underlying 
Chagas disease.

Host cell apoptosis in T. cruzi infection and the im-
munosuppressive effect of apoptotic cells

Infection of fibroblasts and cardiomyocytes with T. 
cruzi either delays or induces host cell apoptosis, depend-
ing on the experimental system employed (de Souza et 
al. 2003, Petersen et al. 2006). In addition, infection with 

T. cruzi leads to T and B- lymphocyte apoptosis (Lopes 
et al. 1995a, Martins et al. 1998, Zuniga et al. 2002, de 
Meis et al. 2006), which can impact immune responses.

To investigate apoptosis, we infect mice with chemi-
cally induced metacyclic trypomastigotes. By all tested 
parameters, this model is identical to infection induced 
by insect-derived trypomastigotes (Lopes et al. 1995a). 
Restimulation of CD4+ T cells from mice infected with 
T. cruzi results in in vitro formation of large cell clusters 
where most lymphocytes die. The cells that are excluded 
from the clusters remain viable, suggesting a fratricide 
mechanism of activation-induced cell death (AICD). Cell 
death occurs by apoptosis, as demonstrated by transmis-
sion electron microscopy and by nucleosome sized DNA 
fragmentation (Lopes et al. 1995b). Data gathered from 
independent experiments reveal a linear correlation 
between the extent of suppression of T-cell responses 
and the amplitude of AICD (Lopes & DosReis 1996). 
These results suggest that the immune suppression un-
derlying acute infection with T. cruzi (Harel-Bellan et 
al. 1983) can be ascribed to AICD. The Fas apoptotic 
pathway plays an important role in the regulation of 
immune responses (Krammer et al. 2007). AICD in T. 
cruzi infection is mediated, at least in part, by the Fas 
pathway, since it is blocked by neutralizing anti-Fas  
ligand (FasL) antibodies and is absent in FasL deficient 
gld mice (Lopes et al. 1999). Studies employing more 
virulent isolates suggest that suppression of T-cell re-
sponses can also result from apoptosis induced by excess 
nitric oxide production (Martins et al. 1998).

Infection with T. cruzi leads to polyclonal lymphocyte 
activation (Minoprio et al. 1989), which, by itself, pro-
motes T-cell apoptosis (Welsh & McNally 1999). In addi-
tion, antigens released by T. cruzi, such as trans-sialidase 
and HSP70, induce lymphocyte apoptosis (Leguizamón 
et al. 1999, Marañón et al. 2000). Therefore, it is possible 
that the parasite exploits host cell apoptosis in order to 
evade the immune response. To investigate the impact 
of lymphocyte apoptosis on parasite replication, infect-
ed macrophages are cultured with T cells from infected 
mice. Apoptosis is induced in T cells and intracellular 
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parasite load is assessed in macrophages (Nunes et al. 
1998). Induction of CD4+ T cell apoptosis by in vitro 
TCR co-aggregation or Fas stimulation amplifies T. cru-
zi growth, and a neutralizing anti-FasL mAb blocks both 
AICD and parasite growth (Nunes et al. 1998). Separa-
tion of T cells and macrophages by a cell-impermeable 
membrane prevents parasite growth (Nunes et al. 1998), 
suggesting that phagocytosis of dead cells is required for 
parasite survival.

Apoptosis leads to rapid and silent removal of dead 
cells by neighbouring cells and professional phagocytes 
(Ravichandran & Lorenz 2007). Dead cell clearance is 
followed by the immunosuppressive effects of apoptotic 
cells, which impair secretion of IL-12 (Voll et al. 1997) 
and induce secretion of TGF-β by engulfing macrophages 
(Fadok et al. 1998). Phagocytes express an array of innate 
receptors to recognize, tether and engulf apoptotic cells, 
most of which are directed to exposed phosphatidylser-
ine molecules (Ravichandran & Lorenz 2007). One such 
receptor is the integrin αVβ3, which binds phosphatidyl-
serine through the opsonin milk fat globule-EGF factor 
8 (MFG-E8) or lactadherin, a glycoprotein secreted by 
macrophages (Hanayama et al. 2002). Transglutami-
nase 2 binds to both MFG-E8 and αVβ3 and is required 
to stabilize the adhesion of apoptotic cells to phagocytes 
(Tóth et al. 2009). In addition, the integrin αVβ3 binds 
thrombospondin on the surface of apoptotic cells (Savill 
et al. 1992). Macrophages infected with T. cruzi support 
increased parasite replication when exposed to apoptotic 
lymphocytes (Nunes et al. 1998, Freire-de-Lima et al. 
2000). The clue for this biological effect comes from the 
observation that T. cruzi is unable to synthesize the essen-
tial polyamine putrescine and depends on the uptake of 
exogenous putrescine for intracellular growth (Ariyanay-
agam et al. 2003). Binding of apoptotic lymphocytes to 
αVβ3 expressed by macrophages leads to PGE2 and TGF-β 
production, followed by the induction of ornithine decar-
boxylase (ODC) and the synthesis of putrescine, which 
functions as a growth factor for intracellular forms of T. 
cruzi (Freire-de-Lima et al. 2000). This deleterious effect 
of apoptotic cells is abolished by inhibitors of prostag-
landin synthesis and by neutralizing antibodies against 
TGF-β (Freire-de-Lima et al. 2000).

Consequences of apoptosis for development of new 
therapies against T. cruzi

These results suggest that lymphocyte apoptosis fol-
lowed by phagocytic removal helps the establishment of 
T. cruzi infection. In agreement with this finding, injec-
tion of apoptotic cells increases parasitemia in vivo. On 
the other hand, injection of cyclooxygenase inhibitors 
aspirin and indomethacin, which block production of 
TGF-β and polyamines, reduces parasitemia (Freire-
de-Lima et al. 2000). Treatment with cyclooxygenase 
inhibitors can lead to different outcomes, depending on 
the protocol employed (Celentano et al. 1995, Freire-de-
Lima et al. 2000, Michelin et al. 2005, Hideko Tataki-
hara et al. 2008). The continuous use of cyclooxygenase 
inhibitors, particularly in resistant mouse strains, leads 
to higher mortality (Celentano et al. 1995, Hideko Ta-
takihara et al. 2008).

One important question is how to target cell death 
for the modulation of immune responses during T. cruzi 
infection. During T. cruzi infection, apoptosis can be 
induced through at least three distinct pathways: (i) ex-
trinsic soluble or membrane attached ligands for death 
receptors, such as Fas, (ii) granzymes released by cyto-
toxic cells and (iii) the intrinsic mitochondrial pathway. 
The key event in cell death signalling is the activation 
of caspases and the cleavage of target substrates. In or-
der to understand whether the mechanisms of apoptosis 
involve the extrinsic or intrinsic pathways, we used in-
hibitors of caspase-8 and caspase-9 (Silva et al. 2005, 
de Meis et al. 2008). One criticism is that the specificity 
of these inhibitors occurs only at low doses (Pereira & 
Song 2008). For understanding the role of individual 
caspases, a combination of strategies such as the use 
of genetically modified mice and the injection of cas-
pase inhibitors reinforce each other (Silva et al. 2005). 
These experiments indicate that T cells from infected 
mice undergo apoptosis through the extrinsic pathway 
(Silva et al. 2005). Two distinct approaches are used to 
block apoptosis in T. cruzi infection: in vivo injection 
of neutralizing antibody to FasL (Guillermo et al. 2007) 
or treatment with the general caspase inhibitor zVAD 
(Silva et al. 2007). Treatment with zVAD or anti-FasL 
reduces apoptosis and improves type-1 immune re-
sponses. T cells produce more IFN-γ and macrophages 
show increased control of intracellular infection. More-
over, both strategies reduce parasitemia, possibly by 
sustaining protective immune responses (Guillermo et 
al. 2007, Silva et al. 2007). A possible consequence of 
blocking apoptosis is to increase the number of inflam-
matory cells in target tissues. On the other hand, inhi-
bition of tissue cell death may improve tissue function 
(Guillermo et al. 2009). In T. cruzi infection, treatment 
with anti-FasL, but not zVAD, increases inflammatory 
infiltrates in the hearts. It is unknown whether this ef-
fect helps to control infection or enhances tissue dys-
function (Guillermo et al. 2009).

Apoptosis and cardiac inflammation in Chagas 
disease

Apoptosis can be identified in parasites, cardiomyo-
cytes and in inflammatory cells in heart tissues from 
dogs and mice acutely infected with T. cruzi (Zhang et 
al. 1999, de Souza et al. 2003). In addition, apoptosis can 
be identified in cardiomyocytes and inflammatory cells 
in heart tissue from chagasic patients, a finding associ-
ated with heart failure (Tostes et al. 2005). An immune 
regulatory role for apoptosis is indicated by the findings 
of low peripheral blood mononuclear cell proliferative 
responses to T. cruzi antigens, increased levels of Fas 
and FasL expression, and increased apoptosis in associa-
tion with heart failure in Chagas disease patients ����(Ro-
drigues et al. 2008). In addition, another study suggests 
that the expression of FasL and Fas regulates the extent 
of cardiac inflammation and cardiomyocyte destruction 
in T. cruzi infection (de Oliveira et al. 2007). Taken to-
gether, these studies suggest a causal link between ap-
optosis and heart damage, but the mechanisms involved 
are unclear.
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The immunosuppressive effects of apoptotic cell 
removal suggest that it plays a role in the resolution of 
inflammation. However, apoptosis can promote inflam-
mation and autoimmunity, depending on the inflamma-
tory context of apoptotic cell removal. Concomitant ex-
posure to apoptotic cells and a Toll-like receptor (TLR) 
ligand, such as bacterial lipopolysaccharide (LPS), leads 
to proinflammatory cytokine secretion by phagocytes 
(Lucas et al. 2003). In addition, immunization with apop-
totic cardiomyocytes and LPS results in autoimmune my-
ocarditis (Eriksson et al. 2003). In this regard, it is note-
worthy that T. cruzi expresses unmethylated CpG motifs 
in DNA, which are ligands for TLR9 (Bartholomeu et 
al. 2008). One hypothesis suggests that phagocytosis of 
apoptotic parasites and cardiomyocytes by immature 
dendritic cells in the presence of TLR ligands leads to 
dendritic cell maturation and priming of T cells against 
parasite and self cardiac antigens (DosReis et al. 2005).

The identification of deleterious effects of apoptotic 
cells and their effect on T. cruzi replication provides a 
new conceptual framework for the pathogenesis and 
treatment of Chagas disease. However, several questions 
remain unsolved, including the role of apoptosis in cardi-
ac inflammation and the therapeutic efficacy of blocking 
host cell apoptosis. The high incidence of apoptosis in ab-
normal T cells from mice deficient in Fas signalling, to-
gether with the general immune defects of mice carrying 
a T-cell specific deficiency in caspase-8 (Wu et al. 2004), 
make the evaluation of the role of apoptosis more dif-
ficult. Mice deficient in selected pathways of cell death, 
the use of RNA interference to block cell death and the 
development of more selective caspase inhibitors could 
be useful future approaches to determine the importance 
of apoptosis for the pathogenesis of Chagas disease.
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