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REVIEW

Variability in innate host immune responses to cryptococcosis
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Cryptococcosis is an invasive fungal disease caused by Cryptococcus neoformans and the closely related species 
C. gattii. The severe form of the disease, cryptococcal meningitis (CM), is rapidly fatal without treatment. Although 
typically a disease of immunocompromised (especially HIV-positive) individuals, there is growing awareness of 
cryptococcal disease amongst non-immunocompromised patients. Whilst substantial progress has been made in 
understanding the pathogenicity of C. neoformans in HIV patients, prospective data on cryptococcosis outside the 
context of HIV remains lacking. Below we review how innate immune responses vary between hosts depending on 
immunological status, and discuss risk factors and predictors of disease outcome in different groups.
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Cryptococcal meningitis (CM) remains the leading 
cause of fungal meningitis worldwide, afflicting up to 1 
million individuals annually with approximately 600,000 
subsequent deaths (Park et al. 2009). This disease arises fol-
lowing severe infection with members of the genus Crypto-
coccus in a variety of human hosts with different immune 
backgrounds. The majority (80%) of cryptococcosis cases 
are HIV-associated, and are caused by Cryptococcus neo-
formans; placing this disease as the second most common 
cause of AIDs-related deaths after tuberculosis (Park et al. 
2009, Jarvis et al. 2010, Rajasingham et al. 2017). C. neofor-
mans also causes CM in non-HIV, immunocompromised 
patients and at a rising frequency in ‘otherwise healthy’ in-
dividuals (Zhu et al. 2010, George et al. 2018).

Infection begins upon inhalation of cryptococcal 
spores from the environment, triggering the innate im-
mune system. Macrophages play an integral role in anti-
cryptococcal defense, with alveolar macrophages acting as 
first responders in the lungs where they detect and engulf 
cryptococcal spores (Giles et al. 2009). As intracellular 
pathogens, cryptococci are capable of survival and repli-
cation within host macrophages (Levitz et al. 1999, Sabiiti 
et al. 2014); failure to clear pulmonary infection leads to 
fungal dissemination throughout the body and towards the 
brain resulting in CM via the Trojan horse model.

Whilst early studies of the manifestations of crypto-
coccosis have shown clinical and prognostic differences 
between the infecting species (Speed and Dunt 1995), 
more recent investigations into the pathogenesis of C. 
neoformans in particular have revealed a critical role 
for host immune status in conferring protection from, 
or controlling disease progression towards, meningi-
tis (Chen et al. 2000). This has led to the division of C. 
neoformans patients into three groups: HIV-associated; 
Non-HIV immunocompromised patients; and ‘other-
wise healthy’ immunocompetent individuals.

Hosts with intact immune systems mount an im-
mune response that leads to clearance of the infection, 
or the establishment of a latent, asymptomatic infection 
accompanied by the formation of cryptococcomas. Pa-
tients with impaired cell-mediated immunity are unable 
to effectively clear C. neoformans. Thus, effective in-
nate immune activation and a sufficient inflammatory 
response are key to the control of cryptococcosis. Below, 
we review how underlying host innate immune respons-
es vary between the aforementioned three groups of hu-
man hosts in response to cryptococcal disease caused by 
C. neoformans. We also assess current understanding of 
how immune responses in different hosts may be predic-
tive of protection from, or susceptibility to, CM. For a 
discussion of the role of adaptive immunity in C. neo-
formans infection, we would refer readers to the recent 
review by Mukaremera and Nielsen (2017).

Immune responses in non-immunocompromised indi-
viduals - During the cryptococcosis outbreak in Vancouver 
2003 that affected primarily non-immunocompromised in-
dividuals, C. gattii was identified as a primary pathogen of 
the healthy. However, increased recognition of cryptococ-
cosis cases due to C. neoformans in other immunocompe-
tent patients provides strong evidence that this species also 
harbors capabilities as a primary pathogen, despite early 
classification as a strictly opportunistic pathogen.

In ‘otherwise healthy’ individuals, pulmonary infec-
tion is generally asymptomatic. The pattern recognition 
receptor (PRR) CD14 in association with Toll-like re-
ceptor 4 (TLR4), TLR2 (Shoham et al. 2001), and CD18 
(Dong and Murphy 1997) on the surface of macrophages 
recognise the cryptococcal capsular polysaccharide 
glucuronoxylomannan (GXM), driving localised im-
mune recognition and enhanced phagocytosis (Dong and 
Murphy 1997, Yauch et al. 2004, Giles et al. 2009, Lev-
itz 2010, Garcia-Rodas and Zaragoza 2012). The macro-
phage arsenal to eliminate engulfed fungi includes the 
release of proinflammatory cytokines and chemokines 
that extend cell mediated immunity by increasing mono-
cyte and neutrophil recruitment to the site of infection, 
and antigen presentation to T-cells. Secretion of these 
cytokines typically follows induction of the nuclear 
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factor-κB (NF-κB) pathway (Figure) that is regulated by 
microRNAs (miRNAs) (Chen et al. 2017) to promote the 
expression of inflammatory cytokines in attempts to kill 
the pathogen (Johnston and May 2013, Smith et al. 2015). 
However, this pathway can be modulated by both shed 
GXM and live cryptococci via different mechanisms 
depending on the stage of infection (Hayes et al. 2016). 
Early on in the infection, GXM acts as an anti-phagocyt-
ic cloak for C. neoformans (Feldmesser et al. 2000). Fol-
lowing ingestion by macrophages, cryptococci continue 
to produce and shed the polysaccharide (Feldmesser et 
al. 2000), which has been shown to reduce LPS-associ-
ated proinflammatory cytokine responses both in vitro 
(Monari et al. 2006) and in a murine infection model 
by inhibiting MyD88 activation following its interaction 
with the FcγRIIB receptor (Figure) (Monari et al. 2006, 
Piccioni et al. 2013). Furthermore, Hayes et al. (2016) 
recently showed in RAW 264.7 murine macrophages 
that extracellular GXM inhibited LPS-induced nuclear 
translocation of the p65 protein, while intraphagosomal 
GXM increased the duration of nuclear translocation of 
the p65 and IκBα proteins, consequentially eliminating 
the expression of TNFα or inducible NOS (iNOS).

The primary defense against cryptococcosis in im-
munocompetent hosts is orchestrated by Th1-type CD4+ 
T-cells (Kawakami et al. 1995, Wozniak et al. 2009, Ol-
szewski et al. 2010) that produce interferon-γ (IFN-γ), 
and direct macrophages towards a Th1, classically acti-
vated, phenotype (Kawakami et al. 1995). Th1 responses 
have been associated with increased fungal clearance, 

whilst Th2 responses are associated with poor anticryp-
tococcal defenses (Figure); thus, the interplay between 
Th1 and Th2 host responses during cryptococcal infec-
tion is a major determinant of disease outcome (Kogu-
chi and Kawakami 2002, Arora et al. 2011). Host sus-
ceptibility studies in mice have shown that production 
of the Th1-type cytokines IFN-γ and IL-12, as well as 
the pro-inflammatory cytokine TNF-α confers protec-
tion against cryptococcosis (Kawakami et al. 1996a, 
Kawakami et al. 1996b, Kawakami et al. 1996c, Decken 
et al. 1998, Herring et al. 2002). Conversely, production 
of Th2-type cytokines (including IL-4, IL-5, IL-10, and 
IL-13) renders hosts vulnerable to severe disease and 
mortality (Muller et al. 2007). GXM has also been shown 
to directly inhibit T-cell proliferation in mice, leading to 
dampened Th1 responses, and diminished resolution of 
the infection (Yauch et al. 2006).

Macrophage differentiation is regulated by granulo-
cyte-macrophage colony-stimulating factor (GM-CSF). 
The presence of anti-GM-CSF autoantibodies in the spi-
nal CSF inhibits the activity of GM-CSF, and has been as-
sociated with poor disease prognosis in cases of CM due 
to C. neoformans in otherwise healthy hosts (Rosen et al. 
2013). Further attempts to characterise predispositions to 
CM have identified genetic background as a risk factor 
for developing severe cryptococcosis. Polymorphisms in 
the Fc gamma receptor (FcγR) (Meletiadis et al. 2007, Hu 
et al. 2012) and mannose-binding lectin (MBL) (Ou et al. 
2011) have been shown to increase susceptibility to cryp-
tococcal infections in immunocompetent individuals.

Macrophage activation state determines the outcome of Cryptococcus neoformans clearance.



Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 113(7), 2018 3|5

A retrospective study by Nadrous et al. (2003) of cryp-
tococcosis in 42 immunocompetent hosts showed that 
86% of patients had isolated pulmonary cryptococcosis 
with no evidence of fungal dissemination to the CNS, of 
which 33% were asymptomatic, and 92% were able to re-
solve the infection either with or without antifungal treat-
ment or surgical abscission. Whilst no quantitation of in-
nate immune responses to infection at the individual level 
were performed, these findings show that the majority of 
cryptococcosis patients with previously intact immune 
systems and no evidence of disseminated disease are able 
to effectively eliminate cryptococcal infection.

Immune responses in HIV patients - Cryptococcal 
meningitis is the second largest cause of mortality among 
HIV patients worldwide. Disease prevalence became 
more apparent among immunocompromised patients par-
ticularly during the HIV pandemic in the 1970s; where 
80% of CM sufferers were HIV-seropositive. However, as 
of 2014, the frequency of cryptococcal disease among this 
group has dropped to a third (Mirza et al. 2003, Cox et al. 
2014). Thanks to the widespread of anti-retroviral (ARV) 
therapies, it was estimated that 223,100 cases of CM in 
HIV patients occur each year worldwide, causing 181,100 
deaths annually (Rajasingham et al. 2017).

T-cell depletion in HIV patients is a determining im-
munological feature that renders this group susceptible to 
CM. However, in a recent study, Neal et al. (2017) dem-
onstrated in a murine model that whilst CD4+ T-cells as-
sist in the clearance of the fungal disease, they also con-
tribute to disease dissemination in the CNS as well as 
tissue damage as a result of immunotherapy, leading to 
immune reconstitution inflammatory syndrome (IRIS). 
Reduced counts of CD4+ T-cells in this patient group 
conventionally results in the proliferation of CD8+ T-cells 
and increased recruitment of myeloid cell lineages to 
combat ongoing infection, subsequently affecting clini-
cal outcomes of disease and deaths from CM.

Other reports have identified a number of protective 
immune traits and markers of susceptibility to acquir-
ing CM in HIV-seropositive patients. Cerebral spinal 
fluid (CSF) cytokine profiles can reliably report disease 
progression and predict mortality in HIV patients. Data 
from several patient cohorts agree that inflammatory 
and Th1 cytokine responses confer protective advantag-
es in HIV patients (Jarvis et al. 2014, Jarvis et al. 2015, 
Scriven et al. 2017). HIV-seropositive hosts with high 
CSF levels of interleukin (IL)-6, interferon-γ (IFN-γ), 
IL-8, IL-12, TNF-α and CXCL10 show improved fungal 
clearance and survival rates; while increased levels of 
IL-4 and IL-10 have been associated with high serum 
levels of cryptococcal GXM that impairs monocyte ac-
tivation and cripples cell-mediated responses to infec-
tion - effectively predicting mortality in this group of 
patients (Retini et al. 1998, Jarvis et al. 2015, Mora et 
al. 2015). However, low T-cell infiltration of the CSF 
rather than alternative macrophage activation is a ma-
jor determinant of disease outcome in HIV-associated 
cryptococcosis (Scriven et al. 2017). Interestingly, not 
all HIV patients with low CD4+ T cell counts develop 
cryptococcosis. This is thought to be largely due to the 
contribution of genetic factors to disease susceptibil-

ity. Following the association of polymorphisms in the 
FcγR with susceptibility to cryptococcosis in non-HIV 
patients (Meletiadis et al. 2007, Ou et al. 2011, Hu et al. 
2012), Rohatgi et al. (2013) showed that HIV patients 
who were either heterozygous or homozygous for the 
FCGR3A 158V allele, were 2.1- and 21-fold at higher 
risk of developing cryptococcal disease than individuals 
without the allele, respectively. The group suggested that 
increased recognition of C. neoformans and immune 
activation leading to a rise in phagocytic uptake as the 
functional implication of this allele. These findings pro-
vide an alternative approach for identification of at-risk 
individuals, and more personalised treatment strategies.

Immune responses in non-HIV, immunocompro-
mised patients - This group of patients is highly hetero-
geneous, encompassing a range of patients from solid or-
gan transplant (SOT) recipients to those with underlying 
immune defects such as sarcoidosis, diabetes mellitus, 
and patients receiving anti-cancer treatments (Singh et 
al. 2009). Similar to HIV-sufferers, organ transplant re-
cipients also present with defects in T-cell-mediated im-
mune responses to cryptococcosis due to immunosup-
pression (Pappas et al. 2001).

In SOT patients, the severity of infection has been as-
sociated with the level of immunosuppression (Husain et 
al. 2001). Studies by Pappas et al. (2001) have shown that 
the type of immunosuppressive treatment(s) administered 
to this group influences their susceptibility to CNS-asso-
ciated cryptococcosis, responses to antifungal treatments, 
and likely fatality. Another study by Saha et al. (2007) pro-
vided serological evidence that the majority of cryptococ-
cal infections in these patients were due to reactivation of 
pre-transplantation infections. Individuals with circulating 
antibodies against Cryptococcus prior to organ transplan-
tation acquired cryptococcosis sooner than those without 
previous exposure to the pathogen, and were more likely 
to develop CM. Disease progression in this subset was 
also dependent on the type of organ transplanted, although 
transmission of infection from organ donor to recipient has 
rarely been observed (Singh et al. 2009).

Discussion - Whilst the reduction in global HIV-
associated CM is testament to improved ART and anti-
fungal treatment strategies, the rise in frequency of non-
HIV and non-transplant associated cryptococcosis in the 
developed world represents a cause for concern. HIV-as-
sociated CM remains the most extensively investigated 
among the three groups. Whilst the majority of crypto-
coccal infections in previously healthy individuals are 
asymptomatic, clinical manifestations and prognoses 
vary greatly. Current clinical guidelines for this group 
are generated from immunocompromised cohorts and 
thus may not be appropriate for disease management in 
immunocompetent hosts. Whilst numerous case reports 
of ‘unusual’ cryptococcosis cases have been published, 
there is a scarcity of prospective data on the manage-
ment of CM in previously healthy individuals.

A recent article by Pirofski and Casadevall (2017) 
discussed the effects of host-mediated damage on the 
progression of cryptococcosis. Given the variety of 
host-microbe interactions that occur within the differ-
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ent patient groups discussed above, and the associated 
alteration of the inflammatory immune responses, this 
damage-response framework (DRF) model may be par-
ticularly helpful for understanding infections in oth-
erwise healthy individuals. Clearly, however, there is 
currently a lack of characterisation studies in non-HIV 
cryptococcal patients with which to inform this model.

It has previously been shown that cytokine expression 
by macrophages is not permanently biased to either Th1 or 
Th2 responses, and may be modulated (Arora et al. 2011); 
hence, the fluidity in macrophage activation states insti-
gates varied responses in individuals with robust immune 
systems (Koguchi and Kawakami 2002). Furthermore, 
the genetic contribution to phenotypic challenges in anti-
cryptococcal responses among cryptococcosis sufferers 
provides an additional tool for early diagnosis in at-risk 
cohorts. However, difficulties arise in the case of non-
HIV immunocompetent hosts who may not be considered 
at-risk and therefore subject to presumptive genetic test-
ing in comparison to their immunocompromised counter-
parts. In addition, it was brought to light in a recent article 
by Netea (2013), that the association of the above-men-
tioned polymorphisms with susceptibility to severe cryp-
tococcosis is not descriptive of all patients across different 
cohorts depending on ethnic backgrounds.

Whilst therapeutic approaches for HIV-associated 
cryptococcal disease in combination with ARTs are 
successfully being established, efforts to determine pro-
tective features of the innate immunity in non-HIV-as-
sociated disease are still underway. Knowledge of cryp-
tococcal pathogenesis remains minimal in patients with 
known immunological defects beside HIV, and treat-
ment strategies remain unspecific. This may be at least 
partially due to the inappropriate clustering of these 
two groups together into a single “non-HIV-associated 
cryptococcosis” category, when in fact they represent at 
least two distinct cohorts. A better understanding of the 
sources of variation between and within patient groups 
is urgently needed in order to help inform strategies to 
appropriately modulate the immune responses at the lev-
el of the individual to improve disease outcomes.
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