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The cuticular hydrocarbons of the Triatoma sordida
species subcomplex (Hemiptera: Reduviidae)

Gustavo Mario Calderon-Fernandez, Marta Patricia Juarez/*

Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquimicas de La Plata,
Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad Nacional de La Plata, La Plata, Argentina

The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-
lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes
and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from
C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched
alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39)
represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly
even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethy-
lalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations
studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the sub-
complex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles
that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon
pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hy-
drocarbons may help to elucidate the relationships between species and populations of this insect group.
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Triatomines (Hemiptera: Reduviidae: Triatominae)
comprise more than 140 blood-sucking insect species;
some of which are important vectors for 7Trypanosoma
cruzi, the causative agent of Chagas disease. Triatomine
species are grouped into several complexes according
to their morphology, habitat and ecology (Carcavallo et
al. 2000, Schofield & Galvao 2009). The cuticular hy-
drocarbon pattern of the three major vectors of Chagas
disease, Triatoma infestans, Rhodnius prolixus and Tria-
toma dimidiata, as well as those of Triatoma mazzotti
and Triatoma pallidipennis, two important vectors from
Mexico, has been analysed by capillary gas chromatog-
raphy coupled to mass spectrometry (CGC-MS) (Juarez
& Brenner 1987, Judrez & Blomquist 1993, Juérez et
al. 2001, Calderon-Fernandez et al. 2011). Triatomine
hydrocarbons consist of a complex blend of saturated
straight chain alkanes containing between 18-33 carbon
atoms together with methyl-branched components with
one-four methyl substitutions inserted into alkyl chains
ranging from 25 to more than 43 carbons. Cuticle hydro-
carbons participate in several aspects of insect survival
and fitness. In T infestans, the inhibition of hydrocarbon
synthesis was positively correlated with a higher suscep-
tibility to contact insecticides (Judrez 1994). In addition,
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pyrethroid resistance was associated with a two-fold
increase in the cuticular hydrocarbon content (Pedrini
et al. 2009) and reduced insecticide penetration (Juarez
et al. 2010). The Triatoma sordida subcomplex includes
the following four species: 7. sordida, which ranges
from Central Brazil throughout most parts of Paraguay
and Bolivia to Central Argentina, Triatoma guasayana,
which is distributed throughout Central and Northern
Argentina as well as most parts of Bolivia and Paraguay,
Triatoma garciabesi, which can only be found in Cen-
tral and Northern Argentina and 7riatoma patagonica,
which is exclusively distributed in Argentina, from the
Patagonia region to the central part of the country (Lent
& Wygodzinsky 1979, Jurberg et al. 1998). These spe-
cies show a variable degree of association with humans
and their houses. 7. patagonica and T. guasayana are
both mainly sylvatic, but they can form small colonies in
the peridomestic habitat; also they were shown entering
in human dwellings attracted to light or attacking hu-
mans in the field. 7. sordida and T. garciabesi can form
large colonies in peridomestic habitats (Diotaiuti et al.
1993, Wisnivesky-Colli et al. 1993). As a part of a larger
project focused on detecting structural differentiation in
the triatomine hydrocarbons, the aim of this work was to
analyse the cuticle hydrocarbon pattern of the T sordida
subcomplex by CGC-MS analysis.

MATERIALS AND METHODS

Insects and sampling sites - Adult male and female
specimens of each species were analysed. 7. garciabesi
and 7" guasayana specimens came from Santiago del Es-
tero (Argentina) and 7. patagonica specimens came from
a colony originally from Santa Fé (Argentina). Panzera et
al. (1997) reported genetic differences between Brazilian
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and Argentinean populations of 7. sordida. Thus, two T.
sordida colonies were analysed; one from Rondondpolis
(Brazil) and the other from Cérdoba (Argentina). Insects
were > 1 month old at the time of the analysis.

Cuticle lipid extraction and hydrocarbon purifica-
tion - Male and female specimens were analysed sepa-
rately. Samples (5 insects each) were washed with redis-
tilled water to remove any water-soluble contaminants.
Then, they were transferred to a glass tube and sub-
merged three times in redistilled hexane (Carlo Erba Re-
agents, Milano, Italy) for 5 min each to extract the total
lipids. The hexane volume was reduced under a nitrogen
stream and the hydrocarbons were separated from the
other lipid components by adsorption chromatography
on a mini-column [10 mm X 5 mm internal diameter
(ID)] of activated Biosil A (Bio-Rad Laboratories, Rich-
mond, CA) and eluted with redistilled hexane (4 mL).

CGC-MS analysis - The volume of the hydrocarbon
extracts was reduced under a nitrogen stream and anal-
ysed by CGC-MS using a Hewlett-Packard 6890 (Hewl-
ett Packard, Wilmington, DE) CGC to an Agilent 5975C
VL (Santa Clara, CA) mass spectrometer and interfaced
with an Agilent MSD Chem Station. The injection port
was operated in splitless mode at 320°C. A non-polar
fused silica HP-5MS column (30 m x 0.25 mm ID x 0.25
pm film) was used with helium as the carrier gas at a
constant flow rate of 1.5 mL/min. The oven temperature
was programmed to 50°C for 1 min, increased to 200°C
at a rate of 50°C/min, further increased to 320°C at a rate
of 3°C/min and then finally held for 25 min. The mass
spectrometer detector was set at 70 eV with the transfer
line and the quadrupole held at 320°C and 150°C, respec-
tively. The Kovats retention index (KI) (Kovats 1965)
was calculated for each hydrocarbon peak after measur-
ing the elution times of the alkane standards run under
similar conditions. The hydrocarbon peak areas were
calculated for each chromatogram (HP Chem Station,
Hewlett Packard) and expressed as a percentage of the
total peak area. Shorthand nomenclature is used in the
text and Supplementary data to identify the hydrocar-
bons. CXX represents the total number of carbons in the
straight chain with linear alkanes denoted by n-CXX.
The location of methyl branches was described as x-me
for monomethyl alkanes, x,x-dime for dimethyl alkanes,
x,X,X-trime for trimethyl alkanes and x,x,x,x-tetrame for
tetramethyl alkanes. Interpretation of the mass spectra
was performed as described previously (Juarez et al.
2001, Calderén-Fernandez et al. 2011).

Statistical analyses - Differences in the relative
amounts of cuticle hydrocarbons between species were
tested by ANOVA. Statistical significance between
means was assessed by Tukey’s test (o = 0.05) using the
SPSS v11.0 software (SPSS, Chicago, IL, USA).

RESULTS

About 100 components from 21-43 atoms in the
carbon backbone were detected in the cuticular hy-
drocarbons of the T. sordida subcomplex (Fig. 1A-E,
Supplementary data). Homologous series of n-alkanes
and single-component and isomeric mixtures of meth-

yl-branched alkanes with one-four methyl substitutions
were found in the carbon backbone. Trace levels of n-
alkenes were detected (data not shown) with molecular
ions two mass units less than those of the corresponding
n-alkane. Neither qualitative nor quantitative significant
differences were observed between males and females in
the populations examined (data not shown). Hydrocarbon
component identification together with the correspond-
ing chromatographic retention indices and characteristic
mass spectral ions are shown in Supplementary data.

n-alkanes formed a continuous series from C21-C33.
The proportion of n-alkanes varied from 33-45% of the
total hydrocarbon fraction within the subcomplex (Sup-
plementary data). Odd-numbered chains prevailed over
even-numbered ones, with n-C29 predominating. The
n-C31 chain was the second major component in 7. sor-
dida, T. guasayana and T. patagonica. In contrast, n-C27
was the second major component in 7. garciabesi, show-
ing a significantly lower amount in 7. guasayana and T.
patagonica (1.86 = 0.27% and 1.77 = 0.15% respectively,
p <0.05) (Figs 1A-E, 2, Supplementary data).

The methyl-branched fraction was represented by a
variety of mono, di, tri and tetramethylalkanes, usually
present as isomeric mixtures. Most odd-numbered car-
bon backbones had the methyl groups inserted at odd-
numbered carbon atoms, whereas even-numbered back-
bones had the methyl groups inserted at both odd and
even-numbered carbons.

Internally-branched monomethylalkanes were found
as a homologous series of minor components that eluted
as isomeric mixtures with both odd and even-numbered
carbon skeletons ranging from C25-C43 (Supplemen-
tary data). As expected, these isomeric mixtures eluted
ahead of the n-alkanes with the same number of total
carbons (~73 KI units less); the subterminally-branched
components (6 and 7-me) eluted slightly closer to the cor-
responding straight chains (~60 KI units less). Terminal-
ly-branched monomethylalkanes (at branching positions
C2-C5) were detected in all species of the subcomplex
with alkyl chains ranging from 24-35 carbon atoms. An-
teiso branching (3-me) was detected in odd and even-
numbered alkyl chains, with the former prevailing as a
continuous series ranging from C25-C35. A species-spe-
cific pattern was observed in the odd-numbered 3-meth-
ylalkanes from C27-C35 (Fig. 3, Supplementary data). In
both 7. guasayana and T. patagonica, 3-methylalkanes
showed increasing proportions from 0.30 £ 0.07% and
0.16 + 0.03% for the 3-me C27 to 6.08 £+ 0.24% and 6.15 +
0.37% for the 3-me C33, respectively. In contrast, the 3-me
C29 was the major component (6.70 £+ 0.20%) followed by
3-me C31 (1.50 + 0.20%) in T. sordida, whereas both com-
ponents exhibited almost similar relative amounts in 7.
garciabesi (5.09 £ 0.30% and 6.05 + 0.36% respectively).
Small amounts of 3-me isomers of even-numbered chains
were also found in some of the species studied. Also, 2,
4 and 5-methylalkanes were scarcely represented, except
for 2-me C26 in T. garciabesi (1.83 = 0.07%) and a series
of 4-me components in 7. sordida from Rondonodpolis
(4-me C28, 4-me C30 and 4-me C34 accounting for 1.23
+ 0.04%, 1.74 £ 0.06% and 1.92 £ 0.15% of the total hy-
drocarbons, respectively) (Supplementary data).
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Fig 1: total ion chromatograms of male specimens of species and populations of the Triatoma sordida subcomplex. A: Triatoma sordida from

Rondonopolis, Brazil; B: Triatoma sordida from Coérdoba, Argentina; C: Triatoma garciabesi; D: Triatoma guasayana; E: Triatoma patagonica.
Peak numbers correspond to peaks listed in Supplementary data.
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Dimethylalkanes with both odd and even-numbered
carbon chains were detected with the first methyl branch
positioned at either terminal (3,x-, 4,x- and 5,x-) or in-
ternal carbons. Terminal dimethylalkanes mostly had 7
or more methylene groups separating methyl branches;
3 methylene groups usually separated the methyl groups
in internally-branched dimethylalkanes (Supplementary
data). The relative amounts of several dimethylalkanes
showed significant differences among species (Fig. 4,
Supplementary data). For example, the 13,23- and 11,21-
dime C35 isomers (KI 3562) represented 2.07 + 0.15%
and 1.12 £ 0.07% of the total hydrocarbons in the 7. sor-
dida specimens (Rondondpolis and Cdrdoba respective-
ly), decreased to 0.38 + 0.03% in T. garciabesi and was
undetectable in both 7. guasayana and T. patagonica.
Similarly, the relative amounts of the dimethyl isomers
of C37 (KI 3757) varied from 2.95 + 0.13% in 7. sordida
(Rondonopolis) and 2.12 + 0.08% in T sordida (Cérdoba)
to 1.09 + 0.07% in T. garciabesi and further diminished
to 0.25 £ 0.06% and 0.21 + 0.06% in 7. guasayana and
T. patagonica, respectively. Conversely, the latter two
species had significantly higher relative amounts of the
5,x-dime isomers of C37 and C39 (KI 3782 and 3982 re-
spectively), whereas these components were undetectable
or present in trace amounts in 7. sordida and T. garcia-
besi. A series of 3,x-dime isomers (x =7, 9, 11, 13, 15 and
17) were detected in odd-numbered carbon chains from
C27-C39 (Supplementary data). The 3,x-dime isomers of
C37 (KI 3805) and C39 (KI 4005) were the predominant
components, eluting with a KI of 100-95 units less than
n-alkanes with the same total number of carbon atoms
(Supplementary data). 3,x-dime isomers of C39 were sig-
nificantly different among species, particularly between
T. sordida populations (Fig. 4). Dimethylalkanes with
even-numbered carbon skeletons were represented by
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Fig 2: variation of major n-alkanes among species and populations of
the Triatoma sordida subcomplex. 1: T. sordida (Rondondpolis, Bra-
zil); 2: T. sordida (Cérdoba, Argentina); 3: Triatoma garciabesi; 4:
Triatoma guasayana; 5: Triatoma patagonica. Different letters in hy-
drocarbon amount indicate significant differences (p < 0.05) among
groups by Tukey’s test. Kovats index (KI) 2700: n-C27; KI 2900:
n-C29; KI3100: n-C31; KI 3300: n-C33.

terminal and internal components of 30-40 carbon atoms
in the alkyl chain. Terminal components consisted of low
amounts of 4,8, 4,16 and 4,18-dime isomers detected in
carbon chains C30-C40; only the 4,x-dime isomers of
C38 were found in the four species studied, ranging from
0.42 + 0.02% to 1.34 = 0.09% of the total hydrocarbons
(Supplementary data). Dimethylalkanes with both methyl
branches positioned internally included the 6,10, 12,22,
14,18 and 16,20 isomers with straight backbones from 34-
40 carbons (Supplementary data). 6,10-dimethylalkanes
co-eluted with the trimethyl components with the same
number of carbons in the alkyl chain (Supplementary
data), but they were identified by the presence of a strong
ion doublet at m/z 98/99 together with a significant ion
at m/z 169 corresponding to the presence of the methyl
groups at carbons 6 and 10, respectively.
Trimethylalkanes with both odd and even-numbered
carbon skeletons from 29-41 carbons were found through-
out the subcomplex (Supplementary data). Internally-
branched trimethyl alkanes usually had three methylene
groups between the first and the second methyl branches
and five methylene groups between the second and the
third branch (3+5 pattern); to a lesser extent, a 3+3 pat-
tern was also detected. Thus, mixtures of 11,15,21, 11,17,
21, 13,17,21, 13,17,23 and 13,19,23 components prevailed
in odd-numbered carbon backbones from C31-C41, while
12,16,22, 12,18,22, 14,18,24 and 14,18,22 components
were found in even-numbered backbones from C34-C40.
Even-numbered chains with methyl branches positioned
at odd carbons were also detected, such as 11,17,21-trime
C32, 11,15,21-trime C34 and 13,17,23 plus 13,19,23-trime
C36. Internal trimethyl isomers of C37 and C39 were
the major methyl-branched components of the subcom-
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Fig 3: variation of odd-numbered 3-methylalkanes among species and
populations of the Triatoma sordida subcomplex. 1: T. sordida (Ron-
donopolis, Brazil); 2: T. sordida (Cérdoba, Argentina); 3: Triatoma
garciabesiy 4: Triatoma guasayana; 5: Triatoma patagonica. Differ-
ent letters in hydrocarbon amount indicate significant differences (p
< 0.05) among groups by Tukey’s test. Kovats index (KI) 2775: 3-me
C27; K1 2975: 3-me C29; KI 3175: 3-me C31; KI 3375: 3-me C33; KI
3575: 3-me C35.
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plex, showing a specific pattern of variation. The relative
amounts of internal trimethyl isomers of C37 (KI 3780)
decreased from 10.00 + 0.60% in 7. sordida (Rondondpo-
lis) to 2.66 + 0.15% in T. patagonica, showing the most
significant difference between the two 7. sordida popula-
tions, as well as between 7. guasayana and T. patagonica
(Fig. 5, Supplementary data). In contrast, the relative
amounts of internal trimethyl isomers of C39 (KI 3980)
increased from 2.48 + 0.11% in 7. sordida (Rondondpo-
lis) to 10.19 £ 0.40% in T. patagonica, showing signifi-
cant differences among 7 sordida from Brazil, T. sordida
from Argentina and 7. garciabesi (Fig. 5, Supplementary
data). Terminal trimethylalkanes included the 2,6,10 iso-
mers of C34, C36 and C38; 3,7,x- and 3,11,15 isomers of
C35, C37 and C39 and traces of 4,8,x isomers of C36 and
C38 (Supplementary data). The 2,6,10 isomers co-eluted
with the internally-branched odd-numbered monomethy-
lalkanes of C35, C37 and C39, respectively (Supplemen-
tary data). 3,x,x-trimethyl branching was detected in
odd-numbered alkyl chains from C35-C39. Similarly to
2,xx-trimethyl alkanes, they co-eluted with or close to
the internally-branched monomethylalkanes of C36, C38
and C40, respectively (Supplementary data).

Few tetramethylalkanes were detected in the species
subcomplex. A complete series was found in 7. patago-
nica with small amounts of 4,8,12,16-tetrame isomers of
C34, C36 and C38. Also, the 3,7,11,15-tetrame of C35 (KI
3653) was detected throughout the species subcomplex,
peaking at 1.52 £ 0.12% in T sordida (Rondondpolis).

DISCUSSION

Insect cuticular hydrocarbons often occur as com-
plex blends of straight-chain and methyl-branched com-
ponents, with saturated and unsaturated alkyl chains
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Fig 4: variation of some dimethylalkanes among species and popula-
tions of the Triatoma sordida subcomplex. 1: T. sordida (Rondondpo-
lis, Brazil); 2: T. sordida (Cordoba, Argentina); 3: Triatoma garciabe-
siy 4: Triatoma guasayana; S: Triatoma patagonica. Different letters
in hydrocarbon amount indicate significant differences (p < 0.05)
among groups by Tukey’s test. Kovats index (KI) 3562: 11,x and 13,x-
dime C35; KI 3757: 11,x, 13,x and 15,x-dime C37; KI 3782: 5,x-dime
C37; KI 3982: 5,x-dime C39; KI 4005: 3,x-dime C39.

Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 708(6), September 2013

ranging from about 21 to more than 50 carbons (Howard
& Blomquist 2005, Blomquist 2010). Among other func-
tions, cuticle hydrocarbons have been shown to partici-
pate in protecting insects against desiccation, microbial
attack and insecticide penetration (Juarez 1994, Napoli-
tano & Juarez 1997, Pedrini et al. 2009) and also play
a key role in chemical communication as species, mate
and nestmate recognition cues (Blomquist & Bagnéres
2010). In triatomines and several other insect groups,
the hydrocarbon pattern is mainly under genetic control
(Juarez & Calderon-Fernandez 2007, Wicker-Thomas &
Chertemps 2010). Thus, the expression of specific cutic-
ular hydrocarbons reflects the expression of genes cod-
ing for hydrocarbon biosynthetic enzymes. Accordingly,
triatomine cuticle hydrocarbons have been used as char-
acters to address taxonomic analysis either at genera,
species and populations (Juarez et al. 2000, Calderon-
Fernandez et al. 2005, 2011, 2012).

Complex mixtures of hydrocarbons were detected
in the four species of the 7. sordida subcomplex. These
mixtures included straight chain alkanes and a variety
of mono, di, tri and tetramethylalkanes comprising alkyl
chains from 21-43 carbons. In triatomines, an abundant
number of tetramethylalkanes were found in R. prolixus
(Juarez et al. 2001) and 7. dimidiata (Calderon-Fernan-
dez et al. 2011). However, they were not detected in 7
infestans, a phylogenetically similar species (Juarez &
Blomquist 1993). Similar to their morphological features,
the species of this subcomplex shared a similar hydro-
carbon pattern that can be distinguished from the hydro-
carbon pattern found in other triatomine species. There-
fore, mostly quantitative differences in the cuticular
hydrocarbon composition were detected, together with
some minor qualitative differences. Several hydrocar-
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Fig 5: variation of some trimethylalkanes among species and popu-
lations of the Triatoma sordida subcomplex. 1: T. sordida (Ron-
donopolis, Brazil); 2: T. sordida (Coérdoba, Argentina); 3: Triatoma
garciabesiy 4: Triatoma guasayana; 5: Triatoma patagonica. Differ-
ent letters in hydrocarbon amount indicate significant differences (p
<0.05) among groups by Tukey’s test. Kovats index (KI) 3581: 11,x,x
and 13,x,x-trime C35; KI 3780: 13,x,x and 15,x,x-trime C37; KI 3980:
13,x,x and 15,x,x-trime C39; KI 4080: 14,x,x and 16,x,x-trime C40.
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bons showed patterns of variation that helped to clearly
discriminate the species and populations analysed in this
work. T guasayana and T. patagonica showed simpler
cuticular hydrocarbon profiles with smaller amounts (or
absence) of several mono, di and trimethyl alkanes from
C25-C35 (Fig. 1D, E, Supplementary data). In contrast,
they showed relatively larger amounts of some termi-
nally-branched components (3-me C33, 3-me C35 and
5,x-dime isomers of C37 and C39) that were present in
minor amounts or absent in 7. garciabesi and T. sordida.
T. garciabesi showed a more complex chromatographic
profile, especially in terms of the number of hydrocar-
bon peaks (Supplementary data). However, the profile is
clearly similar to that of 7. sordida, regardless of its ori-
gin (Fig. 1A-C). T. garciabesi showed no evident qualita-
tive differences, but significant quantitative differences
in several hydrocarbons, such as 2-me C28, 3-me C27,
3-me C29 etc (Supplementary data). The analysis of the
two geographically distant 7. sordida populations re-
vealed that they had significant quantitative differences
in several components such as the 4-me series from C28-
C34, the 4,x-dime series from C30-C34, the 3-me C29
and C31, the trimethyl isomers of C35, C37 and C39 and
others (Figs 3-5, Supplementary data). Some of these dif-
ferences were equivalent to those found between 7. gar-
ciabesi and T. sordida, thus suggesting that 7. sordida
is too heterogeneous to be considered a single species.
Interestingly, previous analyses using a variety of tech-
niques suggested that 7. sordida consisted of at least two
cryptic species (Panzera et al. 1997, Noireau et al. 1998).

After the classification proposed by Lent and Wy-
godzinsky (1979), the taxonomic status of the 7. sordida
species subcomplex has been scarcely studied, probably
because these species were considered secondary vec-
tors without relevance in transmitting Chagas disease.
Furthermore, the few studies performed using morpho-
logical, morphometric or chromosomal characters have
led to distinct and sometimes contradictory results. T.
garciabesi was synonymised with 7. sordida some years
after its description (Lent & Wygodzinsky 1979); later
on, it was revalidated as a valid species (Jurberg et al.
1998). The analysis of several metric variables of head
and male genitalia completely differentiated 7. sordida
from both 7. guasayana and T. patagonica, but failed to
differentiate the latter two species (Gorla et al. 1993). In
contrast, cytogenetic and enzyme electrophoresis stud-
ies clearly differentiated 7. guasayana from both T. pa-
tagonica and T. sordida. These analyses also separated
T. sordida into two groups (Brazil and Argentina), but a
scarce differentiation was achieved between 7. sordida
populations from the wet and dry regions of Argentina
(those of the dry region were formerly described as 7. gar-
ciabesi) (Panzera et al. 1997). More recently, an exten-
sive phylogenetic analysis of the Triatominae subfamily
based on molecular data placed the species into a differ-
ent triatomine group (Hypsa et al. 2002). Thus, current
evidence suggests that the taxonomy of the subcomplex
should be revised, especially regarding the relationship
between T. guasayana and T. patagonica, as well as the
intraspecific variation of the so-called “7. sordida.” The
use of cuticular hydrocarbons as taxonomic characters

might help to elucidate the precise relationship between
these species, as well as their intraspecific variability.
This knowledge would provide valuable information to
Chagas disease control programs in their efforts to mon-
itor and control triatomine populations.
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