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Applications of Flow Cytometry to Hematopoietic
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Applications of flow cytometry to clinical and experimental hematopoietic stem cell transplantation
(HSCT) are discussed in this review covering the following topics: diagnosis and classification of
lymphohematologic disorders, quantitation of hematopoietic progenitors in the graft,
lymphohematopoietic reconstitution following HSCT and animal models of human HSCT. At the end,
the utilization of flow cytometry in clinical HSCT by Brazilian transplant centers is briefly reviewed.
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During the last two decades, hematopoietic
stem cell transplantation (HSCT) became the most
efficient modality of treatment for a variety of
lymphohematopoietic neoplasms and for some
solid tumors and non-malignant disorders (Tho-
mas 1994). Considerable progress in the technol-
ogy of HSTC have expanded its clinical applica-
tion and improved its survival rate, leading to an
exponential growth in the numbers of transplants
performed and of transplantation centers in opera-
tion, including in our country. This progress also
caused a great diversification of HSCT  in addi-
tion to the conventional HLA-identical sibling bone
marrow transplantation (BMT): autologous, fam-
ily related unmatched, family unrelated matched
or unmatched, cord blood and peripheral blood
transplantation have been introduced to medical
practice. In the future, advances in immunotherapy,
genetic engineering and cell selection will certainly
lead to much better results of HSCT in curing a
variety of diseases with otherwise fatal course.

In 1984, the Seattle group, which pioneered the
field of human bone marrow transplantation, pub-
lished a short review on the application of flow
cytometry to BMT (Martin et al. 1984). Presenta-
tion was restricted to quantitative assays to assess
the efficiency of T cell depletion from the marrow
graft in order to prevent graft-versus-host disease
(GVHD), concluding that we have found flow
microfluorometry to be an indispensable tool in
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the development of methods of removing T cells
from donor marrow. However, the prospective was
that this application of flow microfluorometric tech-
nology to human marrow transplantation repre-
sents only one of several possible such applica-
tions. Flow microfluorometric technology will find
utility in any situation requiring sensitive and spe-
cific methods for the identification of distinct cell
populations in human bone marrow or blood.

In fact, two years later we disclosed in another
review a broader range of applications of flow
cytometry to BMT, including characterization of
immunologic reconstitution, pathophysiologic and
diagnostic investigation of GVHD, viral infections
and minimal residual disease (Voltarelli & Stites
1986). A Medline search of the literature from
October 1981 through January 1999 produced
more than 500 papers in this area. Most of them
focus on the same above mentioned subjects, but
there were significant advances also in the detec-
tion of engraftment, of alloimunization against
blood cells, in the investigation of graft-versus-leu-
kemia effect, in the quantitation of HSC and, more
recently, in animal models of human transplanta-
tion and in gene therapy. Thus, technological im-
provements in equipments, methods, reagents and
analytical software played a major role in the
progress made in this area.

The purpose of this review is to summarize the
participation of flow cytometry technology in the
progress of HSCT during the last five years both
at the clinical and experimental levels highlight-
ing the contribution of our group to the field.

 CLINICAL APPLICATIONS OF FLOW CYTOMETRY
TO STEM CELL TRANSPLANTATION

In this section, current and potential utilization
of flow cytometry to the management of HSCT
candidates or patients will be discussed.
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Diagnosis and classification of lymphohema-
tologic disorders - Immunophenotypic character-
ization of lymphohematopoietic neoplasms was
one of the first applications of flow cytometry to
clinical medicine improving the precise diagnosis
and staging of those diseases as well as the detec-
tion of their persistance or recurrence after HSCT
(Jennings & Foon 1997). Other papers in this vol-
ume will certainly cover the subject. In Brazil, a
survey of  225 patients with acute lymphoblastic
leukemia (ALL) showed a higher frequency of the
B-mature phenotype in the white population com-
pared to developed countries. In the non-white
population, there was a lower incidence of ALL in
childhood, particularly of the common ALL
(cALL) subtype, resembling the situation in non-
white Americans before the 1970s and of British
and American whites at the beginning of the cen-
tury (Rego et al. 1996). In addition, among 117
patients with cALL, a high frequency of the
CD19+CD10+strong phenotype was observed in
both children and adults and overexpression of
CD10 and/or CD19 occurred in 42% of the cases
which may be helpful for diagnosis or detection of
minimal residual disease (Rego et al. 1999). On
the other hand, children up to four years of age
have more than 65% of B cells in the lymphocyte
window in the bone marrow. Most of these cells
have the immature phenotype CD19+CD10+
which may be confounded with leukemic blasts
(Rego et al. 1998a).

Simultaneous analysis of three or four antigens
on the cell surface, employing one or two laser
beams, and the quantitative evaluation of antigen
density were two significant technological ad-
vances in the diagnosis of hematological malig-
nancies. Thus, multiparameter flow cytometry was
succesfully employed to detect occult B cell ma-
lignancies in cytopenic patients (Wells et al. 1998a),
to characterize acute myeloid leukemia with mini-
mal differentiation (AML-M0) (Cohen et al. 1998)
and to differentiate normal from leukemic blast
cells after bone marrow transplantation (Wells et
al. 1998b). Distinction between normal and leuke-
mic cells can also be accomplished by quantitative
flow cytometry, at least in ALL (Farahat et al. 1998,
Rego et al. 1998b) and by intracellular markers in
AML (Konikova et al. 1998). However, most effi-
cient methods for detection of minimal residual
disease combine fluorescent activated cell sorting
with molecular methods such as in situ hybridiza-
tion (Cotteret et al. 1998) or reverse transcriptase-
polymerase chain reaction (RT-PCR) (Rasmussen
et al. 1998).

Using multiparametric cytometry and well de-
fined study protocols, the Salamanca group  made
significant contributions to the detection of mini-

mal residual disease in hematologic neoplasms. A
variety of diseases were studied, including ALL
(Ciudad et al. 1998), AML (Macedo et al. 1995
San Miguel et al. 1997), chronic lymphocytic leu-
kemia (Tabernero et al. 1995), mast cell leukemia
(Cervero et al. 1999) and multiple myeloma
(Ocqueteau et al. 1996).

In addition, as we did earlier (Falcão et al.
1992), unusual NK-associated malignancies con-
tinue to be described with the help of flow
cytometry (Drenou et al. 1997, Suzuki et al. 1997).
The case we reported was a CD3+CD16+TCRγ/
δ+ T cell leukemia with functional NK activity.
The more recent ones were, respectively, two CD3-
CD56+ non-Hodgkin’s lymphomas with no NK
activity but aggresssive behaviour related to a multi
drug resistant (MDR) phenotype, and seven
CD7+CD56+ leukemias which could represent an
yet unrecognized common myeloid/NK primitive
precursor.

Characterization and differential diagnosis of
many nonmalignant disorders treatable by HSCT
has also benefited from recent advances in the de-
tection of specific disease markers by flow
cytometry. Examples of those diseases are parox-
ysmal nocturnal hemoglobinuria (Doukas et al.
1998), Wiskott Aldrich syndrome (Yamada et al.
1999), leukocyte adhesion deficiency (Thomas et
al. 1995), MHC class II deficiency (Klein et al.
1995), DiGeorge Syndrome (Matsumoto et al.
1998) and chronic granulomatous disease
(Atkinson et al. 1997).

Quantitation of hematopoietic progenitors in
the graft - One of the most significant break-
throughs for the success of HSCT was the pheno-
typic and functional characterization of the primi-
tive cells responsible for lymphohematopoietic re-
constitution in transplanted patients (Baum et al.
1992). Discovery of the CD34 molecule present
on many of these cells caused an explosion of new
data on the mechanisms of normal, pathological
and transplanted hematopoiesis. It also provided a
very powerful tool to evaluate the engraftment re-
quirements and repopulating potential of different
types of grafts now employed in clinical HSCT.
More recently, however, a CD34neg human stem
cell was also described (Bhatia et al. 1998).

With the exception of transfusion sensitized
aplastic anemia patients, HLA-identical sibling
BMT or PBSCT usually show very high engraft-
ment rates. In other types of transplants, such as
allogeneic HLA-mismatched, unrelated, T cell de-
pleted, from cord blood and, particularly, in au-
tologous transplantation, the numbers and function
of HSC in the graft usually are more critical to
achieve engraftment. Thus, qualitative and quan-
titative evaluation of HSC present in the graft be-
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came a reliable predictor of engraftment in many
modalities of HSCT and have been extensively
used to select the best timing to harvest the cells to
be transplanted. A minimum cell dose of 0.75 x
106 CD34+/kg was found to be necessary for en-
graftment of autologous PBSCT and this dose
could be achieved when the absolute CD34+ cell
count was >5/µl in the peripheral blood (Perez
Simon et al. 1998). Other studies, however, found
higher thresholds for CD34+ cell dose (2 to 2.5 x
106/kg) and for absolute CD34+ cell counts in pe-
ripheral blood (10/µl) (Schots et al. 1996, Dansey
et al. 1998). For unmanipulated allogeneic PBSCT,
the threshold cell dose was found to be 2.5 x 106

CD34 + cells/kg (Korbling et al. 1995) while for T
cell-depleted marrow transplants it was 106 CD34+/
kg (Mavroudis et al. 1996). Nucleated cell dose
and CD34+ cell dose are major determinants in en-
graftment of cord blood transplants (reviewed by
Cairo & Wagner 1997). However, the threshold
number of CD34+ cells needed for engraftment
could not be determined in a large cooperative
study of cord blood transplantation in Europe
(Eurocord) due to problems in the standardization
of HSC quantitation (Gluckman et al. 1998).

Several recent studies assessed the content,
phenotype and function of HSC from different
transplantable tissues using flow cytometry. Com-
pared to peripheral blood, cord blood contains a
higher proportion of primitive HSC (CD34+HLA-
DR-) and of immature and non-functional T cells
(Cairo & Wagner 1997, Madrigal et al. 1997,
Dimitriou et al. 1998). These features suggest that
cord blood cells may be more efficient and cause
less GVHD than other sources of HSCT. On the
other hand, bone marrow cells aspirated from iliac
crests contain a high proportion of HSC with B
cell markers while most HSC from peripheral blood
mobilized with either high dose chemotherapy or
myeloid growth factors have myeloid markers
(Fritsch et al. 1996). This difference may explain
the faster myeloid engraftment after mobilized
PBSCT compared to non-mobilized BMT
(Talmadge et al. 1997, Vigorito et al. 1998). Cadav-
eric vertebral bodies have also been used in some
protocols to promote hematopoietic reconstitution
or to increase donor cell chimerism in solid organ
transplantation. Vertebral bodies have more nucle-
ated cells than bone marrow aspirated from iliac
crests of normal allogeneic donors and equivalent
content of HSC, as evaluated by clonogenic as-
says or flow cytometry (Rybka et al. 1995). Finally,
the content of megacaryocityic precursors (CD34+/
CD61+) in the graft could be correlated with time
of platelet engraftment in  patients submitted ei-
ther to allogeneic (Bojko et al. 1998) or to autolo-
gous (Johnsen et al. 1998) peripheral blood HSCT.

The very low frequency and unremarkable
morphologic characteristics of HSCT in various
tissues make it very difficult to precisely quantify
these cells. Many factors interfere  with their enu-
meration, such as sample storage (Gutensohn et
al. 1996), cell washing (Menendez et al. 1998), red
cell lysing method (Cassens et al. 1998) and the
quality of the monoclonal antibody used (Macey
et al. 1997). In fact, the latter and other reports
have shown that mAbs to class II and III epitopes
of the CD34 molecules are less affected by lysis
and fixation procedures than class I antibodies.
Several protocols have been devised to standard-
ize the flow cytometric enumeration of HSC and
to minimize artifacts and count errors. Recent com-
parisons between most popular protocols showed
superiority of a volumetric method employing ref-
erence beads over the International Society of
Hemotherapy and Graft Engineering (ISHAGE)
four-parameter methodology (Leuner et al. 1998)
and over institutional in-house methods when
CD34 cell counts are very high (Olivero et al.
1999).

Fewer studies have investigated functional as-
pects of HSC containing transplants by flow
cytometry. Chalmers et al. (1998) showed that cord
blood T lymphocytes produced less intracellular
proinflammatory cytokines (mainly IFN-γ and
TNF-a) than peripheral blood lymphocytes. In ad-
dition, most cytokine producing cells in cord blood
were naive T helper cells (CD4+RA+) while in
peripheral blood they were both T helper
(CD4+RO+) and T cytotoxic cells (CD8+RO+)
memory cells. These results could explain in part
the lower incidence of GVHD after cord blood
transplantation. In another study, the rate of the
rhodamine-123 vital dye efflux from CD34+ cells
was correlated with cell imaturity and with repopu-
lating capacity of human HSC (Uchida et al. 1996).
The most primitive CD34+Thy1+Lin- self-renew-
ing cells had low or medium levels of Rh-123 re-
tention while CD34+ cells with high level of dye
retention lacked long-term engraftment potential.

Lymphohematopoietic reconstitution following
HSCT - Immunologic reconstitution after HSCT
is a very complex and important series of phenom-
ena which could not be properly investigated until
the advent of flow cytometry. Low numbers of cir-
culating cells with exquisite phenotypes and mul-
tiple functional abnormalities seen in the
posttransplant period are very difficult to charac-
terize with conventional fluorescence microscopy
or cell culture based immune function methods.
While immune reconstitution followup is not rou-
tinely performed after HSCT, information provided
by its investigation has great predictive value for
infection, GVHD, relapse and immunoprofilaxis.
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On the other hand, hematopoietic engraftment fol-
lowing HSCT is routinely monitored by rising
blood cell counts following the pancytopenic state
caused by the conditioning regimen. However,
fluoro-cytometric techniques may detect early and
more subtle signs of  myeloid engraftment and may
help to distinguish between several types and de-
grees of chimerism that may occur in the event of
graft failure or recurrent disease. We have found
that graft failure after allogeneic bone marrow
transplantation is associated with defective expres-
sion of IL-2R (CD25) on activated CD8 T cells
(Voltarelli et al. 1989) and that a mild T cell deple-
tion with anti-CD6 mAb may explain its low rate
of graft failure compared to other methods
(Voltarelli et al. 1990). More recently, fluoro-
cytometric reticulocyte counts detect engraftment
earlier than neutrophil counts (SMSGHR 1994,
Greinix et al. 1994) and a panel of Mabs against
erythrocyte antigens could be used to uncover both
early engraftment and chimeric states after HSCT
(Blanchard et al. 1995, Nelson et al. 1996, Hendriks
et al. 1997). Finally, monitoring CD34+ cells after
HSCT showed that their numbers correlated with
platelet recovery (Gebauer et al. 1996) and that
donor CD34+/HLA-DR- capable of long term he-
matopoietic repopulation are present in the BM of
patients receiving allogeneic PBSCT (Briones et
al. 1998).

The first in depth fluorocytometric analysis of
recovering lymphocyte subpopulations after HSCT
was published fifteen years ago (Ault et al. 1985).
They followed four patients submitted to BMT
(three allogeneic T cell-depleted and one synge-
neic) during the first 90 days after transplantation
and found few mature T cells and large numbers
of functional NK cells and non-functional CD5+
B cells. These findings were later confirmed by
other studies (reviewed by Voltarelli & Stites 1986
and by Lum 1990). More recently, immunologic
reconstitution has been investigated in different
types of HSCT. Thus, Small et al. (1999) showed
that adult patients submitted to T cell-depleted
unrelated BMT experience prolonged and profound
T cell immunodeficiency compared to pediatric
recipients of unrelated BMT and adults after re-
lated BMT. The former patients had an increased
risk of severe opportunistic infections which cor-
related negatively with the rate of recovery of CD4
T cells. This correlation was also observed by
Trenschel et al. (1998) comparing related and un-
related  allogeneic BMT with peripheral blood
HSCT which showed faster myeloid and CD4 re-
constitution and lower frequency of opportunistic
infections. In other set of studies, human dendritic
cells identified by the Mab CMRF44 were found
to be low in the peripheral blood of patients sub-

mitted to PBSC harvesting for allogeneic or au-
tologous HSCT and in patients with acute GVHD
(Fearnley et al. 1999). In this condition CD4 cells
were activated (HLA-DR+Ox40+) and displayed
Th2 phenotype (CD30+/CD7-) (Grimley et al.
1999) while eosinophils showed signs of selective
activation as judged by the expression of the IL2-
Rα (CD25) (Rumi et al. 1998) . Finally, the pres-
ence of residual thymic function was shown to be
required for the reconstitution of the CD4 T helper
subset, but not for the CD8 T cytotoxic/suppressor
subset (Heitger et al. 1997).   On the other hand, in
autologous BMT, hematopoietic growth factors
favored the recovery of activated CD8 T cells (GM-
CSF) or of memory and naive CD4 T cells (G-
CSF) (San Miguel et al. 1996). In addition, autolo-
gous transplantation of FACS-sorted CD34+ cells
from peripheral blood  resulted in delayed immune
reconstitution, decreased diversity of Vβ TCR ex-
pression in all patients and an increase of TCR γδ
T cells and of CD5+ B cells in one third of patients
compared to unmanipulated grafts (Bomberger et
al. 1998). Immune recovery after autologous trans-
plantation was reviewed by Guillaume et al. (1998).

FUTURE AND POTENTIAL APPLICATIONS

In the future, flow cytometric methods will cer-
tainly replace much of the current technology em-
ployed in the practice of human HSCT. New areas
of development include detection of cytomegalovi-
rus infection (Honda et al. 1997, Imbert-Marcille
et al. 1997), of neutrophil (Maher & Hartman 1993)
or platelet (Kohler et al. 1996) alloimmunization,
documentation of chimerism by fluorescence in situ
hybridization (Arkesteijn et al. 1995, van Tol et al.
1998), functional activation of T cells detected by
intracellular cytokine production (Tarantolo et al.
1998) and selection of HSC or immunocompetent
cells for transplantation or gene therapy (Korbling
et al. 1994, Sasaki et al. 1995).  In fact, both the
human multidrug resistance (MDR) gene trans-
fected to HSC (Richardson & Bank 1995) and the
herpes simplex virus-thymidine kinase gene trans-
fected to human T cells (Bonini et al. 1997) ex-
press cell surface proteins (a MDR associated p-
glycoprotein and the low affinity receptor for nerve
growth factor respectively) that can be detected and
selected by flow cytometry. In addition, FACS se-
lection of  T cells containing TCR-Vβ families which
lead to GVHD or GVL (Epperson et al. 1999) or of
T cells which bind to MHC-leukemic peptide tet-
ramers (Dunbar et al. 1998) may be used in the fu-
ture as immunotherapeutic approaches combined to
HSCT. Finally, cell cycle analysis of normal stem
cells (Gothot et al. 1998) or neoplastic tissues (Orfao
et al. 1994) by DNA staining may also be helpful
for engraftment or prognosis studies after HSCT.
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APPLICATIONS OF FLOW CYTOMETRY TO ANIMAL
MODELS OF HUMAN STEM CELL TRANSPLANTA-
TION

Over the last years, there was considerable
progress towards the development of animal mod-
els to support human stem cell engraftment. Most
of these models involve mutant/inbred strains of
immunodeficient mice which allow long term pro-
liferation and differentiation of primitive human
hematopoietic stem cells from different sources.
They provide unvaluable research tools not only
to dissect the physiology of human hematopoiesis
but also to investigate multiple aspects of hemato-
poiesis-based diseases, including the effects of
genetic manipulation on the treatment of these dis-
eases. The contribution of flow cytometry for the
establishment and investigation of animal models
of human hematopoiesis is outlined in this section.

Early attempts to transplant human bone mar-
row cells into irradiated mice, into mice deprived
of T cells (with the nude mutation) or into fetal
sheep resulted in low levels of human stem cell
engraftment. Other immunodeficient murine mod-
els such as beige, xid (X-linked immunodeficient)
and Rag1 or 2 (deficient in the recombination ac-
tivating gene-1 or 2) were not successful as well
and the most suitable host  was found to be mice
homozygous for the scid mutation (reviewed by
Greiner et al. 1998). The scid mutation was first
described in 1983 in the C.B-17 strain of mice
which lack both cellular and humoral immunity in
the homozygous state. The first reports of engraft-
ment of human hematopoietic cells in scid mice
appeared in 1988, including intraperitoneal trans-
plantation of PBL (Mosier et al. 1988) and trans-
plantation of fetal bone marrow or fetal liver with
or without fetal thymus fragments under the renal
capsule of unirradiated recipients (McCune et al.
1988) followed by intravenous transplantation of
bone marrow into irradiated animals (Lapidot et
al. 1992). Models of hematopoietic engraftment
employing human fetal tissues (the SCID-hu mice)
have ethical and availability limitations while in
the hu-SCID model with postnatal tissues the en-
graftment levels of human cells are low (0.5-5 %
of the scid marrow). This is due to the lack of spe-
cies cross-reactivity of growth factors and
cytokines required for human stem cells and also
to residual host innate immunity present in the scid
mice. These animals have elevated levels of
hemolytic complement and NK activity and nor-
mal granulocyte and macrophage function which
interfere with the engraftment of human hemato-
poietic cells. Backcrossing the C.B-17-scid mice
with several inbred strains carrying specific defects
in innate immunity led to the generation of the non-
obese diabetic (NOD)-scid mice which exhibit

multiple defects in innate immunty but do not de-
velop diabetes. In this NOD-scid strain the levels
of engraftment of human stem cells from periph-
eral blood or spleen were always 5- to 10-fold
higher than in any of the other scid strains exam-
ined and it became the most useful animal model
of human  hematopoiesis and HSCT available.
Additional modifications of the NOD/scid model
with the introduction of the β2-microglobulin de-
ficiency and consequent absence of MHC class
class I further increased the level of human cell
engraftment and allowed the development of  T
cells with normal CD4:CD8 ratio (Christianson et
al. 1997).

Phenotypic characteristics of various sources
of human lymphohematopoietic cells  engrafting
NOD-scid mice have been investigated. Initially,
nonmobilized peripheral blood or spleen cells were
injected intraperitoneally into unirradiated scid
mice (Greiner et al. 1995). As mentioned earlier,
the degree of engraftment was higher in NOD-scid
than in C.B-17-scid and it was similar for PBL and
spleen transplants; most circulating or splenic cells
grafted in the mouse were CD4 or CD8 T cells,
less than 5% expressed monocyte or B cell mark-
ers. When selected CD34+ cells mobilized from
the peripheral blood by G-CSF were administered
intravenously to irradiated NOD-scid mice,
engraftement of human cells could be detected up
to 6.5 months after transplantation and comprised
as high as 96% of bone marrow cells (van der Loo
et al. 1998). The phenotypes of these cells differ
significantly between different organs of the host
animal: mature CD20+10- B cells predominate in
the spleen whereas myeloid cells (CD33+HLA-
DR+) predominate in the BM, and the thymus con-
tained a large percentage of human immature T
cells (CD4+CD8+ and CD8+CD7+). However,
other studies showed that T cells developed in
NOD/SCID mice transplanted with the more primi-
tive CD34neg SC and not with the CD34+ ones
(Bhatia et al. 1998).  Human bone marrow cells
capable of repopulating NOD-scid mice are present
in the CD34+38- fraction and generated signifi-
cant numbers of human CD34+38- cells in the
marrow of the animals and multiple lineages of
human cells (Larochelle et al. 1996).

Most transplantation models of normal human
stem cells into scid mice involved the use of cord
blood cells. These studies showed that, like the BM,
the long term repopulating cell is also present in
the CD34+38- fraction and that predominant cell
generated in the marrow  and in peripheral tissues
are B cells, expanded from the CD34+CD19+ pre-
cursor compartment (Pflumio et al. 1996, Hogan
et al. 1997). Culture of purified CD34+CD38- cord
blood cells with bone marrow stromal cells reduced
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significantly the in vivo repopulating capacity of
transplanted cells (Gan et al. 1997) while the ex-
pansion of those cells with growth factors (IL-3,
IL-6 and stem cell factor) markedly delayed
lymphohematopoietic engraftment (Guenechea et
al. 1999). Finally, repopulation of NOD-scid mice
with CD34+ purified cord blood cells was found
to be dependent on the expression of the chemokine
receptor CXCR4 which binds to the stromal cell-
derived factor-1 (SDF-1) (Peled et al. 1999).

The scid mouse model has also been exten-
sively used to investigate the biology and treatment
alternatives for human leukemias (reviewed by
Uckun 1996) and other hematological malignan-
cies such as multiple myeloma and lymphomas.
Flow cytometric methods were very instrumental
in these investigations, including the few studies
involving infusion of immunocompetent cells from
allogeneic or autologous donors. Detection of en-
graftment of human malignant cells in the animal
host can be achieved by a panel of monoclonal
antibodies similar to that used for diagnosis of the
disease in humans (Baersch et al. 1997) or to char-
acterize human tumor cell lines as in multiple my-
eloma (Rebouissou et al. 1998). On the other hand,
infusion of in vitro antigen stimulated cytotoxic T
cells caused regression of human autologous EBV-
induced B cell lymphoproliferative disease
(Lacerda et al. 1996) or of allogeneic acute my-
eloid leukemia (Warren et al. 1997) or acute lym-
phoblastic leukemia (Nijmeier et al. 1998).

Protocols of gene transfection of human HSC
which could be employed in clinical transplanta-
tion (reviewed by Richter 1997, and by Brenner et
al. 1998) have also benefited from the convenience
and quickness of fluorocytometric technology.
Most of these protocols use oncoretroviral vectors
such as the murine leukemia virus which integrates
into the chromosomes of replicating target cells
resulting in stable expression of transgenes. How-
ever, few studies have succeeded in transducing
retroviral vectors to human stem cells (Yurasov et
al. 1997, Cheng et al. 1998, Rill et al. 1997) possi-
bly due to the quiescent nature of human HSC and
the requirement of cell division for retroviral inte-
gration. Very recently, human resting CD34+ cells
were transduced with an HIV-derived vector and
were able to repopulate NOD-scid mice (Miyoshi
et al. 1999). Levels of engraftment, detected in the
FACS by the expression of the green fluorescence
protein coupled to the viral vector, were as high as
27% of human CD45+ cells in the BM (Figure),
22% in the spleen and 20% in the peripheral blood.
The use of this new class of vectors provide an
innovative approach to study hematopoiesis and
to human gene therapy if the safety issues are prop-
erly addressed.

FLOW CYTOMETRY APLLIED TO HSCT IN BRAZIL

In a recent survey among 12 stem cell trans-
plant centers active in Brazil, we found that the
majority of them (8) use a flow cytometer for clini-

Green fluorescent protein expression in human lymphoid and myeloid cells from the bone marrow of NOD/SCID mice trans-
planted with HIV vector-transduced CD34+ cells. Representative flow cytometric analysis of bone marrow cells from mice trans-
planted with mock- or HIV vector-transduced CD34+ cells are shown. Both mice had similar levels of human cell engraftment.
Presented values are as the percentages of total human cells. Reprinted from Miyoshi et al. Science 283: 682-686, 1999. Copyright
1999 American Association for the Advancement of Science.
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cal or investigation purposes. Four centers have
equipments restricted to cell analysis and in other
four centers equipments were also capable of cell
sorting, but they are used mainly for analysis. Most
centers utilize flow cytometry to quantitate stem
cells contained in autografts or T cells present in
donor lymphocyte infusions and in investigations
related to stem cell mobilization or immune recon-
stitution (Souza et al. 1994, Diamond et al. 1995,
Vigorito et al. 1998). In our center, we have been
using fluorocytometric methods to compare cell
content between different types of grafts (bone
marrow, peripheral blood and cord blood) (Lemos
et al. unpublished), to assess alloimmunization
against neutrophils (Corsini et al. unpublished) or
platelets (Palma et al. unpublished) and to charac-
terize the immune response of donor lymphocyte
infusions (DLI) against chronic myelogenous leu-
kemia relapsed after allogeneic BMT (Castro et al.
unpublished). In a preliminary analysis of this lat-
ter study, we found that some patients receiving
DLI show signs of lymphocyte activation in the
peripheral blood, specially upregulation of HLA
class II molecules in various lymphocyte subsets,
which correlated with functional assays of
allostimulation. These findings are particularly rel-
evant given the reduced expression of HLA class
II molecules on target ( Dermime et al. 1997)  and
effector (Castro et al. 1999) cells from patients with
leukemia which seem to impair their immune re-
sponse against tumor cells.
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