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Isoprenoid biosynthesis in the erythrocytic stages
of Plasmodium falciparum
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The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apico-
plast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or
absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions
and their synthesis is essential for the parasite’s survival. During the last few years, the genes, enzymes, intermedi-
ates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects
of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol,
ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraeryth-

rocytic stages of Plasmodium falciparum.
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Malaria is one of the most important tropical para-
sitic diseases in humans, causing great morbidity and
mortality in tropical regions with 300-500 million clini-
cal cases and approximately one million deaths per year
(WHO 2010). Human malaria is caused by five species
of the Plasmodium parasites, namely Plasmodium fal-
ciparum, Plasmodium vivax, Plasmodium ovale, Plas-
modium malariae and Plasmodium knowlesi (Cox-Singh
& Singh 2008). P. falciparum is responsible for the vast
majority of malaria-related deaths (Snow et al. 2005).
The global expansion of the disease has been attributed
mainly to the failure of vector control programs, the ab-
sence of a vaccine and the increase in parasite resistance
to drugs commonly used for therapy. As a result, the
discovery and development of new and effective anti-
malarial agents is imperative. This aim can be achieved
in three ways: (i) by focusing on previously validated
parasite targets to generate new drug candidates, (ii) by
identifying new potential parasite targets for malaria
chemotherapy (Ridley 2002) or (iii) by performing high-
throughput testing of drug libraries (Guiguemde et al.
2010). With many malaria parasite genome-sequencing
projects now complete, efforts are being directed to-
wards a better understanding of gene functions and the
discovery of new drug targets (Gardner et al. 2002).

The phylum Apicomplexa harbours a relict plastid
known as the apicoplast (McFadden et al. 1996); its dis-
covery brought about an exciting new prospect for drug
development against P. falciparum (Jomaa et al. 1999,
Lim & McFadden 2010). The apicoplast possesses four
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membranes; therefore, it is hypothesised to be the re-
sult of a secondary endosymbiosis, which means that, at
some point, the parasite engulfed another eukaryote that
contained a plastid obtained by primary endosymbiosis
of a cyanobacterium-like prokaryote (Funes et al. 2002,
Moore et al. 2008). The apicoplast genome is clearly re-
lated to the plastid genome of plants and algae but has a
greatly reduced sequence complexity and lacks the genes
that encode proteins involved in photosynthesis. Be-
cause the structure of the apicoplast was retained in the
parasite, it is thought to have an important function for
the parasite’s survival (Sullivan et al. 2000). A predicted
apicoplast proteome has been assembled and putative
pathways for the biosynthesis of fatty acids, isoprenoids,
iron-sulphur clusters and haem have been mapped to the
apicoplast. These metabolic pathways are distinct from
the pathways found in the mammalian host, although
which of these pathways make the apicoplast indispen-
sable remains to be elucidated (Ralph et al. 2004).

Isoprenoids - With more than 23,000 primary and
secondary metabolites, isoprenoids form the most diverse
and abundant group of organic compounds in nature.
They are derived from branched C5 isoprenoid units. The
number of repetitions of this motif, cyclisation reactions,
rearrangements and further oxidation of the carbon skel-
eton are responsible for the enormous structural diversity
(Connolly & Hill 1992). Many types of isoprenoids (ste-
roids, cholesterol, retinoids, carotenoids, ubiquinones and
prenyl groups bound to proteins) are essential components
of the cellular machinery that are found in all organisms.
They participate in a variety of biological processes: (i)
carotenoids, chlorophyll and plastoquinone are essential
constituents of the photosynthetic apparatus; (ii) ubi-
quinone, menaquinone (MQ) and plastoquinone are em-
ployed as electron carriers required for the mitochondrial
respiratory chain; (iii) prenylated proteins, including Ras
and Rho GTPases, function as signal transducers; (iv)
dolichols participate in the post-translational modifica-
tion of proteins, an event that is involved in tumour cell



Isoprenoid biosynthesis in P. falciparum * Fabiana Morandi Jordao et al.

growth and differentiation and cellular signalling (Wang
& Ohnuma 1999); (v) phosphorylated dolichols have a
role as carriers of oligosaccharides in the biosynthesis of
glycoproteins and glycosylphosphatidyl inositol anchors
(Burda & Aebi 1999, Spiro 2002).

Isoprenoids vary greatly in size but are all synthe-
sised from a common building block, the isoprene unit
isopentenyl diphosphate (IPP) and its isomer dimethylal-
lyl diphosphate (DM APP). Two distinct and independent
pathways exist that biosynthesise IPP: the classical me-
valonate pathway and a mevalonate-independent meth-
ylerythritol phosphate (MEP) pathway.

The mevalonate pathway - Bloch (1958) and Ly-
nen (1958) first described the mevalonate pathway
in animals and yeast revised by Spurgeon and Porter
(1981). For several decades, the mevalonate pathway
was considered the only biosynthetic route leading to
IPP and DMAPP. This pathway uses seven enzymes to
supply the precursors in most eukaryotes (all mammals)
and in archae bacteria, eubacteria, algae (except chlo-
rophytes), higher plants, bryophytes and some protozoa
such as Trypanosoma and Leishmania (Goldstein &
Brown 1990). This pathway starts with a reaction cataly-
sed by a thiolase that produces acetoacetyl-CoA from
two molecules of acetyl-CoA. A third acetyl-CoA is then
condensed with acetoacetyl-CoA to form 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA) by HMG-CoA syn-
thase. The NADPH-dependent HMG-CoA reductase
then converts the CoA-bound compound to mevalonic
acid (MVA). Next, MVA is sequentially phosphorylated
by the mevalonate and diphosphomevalonate kinases to
form MVA-5-diphosphate. This diphosphate is subse-
quently decarboxylated by mevalonate diphosphate de-
carboxylase to yield a pool of IPP, which is then convert-
ed to DMAPP by an IPP isomerase. The enzymes of the
mevalonate pathway have been studied from a number
of organisms, including humans. HMG-CoA reductase,
the best-characterised and rate-limiting enzyme in the
pathway, is the target of the statin class of cholesterol-
lowering drugs (Alberts et al. 1980). Whereas the me-
valonate pathway in bacteria was previously thought to
be due to horizontal gene transfer from other domains,
Lombard and Moreira (2011) demonstrated using phylo-
genetic analyses that the mevalonate pathway is likely
ancestral not only in archaea and eukaryotes but also
in bacteria. The authors concluded that the mevalonate
pathway is likely an ancestral metabolic route in all three
domains of life and was probably present in the last com-
mon ancestor of all organisms.

The MEP pathway - The MEP pathway was first de-
scribed in eubacteria (Rohmer et al. 1993) followed by
several photosynthetic organisms such as cyanobacteria
(Cvejic & Rohmer 2000), algae (Disch et al. 1998) and
higher plants (Rohmer 1999). Later, it was described in
apicomplexan parasites (Jomaa et al. 1999) and Myco-
bacterium tuberculosis (Bailey et al. 2002). It was also
found in several pathogenic eubacteria but not in animals
or archae bacteria (Lichtenthaler 2000). The initial step,
catalysed by I-deoxy-D-xylulose-5-phosphate (DOXP)
synthase, is the formation of DOXP by the condensa-
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tion of pyruvate and glyceraldehyde-3-phosphate. The
dxp gene encoding this enzyme was first cloned from
Escherichia coli (Lois et al. 1998). This key enzyme of
the pathway requires thiamine diphosphate and divalent
cations such as Mg?* or Mn?" for its activity. The enzyme
DOXP reductoisomerase catalyses the rearrangement
and subsequent reduction of DOXP to MEP. The activity
of this enzyme is inhibited by fosmidomycin (Kuzuyama
et al. 1998). MEP is then converted to 4-(cytidine-5-
diphospho)-2-C-methyl-D-erythritol (CDP-ME) in a cy-
tosine triphosphate-dependent reaction by the ispD gene
product CDP-ME synthase. The next step is catalysed
by the enzyme CDP-ME kinase and leads to the phos-
phorylation of CDP-ME. The product of this reaction,
4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol-2-
phosphate (CDP-MEP-2P), is subsequently converted
to 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (ME-
2,4-cPP) by the enzyme 2-C-methyl-D-erythritol 2,4-
cyclodiphosphate synthase. [IPP and DM APP are synthe-
sised through independent routes in the last steps of the
MEP pathway (Lichtenthaler 2000). Additionally, the
MEP pathway produces the precursor (DOXP) for the
synthesis of the essential cofactors thiamine diphosphate
and pyridoxal phosphate (Sprenger et al. 1997).

In the following section, we address the recent ad-
vances that were made by our group regarding the syn-
thesis of downstream products of the MEP pathway in
P. falciparum and the exploitation of these pathways as
potential novel drug targets (Figure).

MEP pathway in P. falciparum - Various attempts
to provide evidence for the existence of the mevalonate
pathway in Plasmodium have led to ambiguous results.
To characterise the presence of the mevalonate path-
way, [*H] mevalonolactone or (RS)-[5-*H]-mevalonate is
commonly used to perform metabolic labelling (Gold-
stein & Brown 1990). Unfortunately, all efforts to label
isoprenoid constituents with these precursors in P. falci-
parum were unsuccessful. However, upon incubation of
extracts from P. falciparum infected red blood cells with
['“C] mevalonate, Mbaya et al. (1990) identified farnesyl
pyrophosphate. Metabolic labelling of in vitro cultured
parasites using [*H] mevalonolactone was performed to
analyse dolichols and ubiquinones, but no products were
identified (AM Katzin et al., unpublished observations).
Inhibitors (lovastatin and simvastatin) of HMG-CoA re-
ductase interfered with the in vitro development of P.
falciparum, but only at high, pharmacologically irrel-
evant, concentrations (Grellier et al. 1994). Accordingly,
no HMG-CoA reductase activity was detectable above
background levels in extracts from P. falciparum and P.
knowlesi (Vial et al. 1984).

Clastre et al. (2007) demonstrated that the MEP path-
way was also active in other apicomplexan parasites,
namely Eimeria tenella and Toxoplasma gondii. Addi-
tionally, transcription profiles confirmed that MEP path-
way-related genes were transcribed in these parasites. In-
triguingly, BLAST analysis showed that Cryptosporidium
parvum and Cryptosporidium hominis lack both the MVA
and MEP pathways. However, these species contain or-
thologs of prenyltransferases, suggesting that isoprenoid
precursors perhaps may be acquired from the host.
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In Plasmodium, the apicoplast is the only site of
isoprenoid precursor synthesis. Jomaa et al. (1999)
demonstrated that a recombinant P. falciparum DOXP
reductoisomerase, which converts DOXP to MEP, was
enzymatically active and could be inhibited by fosmid-
omycin. The authors also demonstrated that fosmidomy-
cin and its derivative FR900098 are able to inhibit the
growth of P. falciparum in culture and suppress the in
vitro growth of multidrug-resistant P. falciparum strains.
Moreover, mice infected with the rodent malaria parasite
Plasmodium vinckei were cured after treatment with fos-
midomycin. However, FR900098 was found to be twice
as effective as fosmidomycin. In the same work, the au-
thors showed that an amino-terminal signal sequence
in DOXP reductoisomerase targeted the enzyme to the
apicoplast. In addition, DOXP reductoisomerase activity
could be detected in crude and partially purified protein
extracts from P. falciparum using a sensitive functional
assay (Wiesner et al. 2000).

Recently, it was demonstrated that fosmidomycin di-
rectly inhibits its known target, DOXP reductoisomerase,
and indirectly acts upon cells to inhibit a second target, the
downstream enzyme MEP cytidyltransferase (Zhang et
al. 2011). Umeda et al. (2010) obtained crystallised DOXP
reductoisomerase from P. falciparum and preliminary X-
ray crystallographic and structural analyses by molecular
replacement are in progress. Rohdich et al. (2001) charac-
terised the recombinant enzyme 2-C-methyl-D-erythritol
2.4-cyclodiphosphate synthase in P. falciparum. Finally,
Ralph et al. (2004) suggested the presence of several MEP
pathway-related genes in P. falciparum, all of which pos-
sess apicoplast-targeting sequences, indicating that the
DOXP pathway is localised in the apicoplast.

Cassera et al. (2004) showed by metabolic labelling
with [1-**Clacetate, D-[U-*C]glucose and [2-“C]DOXP
that the MEP pathway is functionally active in the intraer-
ythrocytic stages of P. falciparum. This group identified
all but one of the intermediates of the MEP pathway us-
ing high-performance liquid chromatography and mass
spectrometric analyses. The identified intermediates
were DOXP, MEP, CDP-ME, CDP-MEP-2P and ME-
2,4-cPP (Figure). The effect of fosmidomycin on levels of
the MEP pathway intermediates was found to be the most
prominent in ring stages and only minor inhibitory effects
were observed in the trophozoite and schizont stages, re-
flecting differences in the drug sensitivity of the parasite
blood forms. Cassera et al. (2004) also showed that the
MEP pathway provides precursors for the synthesis of
ubiquinone and dolichol. This result was demonstrated
by the decrease in the ubiquinone and dolichol content in
fosmidomycin-treated parasites. Because fosmidomycin
inhibits the DOXP reductoisomerase and kills malaria
parasites, the biosynthesis of isoprenoids has been pre-
sumed to be essential in Plasmodium.

Interestingly, and similar to effects observed for the
inhibition of plasmodial dihydrofolate reductase (Zhang
& Rathod 2002), no alteration in the transcription of
MEP pathway-related genes was found (Cassera et al.
2007), suggesting that there is no feedback control of
transcription exerted by metabolites of the MEP path-

way as is often found in other organisms. Surprisingly,
fosmidomycin had only a small effect on the growth of
either E. tenella or T. gondii in vitro, even at higher con-
centrations, suggesting that the drug either is not equally
active or its uptake varies in different apicomplexan par-
asites (Clastre et al. 2007).

Thus far, all genes related to the MEP pathway have
been identified in the P. falciparum genome, but only
three genes that encode the enzymes DOXP synthase,
DOXP reductoisomerase and 2-C-methyl-D-erythritol-
2,4-cyclodiphosphate synthase have been functionally
characterised. Due to their absence in human cells, en-
zymes from the MEP pathway are excellent molecular
targets for the development of new antimalarial drugs.
Field trials in humans have also demonstrated the ef-
fectiveness of fosmidomycin in the treatment of human
malarial infections (Borrmann et al. 2005, 2006). Re-
cent clinical studies showed that fosmidomycin was ef-
fective and well tolerated in the treatment of patients
with acute uncomplicated P. falciparum malaria but,
unfortunately, resulted in an unacceptably high rate of
recrudescence (Wiesner et al. 2002).

Biosynthesis of isoprenoids in P. falciparum - The
first reports demonstrating the biosynthesis of isopre-
noids in Plasmodium were published by Rietz et al.
(1967) and Skelton et al. (1969), showing the occur-
rence of ubiquinones-8 and 9 in Plasmodium lophurae
and the identification of ubiquinone-8 biosynthesised by
P. knowlesi, Plasmodium cynomolgi, and Plasmodium
berghei. Afterwards, Mbaya et al. (1990) showed that
schizont extracts of P. falciparum biosynthesised isopre-
noid until the farnesyl pyrophosphate step upon incuba-
tion with [“*C]mevalonate. Using ['“C]Jacetate, they also
demonstrated that the isoprenoid metabolism appeared
to be stage-dependent, which was shown by the increase
in radiolabelled farnesyl pyrophosphate at the beginning
of the schizogonic phase.

Several glycoconjugates, biosynthesised by the in-
traerythrocytic stages of P. falciparum, use dolichol and
its phosphorylated derivatives as carrier lipids. Anchors
and N-linked glycoproteins require dolichyl phosphate
and dolichyl pyrophosphate as carriers of different mono-
saccharide constituents (Schwarz & Datema 1982).
Kimura et al. (1996) demonstrated the effect of N-linked
glycoproteins on differentiation of intraerythrocytic
stages of P. falciparum. Walter (1986) demonstrated the
presence of dolichol kinase, a rate-limiting enzyme for
the supply of dolichyl pyrophosphate, in P. falciparum.
Many eukaryotic cells, such as yeast and a number of
mammalian cells, are unable to incorporate more com-
plex isoprenoid precursors such as [PH]FPP and [*H]
GGPP. In contrast, intraerythrocytic forms of P. falci-
parum easily metabolise these compounds when they are
added to the culture medium, permitting the subsequent
identification of higher isoprenoids. Accordingly, Couto
et al. (1999) identified dolichol, dolichyl phosphate and
dolichyl pyrophosphate of 55 and 60 carbons (11/12 iso-
prenic units) by metabolic labelling of parasites with
[*HJFPP and [*H]GGPP in different intraerythrocytic
stages of P. falciparum. This study was the first dem-
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onstration of short-chain dolichols in the phylum Api-
complexa. Despite the fact that few reports exist on the
characterisation of dolichols in protozoans, the presence
of short-chain isoprenoid species seems to be a common
feature. Dolichols of 13 isoprene units in 7rypanosoma
cruzi (Parodi & Quesada-Allue 1982), of 11 isoprene
units in Crithidia fasciculata (Quesada-Allue & Parodi
1983) and of 11 and 12 isoprene units in Trypanosoma
brucei (Low et al. 1991) have been reported.

The biosynthetic pathways for cholesterol, dolichol
and ubiquinones share the same initial steps. Using
[1-"*Clacetate and *H,O as labelling precursors, Vial et
al. (1984) showed that cholesterol synthesis in P. falci-
parum was almost undetectable, in accordance with very
low levels of measurable HMG-CoA reductase activity.

In P. falciparum, the biosynthesis of ubiquinone
or coenzyme Q involves two major steps: synthesis of
the benzoquinone by the shikimate pathway and syn-
thesis of the isoprene side chain by the MEP pathway.
The biosynthesis and regulation of coenzyme Q was
also studied in protozoans. T brucei and Leishmania
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major synthesise the polyprenyl side of ubiquinone via
the mevalonate pathway (Low et al. 1991, Ranganathan
& Mukkada 1995). Coenzyme Q8 and coenzyme Q9
were detected in P. falciparum using [“*C]PHBA to la-
bel the benzoquinone ring in parasite-infected blood
from Aotus trivirgatus monkeys (Schnell et al. 1971). de
Macedo et al. (2002) demonstrated that P. falciparum
has an active isoprenoid pathway for the biosynthesis
of the isoprenic chain of coenzyme Q. Additionally, P.
falciparum is able to synthesise different homologues
of this molecule depending on the given intermediate.
When labelling was performed with [*H]FPP, coenzyme
Q with an isoprenic chain of 40 carbons (Q,) was detect-
ed, whereas labelling with [’H]GGPP resulted in Q, (45
carbons) moieties. These authors also demonstrated that
nerolidol treatment of P. falciparum parasites results in
areduced ability to synthesise CoQ and inhibits P. falci-
parum growth in vitro. Rodrigues Goulart et al. (2004)
demonstrated that terpenes (farnesol, nerolidol and li-
nalool) exert an inhibitory effect on the biosynthesis
of the isoprenic side chain of the benzoquinone ring of
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ubiquinones in the schizont stages. Also, these authors
showed that all of these terpenes inhibited dolichol bio-
synthesis in trophozoite and schizont stages when [*H]
FPP was used as a precursor (Figure).

Octaprenyl pyrophosphate synthase (OPPs) belongs
to a prenyl transferase family, which catalyses the con-
densation reactions of FPP with five molecules of IPP to
produce C40 OPP (Guo et al. 2004). OPP enzymes are
responsible for the biosynthesis of side chains attached
to ubiquinones in E. coli (Okada et al. 1996). Signifi-
cant differences occur in the length of the isoprenic side
chains of ubiquinones from different organisms, sug-
gesting that specific prenyltransferases are involved in
the synthesis of these side chains. For example, the sizes
of the ubiquinone side chain are C30 in Saccharomyces
cerevisiae, C45 in rats and C50 in humans, and these
are synthesized by hexaprenyl pyrophosphate synthase,
solanesyl pyrophosphate synthase and decaprenyl py-
rophosphate synthase respectively (Ashby & Edwards
1990, Teclebrhan et al. 1993). In P. falciparum, the iso-
prenic side chains of ubiquinone contain eight or nine
isoprenic units, unlike humans, which contain 10 iso-
prenic units. These length differences of the isoprenoid
side-chain compounds encountered in humans and the
malaria parasite P. falciparum could possibly be exploit-
ed as drug targets (de Macedo et al. 2002).

Tonhosolo et al. (2005) demonstrated the existence of
OPPs activity in P. falciparum, and the recombinant pro-
tein showed an OPP activity producing polyisoprenoids
with eight isoprenic units from FPP and IPP as substrate.
The transcription of PfOPPs was found to occur in the
ring and trophozoite stages, while the polypeptide was
mainly found in the schizont stages. These authors also
showed that the recombinant enzyme could be competi-
tively inhibited in the presence of the terpene nerolidol,
which has a chemical structure that resembles the sub-
strate FPP. These data suggest that nerolidol inhibits the
biosynthesis of dolichol, thereby supporting earlier con-
clusions from de Macedo et al. (2002). Considering the
differences in the length of isoprenic side chains in P.
falciparum and humans, nerolidol could be exploited as
a potential drug in malaria (Figure).

Our group has previously demonstrated that intra-
erythrocytic stages of P. falciparum biosynthesise certain
unknown polyisoprenic compounds when [*H]GGPP
was used as a metabolic precursor (Couto et al. 1999).
Taking into account that plant and algae plastids are sites
for polyisoprenoid synthesis including carotenes, we in-
vestigated the possibility that P. falciparum was also
able to produce carotenoids because carotenoids have
GGPP as a precursor in other organisms.

The chemical characteristics and physical properties
of carotenoids are responsible for their abilities to ab-
sorb light, scavenge free radicals and act as antioxidants,
which are essential during photosynthesis. Tonhosolo et
al. (2009) showed for the first time that the biosynthesis of
carotenoids is functionally active in the intraerythrocytic
stages of P. falciparum, representing another “plant-like”
pathway present in these parasites. In this work, we de-
tected that the full-length version of the previously de-
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scribed PfOPPs also exerted phytoene synthase activity.
Accordingly, norflurazon, a well-known bleaching herbi-
cide that inhibits carotenoid biosynthesis in higher plants
and microalgae, inhibited in vitro growth of P. falci-
parum. This inhibition could be partially reversed by the
addition of lycopene, a downstream product in the caro-
tenoid pathway. The function of carotenoid in the malaria
parasite is unknown. However, in 7. gondii, Nagamune
et al. (2008) demonstrated the biosynthesis of phytohor-
mone abscisic acid, a final product of the biosynthesis of
carotenoid, which controls calcium signalling within the
apicomplexan parasite. Because carotenoid biosynthesis
is absent in humans, this pathway might also be exploited
as a new target for antimalarial drugs.

Vitamins are essential components of the human
diet. By contrast, the malaria parasite P. falciparum and
related apicomplexan parasites synthesise certain vita-
mins de novo, either completely or in part, highlighting
the parasite’s distinct requirements for nutrients and
growth factors. Furthermore, the lack of these pathways
in the mammalian host implies that inhibition of the
parasite pathways might be exploitable for the design of
new antimalarials. The MEP and shikimate pathways
supply the precursors for biosynthesis of vitamin K2 or
MQ in bacteria and phylloquinone in plants, algae and
cyanobacteria. In P. falciparum, Tonhosolo et al. (2010)
showed that the intraerythrocytic stages have an active
pathway for the biosynthesis of MQ-4 and demonstrated
that MQ could replace the physiological function of ubi-
quinone under anaerobic conditions. Many respiratory
enzymes from E. coli can use MQ and ubiquinone as
substrates depending on the oxygen supply in the envi-
ronment, whereas mammals have only ubiquinone. P.
falciparum can be regarded as microaerophilic during
its asexual intraerythrocytic life cycle. Tonhosolo et al.
(2010) showed that P. falciparum can change the content
of the quinone pools depending on the aeration condi-
tion. Additionally, they showed that the mycobacterial
inhibitor of MQ synthesis (Ro48-8071) suppressed MQ
biosynthesis and parasite growth (Figure).

Post-translational modification of proteins with iso-
prenoids was first recognised as a general phenomenon
in 1984 (Schmidt et al. 1984). The isoprenyl group is
bound post-translationally to cysteine residues at the C-
terminus of proteins through a thioether bond. Studies
have shown that FPP (15 carbons) and GGPP (20 carbons)
are the most common isoprenoids attached to proteins.
Several of the proteins that undergo these modifications
have been identified and many participate in important
cell regulatory functions, particularly signal transduction
pathways (Zhang & Casey 1996). Protein prenylation is a
general phenomenon in eukaryotic cells and has been de-
scribed for several protozoan parasites (Lujan et al. 1995,
Field et al. 1996, Shen et al. 1996, Ibrahim et al. 2001),
including P. falciparum (Chakrabarti et al. 2002).

Families of Rab G-protein and Ras-related proteins
have been characterised in P. falciparum (de Castro
et al. 1996, Jambou et al. 1996) and Chakrabarti et al.
1998, 2002) reported the identification of protein far-
nesyl transferase (PFT) and protein geranylgeranyl
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transferase-I activities in all stages of intraerythrocytic
P. falciparum. Prenylation might occur in multiple com-
partments, but none of the P. falciparum prenyl trans-
ferases possess apicoplast-targeting signals and prenyl
transferase activity has been detected only in cytosolic
fractions. Additionally, peptidomimetics and prenyl an-
alogues could inhibit PFT purified from parasites and
malaria parasite growth. The presence of isoprenylated
proteins has been demonstrated by metabolic labelling
in T gondii (Ibrahim et al. 2001).

Moura et al. (2001) characterised proteins with iso-
prenic groups by metabolic labelling with [*H]FPP and
[PH]GGPP. In the same work, treatment of parasites with
limonene, an inhibitor of prenyl transferase, inhibited
parasite growth by delaying maturation from ring to tro-
phozoite stages and decreased the incorporation of the
isoprenic group in proteins.

Later, Rodrigues Goulart et al. (2004) demonstrated
that terpenes (farnesol, nerolidol, limonene and lina-
lool) and S-farnesylthiosalicylic acid led to a decrease
in the amount of isoprenylated proteins in P. falciparum
schizontstages. Recently, Jorddoetal. (2011) characterised
the antiplasmodial activity of risedronate in vitro and
in vivo and demonstrated that risedronate inhibits the
transfer of the farnesyl pyrophosphate group to parasite
proteins coinciding with parasite growth inhibition in
vitro. In vivo treatment with risedronate led to an 88.9%
inhibition of the rodent parasite P. berghei in mice on the
seventh day of treatment; however, no general increase
in survival rates was achieved.

Another type of protein modification is the at-
tachment of a dolichyl group to proteins. This type of
modification is characterised by covalently and post-
translationally bound dolichyl groups to the C-terminal
cysteine residues of proteins. The protein dolichylation
was described in tumour cells and dolichylated proteins
are possibly involved in cell cycle control (Hjertman et
al. 1997). In P. falciparum, dolichylated proteins with
11 isoprenic units were found attached to 21 and 28 kDa
sized proteins. The purpose of dolichylation of proteins
in P. falciparum is currently unknown. Because the
dolichylated protein species appear predominantly dur-
ing the replication phase of the parasite (schizogony)
(D’Alexandri et al. 2006), one may speculate that its
involvement in cell cycle control is similar to that in tu-
mour cells (Hjertman et al. 1997).

Final comments - Despite all of the recent progress
in the understanding of the synthesis and the detection
of unexpected metabolic intermediates such as phy-
toene, many questions still remain unanswered. For ex-
ample, what purpose do carotenes have in the life cycle
of Plasmodium? What are proteins modified with iso-
prenic residues and at which point in the metabolism of
Plasmodium do they exert their function? The answers
for these questions may reveal not only novel aspects of
this evolutionarily special parasite group but also novel
points of chemotherapeutic intervention.
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