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Prey Choice by Facultative Predator Larvae of Chrysomya
albiceps (Diptera: Calliphoridae)
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In this study we investigated predation rates on third instar larvaéhofsomya putoriand C.
megacephally third instar larvae ofC. albicepsn a two-choice situation. The highest predation rate
occurred orC. putorialarvae and this result is compared to previous experiments, in vhiotacellaria
larvae were present. Our results suggest that, wbemacellarias absenC. albicepdarvae attack
moreC. putoriathanC. megacephalarvae. Prey choice decisions and its implications for introduced
and native blowflies are discussed.
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Understanding the patterns and ways in whicfore rarely completing more than one generation
animals utilize food resources is fundamental tinside them (Putman 1977, Hanski 1987).
the study of any animal population and commu- The blowfly community is a very complex sys-
nity (Gotelli 1995). Foraging efficiency may dif- tem, including probably many simultaneous pro-
fer considerably between classes of animals withicesses such as intra and interspecific competition,
the population and between individuals within dacultative larval predation and cannibalism
class (Brewer 1994). Class differences may be ré¢Ullyett 1950, Gagné 1981, Erzinglioglu &
lated to size or age (Marchetti & Price 1989Whitcombe 1983, Wells & Greenberg 1992a,b,c).
Hirvonen & Ranta 1996), but even among indiAll these interactions have a strong impact on the
viduals within a class there may be significant difdiptera community, mainly when severe competi-
ferences in rates of energy intake (Ranta &on takes place (Ullyett 1950, Hanski 1977,
Nuutinen 1985, Ehlinger 1989). This might be du&oodbrood & Goff 1990, Wells & Greenberg
to individual abilities in utilizing available prey, 1992a,c).
but also because individuals utilize different prey Interspecific interactions in blowfly system
species or sizes of those available (Holbrook &ave been investigated in experiments in which
Schmitt 1992). population dynamics and competitive ability of the
The most important period of life for some in-invading specie€. rufiffaciesandC. albicepsand
sects, such as blowflies, is the larval stage becauskthe native specieS. macellariawere analyzed
in this phase they acquire food and minimunfWells & Greenberg 1992a,b,c, 1994, Wells &
weight necessary to become pupae and subd€drahashi 1997, Faria et al. 1999, Reis et al. 1999,
guently adults (Levot et al. 1979). Blowflies feedvon Zuben et al. 2000). These investigations were
usually on carcasses and the amount of food avadttempts to gain a deeper understanding of recent
able may influence the population dynamics oblowfly biological invasion in Americas and its
many species (Godoy et d1993). Carcasses areimplications on population dynamics.
ephemeral substracts in which many individuals There is some evidence in the Americas that
and species are generally present, consuming #ike native specigS. macellarishas been displaced
food resources in a short period of time and therdy Chrysomyaspecies (Guimarédes et al. 1978,
1979, Prado & Guimardes 1982). A gradual de-
cline of C. macellariahas been observed probably
as a consequence of the introductio@bfysomya
species in the New World (Guimaraes et al. 1978,
1979, Prado & Guimardes 1982, Baumgartner &
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In this sense, it would be interesting to investifor 2 h and instances of predation ©n putoria
gate if there are other blowfly species titat andC. megacephalavere recorded every 15 min.
albicepscan attack whei€. macellariais not Predatory behavior was considered successful
present. The existence and abundance of alterna@henC. albicepssurrounded and mortally pierced
tive prey can be important factors @ albiceps its prey with the pierced larvae struggling violently
population dynamics, mainly in situations wheren response.
the natural food source is scarce (Ullyett 1950, Polis The number of killed and surviving larvae of
1981, Farizet al. 1999). In this study we extendedeach species was statistically analyzed ugtnigst
choice experiments from Faria et al. (1999) to infor homogeneity of rates. Then, the rates of preda-
vestigate ifC. albicepsattacksC. putoriaandC. tion on each species were analyzed further by con-
megacephalat the same rate whéh macellaria sidering only the predation cases. In all compari-
is not present. sons the Yates correction for continuity of thé

MATERIALS AND METHODS statistics was used (Zar 1996).

Laboratory populations o€. albiceps, C. RESULTS AND DISCUSSION
putoriaandC. megacephalaere taken from speci- The highest predation rate Ky albicepdar-
mens collected from the Campus of thevae (72.5%pccurred orC. putoria compared to
Universidade Estadual Paulista, Botucatu, S&b5% onC. megacephaldTable). There was no
Paulo, Brazil. Adult flies were maintained at 25 #predation in 12.5% of the vials. These three rates
1°C in cages (30 X 30 X 30 cm) covered with nyawere significantly differenty? = 25.36:d. f.= 2;
lon and were fed water and sugadrlibitum Adult P < 0.05). Considering only the predation cases,
females were fed fresh beef liver to permit the con82.9% was orC. gutoria and 17.1% orC.
plete development of the gonotrophic cyclemegacephalaThex“ test indicated that there was
Hatched larvae were reared on an excess of grousi%nificant difference between these predation rates
beef until the third instar in all species studied(x< = 13.83; d. f. =1; P < 0.05).
when they were taken and introduced in empty vials Our results suggest that, wheénmacellariais
(7 cm height x 6 cm diameter) to estimate predabsentC. albicepdarvae attack mor€. putoria
tion rates in different combinations. Larval instathanC. megacephal@arvae. In a recent paper, Faria
was determined by using accepted morphologicat al. (1999) investigated larval predation @y
characters used to separate the various develabicepsonC. macellaria, C. megacephadadC.
ment stages of blowflies (Prins 1982, Greenbergutoria. In choice experiments, where all species
& Szyska 1984, Erzinglioglu 1987, 1990, Tantawiwere confined togetheC. albicepskilled C.

& Greenberg 1993, Queiroz et al. 1997). macellariaat a larger rate tha@. megacephala

Predation rates were evaluated in a two-choicand C. putoria When species were confined in
experiment, confining on€. albicepslarva with  pairs, no choice experimer@, albicepspredated
two larvae, one ofC. putoriaand one ofC. all species practically at the same rate, indicating
megacephala Forty vials were prepared for eachthere is no preference for a specific prey if the
combination, and placed on a lighted laboratorpredator larvae has no choice of species (Faria et
bench at 2%C. The larvae were continually scannedal. 1999).

TABLE
Predation rates bghrysomya albicepsn a two-choice situation wit€. megacephalandC. putoriaas the
choices
Time interval Chrysomya megacephala Chrysomya putoria
(min) Predation Cumulative Predation Cumulative
15 10 10 325 32.5
30 0 10 5 37.5
45 2.5 125 10 47.5
60 2.5 15 175 65
75 0 15 25 67.5
90 0 15 5 72.5
105 0 15 0 72.5
120 0 15 0 72.5

Total 15 15 72.5 72.5
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The flexibility of C. albicepsin relation to somyaspecies an€. macellariaoccurs (Reis et
choice of larvae observed both by Faria et al. (1999). 1999). These results have brought important and
and in this study, suggests that its predatory b@teresting questions and answers, which have
havior can be changed as a function of prey avaitrotivated new studies. Biological invasions like
ability. In natural settings the coexistence of difthis are very complex phenomena and demand
ferent species of blowflies in the same substrate ¢areful examination of all aspects involved. The
not uncommon (Kneidel 1984a,b, Hanski 1987results obtained up to now have helped us to un-
Wells & Greenberg 1994) therefore, larvaeGof derstand part of the mechanism involved in the
albicepsprobably have a choice of prey. invasion and colonization processes, but more stud-

Diet preference has been investigated in Caes focussing larval behavior, interspecific inter-
leoptera from an evolutionary perspective, sincactions, and frequency distribution of species are
coccinellids exhibit considerable diversity in habi-necessary to evaluate in detail the current situation
tat, dietary preference, and specificity (Sloggett &f Brazilian necrophilic fauna structure.
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