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Invasive mosquito species are a serious threat to 
the environment and human health. There are several 
well-known examples of the introduction of non-native 
mosquito species and the risk they represent. The es-
tablishment of Culex quinquefasciatus in Hawaii has 
endangered the bird fauna of the archipelago (Fonseca 
et al. 2000). The invasion of the African malaria vector 
Anopheles gambiae s.l. into Brazil in 1930 was followed 
by severe malaria epidemics during that decade (Soper 
& Wilson 1943).

One of the most invasive mosquito species is Aedes 
aegypti Linnaeus, 1762, which is a major vector of the 
dengue, urban yellow fever and chikungunya viruses. 
Originally from Africa, this mosquito has had a very 

successful expansion history. The early establishment of 
trade routes between Europe, Africa and the Americas 
in the XV century and the expansion of the slave trade 
decisively contributed to the first wave of geographic 
expansion of this species. It is believed to have invaded 
the Americas and Europe during the XV-XVII centuries 
(Tabachnick 1991, Lounibos 2002). Presumably, Ae. ae-
gypti reached the Asian continent only in the late XIX 

century (Smith 1956). The evolution of domestic traits 
in a formerly sylvatic mosquito was critical for its adap-
tation to artificial water containers (Tabachnick 1991). 
Ae. aegypti is now well adapted to the domestic environ-
ment and its close association with humans allows for 
long distance dispersal events due to their desiccation-
resistant eggs and human host availability.

In the XX century, a vast vector control program 
resulted in the elimination of Ae. aegypti from most of 
Central and South America (Gubler 1989). This program 
was interrupted in the early 1970s and the mosquitoes 
then began to reinvade areas from which they had been 
previously eliminated (Gubler 1989). By the 1990s, Ae. 
aegypti had nearly regained the geographic distribution 
that it held before elimination was initiated [see Gubler 
(1998) and references therein]. This recent re-expansion 
of Ae. aegypti, combined with an intensive urban growth 
and an increased global movement of people and mer-
chandise, has triggered a dramatic rise in the incidence 
of dengue over the past 40 years (Gubler 2011).
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The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first au-
tochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation 
based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase 
subunit 4 (ND4)] and knockdown resistance (kdr) mutations exploring the colonisation history and the genetic di-
versity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analy-
sis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic 
variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations 
and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder 
event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide re-
sistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To 
our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given 
the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the 
island, this information is important to plan surveillance and control measures.
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The most recent example of an epidemic driven by 
mosquito invasion is the dengue outbreak on Madeira Is-
land (Portugal) that occurred in October 2012, with 1,891 
cases (966 laboratory-confirmed) detected at the end of 
November 2012 (Sousa et al. 2012). This was the first den-
gue epidemic in Europe since the 1920s and it occurred 
in a territory where Ae. aegypti was introduced less than 
a decade ago (Almeida et al. 2007). The mosquito was 
first identified on Madeira Island in 2005 (Margarita et al. 
2006), with no previous records between 1977-1979 (Cape-
la 1981). From then on, a vector control program was im-
plemented to reduce the mosquito’s breeding sites, educate 
the community and eliminate the pest through the applica-
tion of insecticides. Specifically, between 2005-2008, py-
rethroids (tetramethrin, d-phenothrin, alpha-cypermethrin 
and Pybutrin®33, containing pyrethrins synergised with 
piperonyl butoxide) and organophosphate malathion were 
used against the adult mosquitoes with aerial spraying ap-
plications (M Melim, unpublished observations).

However, Ae. aegypti continued to expand through-
out the island (Gonçalves et al. 2008). Despite prelimi-
nary surveys suggesting a high degree of insecticide 
resistance (Seixas 2012, ECDC 2013), no information 
was yet available on the possible mechanisms underly-
ing the resistance in the local Ae. aegypti population. 
Emergence of insecticide resistance is a major challenge 
to vector control. Knockdown resistance (kdr) results 
from mutations in the voltage-gated sodium channel of 
insects, which is the molecular target of pyrethroids and 
dichloro-diphenyl-trichloroethane (DDT) (Soderlund & 
Knipple 2003). Several kdr mutations, such as I1011V, 
I1011M, V1016G, V1016I and F1534C, have been report-
ed in Ae. aegypti worldwide (Vontas et al. 2012)].

Evolutionary and population genetic studies support 
African Ae. aegypti as the ancestral form of the species 
and populations outside of Africa belong to one of two 
major lineages that are associated with West or East Af-
rica (Brown et al. 2011, Moore et al. 2013). Genetic stud-
ies report varying levels of population differentiation at 
both the local and continental scales, which is a conse-
quence of the major demographic perturbations in Ae. 
aegypti’s recent population history (Urdaneta-Marquez 
& Failloux 2011). These analyses have also been ap-
plied to insular populations of Ae. aegypti. In the South 
West islands of the Indian Ocean, high levels of genetic 
diversity have been reported, mainly due to historical 
multiple origins and founder events (Delatte et al. 2011). 
In the South Pacific archipelagos, the genetic structure 
of the Ae. aegypti populations was dependent on hu-
man population density and recurrent insecticide-based 
control, which induced repeated population bottlenecks 
(Urdaneta-Marquez & Failloux 2011). To date, there is 
no information about the geographic origin of the Ae. 
aegypti population on Madeira Island. Madeira has 
strong social and commercial relations with Brazil and 
Venezuela, mainly due to the presence of large emigrant 
communities of Madeira descendants in these countries. 
The intensive movement of people and goods between 
the island and these dengue-endemic countries makes 
them potential sources for the introduction of both Ae. 
aegypti and dengue virus (DENV) into Madeira.

In this study, we conducted a genetic analysis based 
on the mitochondrial DNA (mtDNA) genes [cytochrome 
oxidase subunit I (COI) and NADH dehydrogenase subu-
nit 4 (ND4)] and kdr mutations to explore the colonisation 
history and current population diversity of the Ae. aegyp-
ti population of Madeira island. We also included sam-
ples from Brazil and Venezuela in the analysis as putative 
geographic sources. The implications of these results for 
the control of this invasive species are discussed.

MATERIALS AND METHODS

Mosquito samples and DNA extraction - Samples of 
Ae. aegypti were collected on Madeira Island and from 
two populations of Brazil and Venezuela (Figure, Table 
I). Larvae and eggs were collected and reared to adults 
in an insectary under standard conditions. Adults were 
kept in dry, individual tubes with silica gel until molecu-
lar analyses.

DNA from the Madeira Island mosquitoes was ex-
tracted using a phenol-chloroform protocol modified 
by Donnelly et al. (1999). DNA of the individuals from 
Brazil and Venezuela was extracted using Chelex, as de-
scribed by Campos et al. (2012).

Kdr genotyping - Kdr mutations were surveyed in 
Ae. aegypti from Madeira Island, Brazil and Venezu-
ela. Allele-specific polymerase chain reaction (PCR) 
was carried out to detect the V1016I mutation in the 
DDT/pyrethroid insecticide target site of the voltage-
gated sodium channel of Ae. aegypti. Primers and PCR 
conditions are described in Saavedra-Rodriguez et al. 
(2007). For the detection of the F1534C mutation, a tetra 
primer assay, as designed by Harris et al. (2010), was 
used. Fragments were visualised in 2% agarose gels 
after electrophoresis. A subset of samples was selected 
for sequencing and genotype confirmation. Concerning 
the F1534C mutation, PCR were carried out using the 
AaEx31P and AaEx31Q primers described in Harris et 
al. (2010), with the same cycling conditions of the tetra 
primer assay. For the V1016I mutation, the kdr20f and 
kdr21r PCR primers were described in Saavedra-Rodri-
guez et al. (2007), with the following cycling conditions: 

Fig. 1: map showing the geographic collection sites.
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initial denaturation step at 95ºC for 5 min, followed by 
33 cycles of 95ºC for 1 min, 56ºC for 1 min, 72ºC for 1 
min and a final extension of 72ºC for 10 min. The PCR 
products were purified with the QIAquick® PCR Purifi-
cation Kit (Qiagen, Hilden, Germany) and subjected to 
direct sequencing at STAB VIDA (Portugal). The ob-
tained sequences were aligned and edited using BioEdit 
v.7.0.9. For each mutation, Hardy-Weinberg equilibrium 
was tested using the exact probability test in the Gene-
Pop v.1.2 software (Raymond & Rousset 1995).

mtDNA analysis - The mitochondrial ND4 gene was 
amplified using the method described by Paduan and Ri-
bolla (2008), with slight modifications, using the primers 
ND4f (5’-TGATTGCCTAAGGCTCATGT-3’) and ND4r 
(5’-TTCGGCTTCCTAGTCGTTCAT-3’). The reaction 
was performed in a 25 µL volume containing 5 µL of 1x 
buffer, 2 mM MgCl2, 0.4 mM deoxynucleotide triphos-
phate (dNTP), 0.2 µM of each primer, 1.5 U of Taq poly-
merase and 1 µL of DNA template. The PCR cycling con-
ditions included an initial denaturation step at 94ºC for 2 
min, followed by 35 cycles of 94ºC for 30 s, 50ºC for 30 s, 
72ºC for 1 min and a final extension of 72ºC for 5 min.

Concerning the COI gene, two different fragments 
were amplified. Initially, a protocol from Paduan and 
Ribolla (2008) was followed with few modifications. 
The Fly5IP (5’-GGATTATTAGGATTTATTGT-3’) and 
Fly10IP (5’-GCCAAATAATGAAATTGTTCT-3’) prim-
ers were used. PCR was performed in a 25 µL volume 
containing 5 µL of 1x buffer, 2 mM MgCl2, 0.4 mM 
dNTP, 1 µM of each primer, 1.5 U of Taq polymerase and 
1 µL of DNA template diluted 1:10. As the COI fragment 
that was produced was too small to make good genetic 
comparisons with the GenBank sequences, we used an-
other COI gene amplification protocol to obtain a larger 
fragment. Thus, we followed the protocol of Paupy et al. 
(2012), with some modifications. The COI-FOR (5’-TG-
TAATTGTAACAGCTCATGCA-3’) and COI-REV (5’-
AATGATCATAGAAGGGCTGGAC-3’) primers were 
used. PCR was performed in a 50 µL reaction volume 
containing 10 µL of 1x buffer, 1.5 mM MgCl2, 0.2 mM 
dNTP, 0.3 µM of each primer, 1 U of Taq polymerase 
and 2 µL of DNA template. The PCR cycling conditions 
included an initial denaturation step at 94ºC for 2 min, 
followed by 35 cycles of 94ºC for 30 sec, 54ºC for 30 sec, 
72ºC for 1 min and a final extension of 72ºC for 5 min. 
The PCR products were purified using the QIAquick® 

PCR Purification Kit (Qiagen, Hilden, Germany) and 
used for direct sequencing at STAB VIDA (Portugal). 
The obtained sequences were aligned and edited using 
the BioEdit v.7.0.9 software. These sequences were com-
pared with the reference Ae. aegypti gene sequences de-
posited in the GenBank.

RESULTS

Kdr genotyping - Genotyping and sequencing of 
the voltage-gated sodium channel revealed the pres-
ence of two kdr mutations. One mutation was located 
at position 1016 (GTA to ATA) and resulted in the 
replacement of a valine with an isoleucine (V1016I); 
this mutation occurred at a low to moderate allelic fre-
quency in the populations studied, ranging from 8% in 
Madeira to 23% in Venezuela (Table II). The second 
mutation was located at position 1534 (TTC to TGC) 
and resulted in the replacement of a phenylalanine with 
a cysteine (F1534C); this mutation occurred at high al-
lelic frequencies in the Madeira (98%) and Venezuela 
(100%) populations and at a moderate frequency in the 
Brazil population (23%) (Table III). All of the popula-
tions were in Hardy-Weinberg equilibrium (exact test, 
p > 0.05) for the two kdr mutations.

TABLE I
Collection data of the sampled Aedes aegypti populations

Localities, country Locality Coordinates Year of collection
Mosquitoes analysed

(n)

Madeira Island, 
Portugal

Funchal 32º40’N
16º55’W

2009 69

São Paulo, 
Brazil

Botucatu 22º53’S
48º27’W

2010 32

Caracas, 
Venezuela

Caracas 10º29’N
66º54’W

2013 30

TABLE II
Frequency of the V1016I knockdown 

resistance mutation in the populations of Madeira, 
Brazil and Venezuela analysed in this study

Population

Mosquitoes 
analysed

(n)
V/Va

(n)
V/Ib

(n)
I/Ic

(n)
Id

(%)

Madeira 69 59 9 1 0.08
Brazil 32 27 4 1 0.09
Venezuela 30 16 14 0 0.23

a: number of individuals homozygous for the susceptible-
associated allele; b: number of heterozygous individuals; c: 
number of individuals homozygous for the resistant-associat-
ed allele; d: allele frequency for the resistant-associated allele. 
Of the total 131 individuals genotyped, 35 were confirmed by 
sequencing. I: isoleucine; V: valine.
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mtDNA analysis - Sequences of the COI gene were re-
trieved from 15 specimens from Funchal, Madeira Island 
(GenBank accession KF909122). The alignment of 420 bp 
(Paduan & Ribolla 2008) and 764 bp (Paupy et al. 2012) 
in individuals revealed the presence of a single haplotype. 
The COI haplotype found in the population of Ae. aegypti 
from Madeira matched several sequences, as shown in 
Table IV. The polymorphic sites of this haplotype (HCOI-

Mad) are presented in Supplementary data with referenc-
es to the published Ae. aegypti (Red eyes strain) sequence 
of COI (GenBank accession AF390098).

Sequences of the ND4 gene were retrieved from 15 
specimens (GenBank accession KF909123). The align-
ment of 376 bp revealed only one haplotype. The ND4 
haplotype matched several sequences previously re-
ported for samples from the Americas (Table V). The 
polymorphic sites of this haplotype (HND4-Mad) are 
presented in Supplementary data with references to the 
published Ae. aegypti complete sequence of the ND4 
gene (GenBank accession DQ440274).

Several works have reported the presence of NUMTs 
(nuclear mtDNA) in the Ae. aegypti genome (Black IV & 
Bernhardt 2009, Hlaing et al. 2009, Behura et al. 2011). 
In our study, no heterozygous sites were detected in any 
sequences and the observed COI and ND4 haplotypes 
matched sequences that were previously reported world-
wide by several authors and deposited in GenBank (see 
Tables IV, V for references).

DISCUSSION

This is the first study on the genetic variation of Ae. 
aegypti in Madeira and, to our knowledge, the first re-
port of the F1534C kdr mutation in the wild mosquito 
populations of Brazil and Venezuela. Our results showed 
a very low level of mtDNA diversity, with only one hap-
lotype for COI and ND4, as well as the presence of two 

TABLE III
Frequency of the F1534C knockdown  

resistance mutation in the populations of  
Madeira, Brazil and Venezuela analysed in this study

Population

Mosquitoes
analysed

(n)
F/Fa

(n)
F/Cb

(n)
C/Cc

(n)
Cd

(%)

Madeira 65 0 2 63 0.98
Brazil 30 17 12 1 0.23
Venezuela 30 0 0 30 1

a: number of homozygous susceptible individuals; b: number 
of heterozygous individuals; c: number of homozygous resis-
tant individuals; d: resistance allele frequency in the popula-
tion. Of the total 125 individuals genotyped, four were con-
firmed by sequencing. C: cysteine; F: phenylalanine.

TABLE IV
Geographical distribution of the cytochrome oxidase subunit I (COI) haplotype of Aedes aegypti found in Madeira Island

Haplotype Continent Countries (localities) References
Base 
pairsa

GenBank
accessionsb

COI-HMad as in
Paduan and Ribolla (2008)

Europe Portugal (Madeira Island) Present paper 420 -
America Brazil (Porto Velho) Paduan and Ribolla (2008) 420 AY851650

Puerto Rico Cook et al. (2006) 420 DQ181441
Africa West Africa Cook et al. (2005) 420 AY645261

West Africa Cook et al. (2005) 420 AY645262
Asia Indonesia, West Timor Sota and Mogi (2006) 420 DQ397892

COI-HMad as in
Paupy et al. (2012)

Europe Portugal (Madeira Island) Present paper 763 -
America Venezuela, Maracay Paupy et al. (2012) 763 JQ926701

USA, Florida Paupy et al. (2012) 763 JQ926684
Brazil, Foz do Iguaçu Mousson et al. (2005) 511 AJ970965

Brazil, Rio Branco Mousson et al. (2005) 491 AJ970975
Asia Vietnam, Hai Phong Paupy et al. (2012) 763 JQ926685

Thailand, Chiang Mai Paupy et al. (2012) 763 JQ926691
Cambodia Fort et al. (2012) 763 HQ688294

Vietnam, Ho Chi Minh City Mousson et al. (2005) 534 AJ970968
Vietnam, Hanoi Mousson et al. (2005) 504 AJ970967

Oceania French Polynesia, Paea Mousson et al. (2005) 534 AJ970972
Africa Madagascar, Toliary Delatte et al. (2011) 416 HQ693081

a: number of base pairs matching the COI sequence of Madeira Island; b: list of GenBank accessions, the corresponding refer-
ences and places of origin for COI sequences matching the haplotypes of Ae. aegypti found in Madeira island.
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important kdr mutations and the quasi-fixation of the 
F1534C mutation.

Origin of Ae. aegypti from Madeira - The COI haplo-
type found in the Madeira population was also detected 
in America, Africa and Asia, while the ND4 haplotype 
from Madeira was only reported with high frequencies 
in the American continent (Tables IV, V). Overall, these 
mtDNA haplotypes belong to the West African lineage 
of Ae. aegypti, as described by Bracco et al. (2007) and 
Moore et al. (2013). There are few studies using mtDNA 
in Ae. aegypti from islands (Beebe et al. 2005, Delatte 
et al. 2011). In spite of a general high level of COI di-
versity in the southwest islands of the Indian Ocean that 
is associated with old and repeated introductions of Ae. 
aegypti, a unique haplotype was reported in Reunion Is-
land. The Ae. aegypti population was suggested to be 
declining on this island due to competition with the re-
cent invader Aedes albopictus (Delatte et al. 2011). Ad-
ditionally, in mainland Australia, only two COI haplo-
types have been identified in a bottlenecked mosquito 
population restricted to the northern territories, where 
several dengue outbreaks have occurred since the 1980s 
(Beebe et al. 2005). The same study analysed a sample 
from Thursday Island, which is located ca. 39 km off 
mainland Australia; a distinct COI haplotype was found 
in this Ae. aegypti population, which exhibited an en-
hanced vector competence compared with the mainland 
populations (Beebe et al. 2005). This study provided 
evidence supporting the hypothesis that island popula-
tions may develop unique traits, even with low genetic 
diversity. The geographic origins of Ae. aegypti popula-
tions have epidemiological importance, as several stud-
ies have related the origin with traits including vector 
competence and insecticide resistance (Failloux et al. 
2002, Lourenço-de-Oliveira et al. 2004).

Regarding the kdr mutations associated with insecti-
cide resistance, we observed a very low frequency of the 
V1016I mutation in Madeira. In samples from Botucatu 
(Brazil) and Caracas (Venezuela), the frequency of this 
mutation was low (9%) and moderate (23%), respective-
ly. In Brazil, this mutation has been reported throughout 
the country, with varying frequencies ranging from 5% 
in the state of Roraima in the north to 73% in the state of 
Paraná in the south and this mutation is mainly associ-
ated with intensive vector control (Martins et al. 2009). 
Specifically in the state of São Paulo, Batista (2012) de-
scribed a significant rise in the frequency of the V1016I 
mutation from 2001-2011, resulting in a heterogeneous 
distribution within the state. In the coastal city of Santos, 
she reported a frequency of 83% for the V1016I muta-
tion, while in the inland city of Bauru, the frequency was 
limited to 47%. In Venezuela, the frequency of V1016I 
ranged from 0-14% (Saavedra-Rodriguez et al. 2007). 
This mutation has also been reported in Cuba, Costa 
Rica, Panama, Nicaragua (Saavedra-Rodriguez et al. 
2007), Mexico (Saavedra-Rodriguez et al. 2007, García 
et al. 2009), La Martinique (Marcombe et al. 2012) and 
the Cayman Islands (Harris et al. 2010), with equal or 
higher V1016I frequencies than in Madeira.

On the island, a different scenario was observed for 
the F1534C kdr mutation, with almost complete fixation 
of the mutant allele. The same result was observed in the 
sample from Venezuela, with 100% of the mosquitoes ho-
mozygous for this mutation. In contrast, the sample from 
Brazil showed a moderate frequency (23%) of this muta-
tion. To date, there have been a few studies of F1534C in 
Ae. aegypti populations and these studies have reported 
moderate to high frequencies of this mutation: 21% in 
Vietnam, 77% in Thailand and 68% in Cayman Islands 
(Kawada et al. 2009, Harris et al. 2010, Yanola et al. 2011). 

TABLE V
Geographical distribution of the NADH dehydrogenase subunit 4 (ND4) haplotype of Aedes aegypti found in Madeira island

Haplotype Continent Countries (localities) References Base pairsa
GenBank

accessionsb

HND4-Mad Europe Portugal (Madeira island) Present paper 376 -
America Perú (Lima) da Costa-da-Silva et al. (2005) 360 DQ177153

Brazil (Belém, Santos, São Sebastião) Bracco et al. (2007) 335 DQ176842
Brazil (Compensa) Lima and Scarpassa (2009) 376 EU650409

Brazil (Porto Velho) Paduan and Ribolla (2008) 376 AY906851
Brazil, Represa do Cigano Paupy et al. (2012) 334 JQ926726

Venezuela (Maracay) Bracco et al. (2007) 335 DQ176842
Venezuela Urdaneta-Marquez et al. (2008)c 376 Not available

Guatemala (Guatemala City) Bracco et al. (2007) 335 DQ176842
Mexico Gorrochotegui-Escalante et al. (2002) 376 AF334843

USA (Fort Lauderdale) Bracco et al. (2007) 335 DQ176842
USA, Florida Paupy et al. (2012) 334 JQ926725

a: number of base pairs matching the ND4 sequence of Madeira Island; b: list of GenBank accessions, the corresponding refer-
ences and places of origin for ND4 sequences matching the haplotypes of Ae. aegypti found in Madeira island; c: sequences 
supplied by W Black IV.
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Moreover, the same mutation was recently described in 
another invasive mosquito vector, Ae. albopictus, which 
also demonstrated a high frequency (73%) (Kasai et al. 
2011). Thus, more studies are needed to assess the global 
distribution of the F1534C kdr mutation.

Considering the worldwide distribution of the mtD-
NA Madeira haplotypes and the frequencies of the kdr 
mutations recorded on the island, the countries that si-
multaneously exhibited the same mtDNA haplotypes 
and comparable frequencies for the two kdr mutations 
are Brazil and Venezuela. Presently, there are frequent 
connections between Madeira, Venezuela and Brazil, 
mainly due to the human migrant population. Approxi-
mately 2,800 Brazilians were estimated to live on the is-
land in 2010 (Chaves-Scarelli 2010). Additionally, more 
than 200,000 people from Madeira live in Venezuela. 
This is particularly relevant considering that the island 
population does not exceed 250,000 inhabitants (OEV 
2012). Moreover, the DENV serotype 1, which was iden-
tified in the recent dengue outbreak on Madeira Island, 
was associated with viruses circulating in Colombia, 
Venezuela and northern Brazil (Alves et al. 2013). Based 
on our genetic data and the present human migrant flows 
to and from Madeira, the most likely source populations 
of the Ae. aegypti mosquitoes in Madeira were located 
in South America, particularly in Brazil and Venezuela. 
These countries are the most endemic countries for den-
gue in South America (WHO 2012).

The presence of a single haplotype for both of the 
sequenced mtDNA loci (COI and ND4) provided strong 
evidence for a unique recent founder event during the 
colonisation of Madeira Island by Ae. aegypti mosqui-
toes harbouring both kdr mutations. Although we cannot 
fully rule out the possibility of two independent intro-
ductions, each harbouring a different kdr mutation, this 
hypothesis is unlikely given the mtDNA monomorphic 
haplotype composition. Furthermore, the two kdr muta-
tions may also be present in a single VGSC haplotype. 
Additional genetic analysis involving more polymorphic 
markers is required to further refine the geographic ori-
gin, colonisation patterns and local genetic structure of 
this expanding island population.

Implications for vector control - The current study 
revealed the presence of two kdr mutations in the dengue 
vector Ae. aegypti from Madeira Island and these muta-
tions were likely previously present in the invading mos-
quitoes. These mutations may have affected the vector 
control programs initiated in 2005 and the application 
of insecticides has been shown to be ineffective (Seixas 
2012, ECDC 2013), leading to the continuous expansion 
of the mosquito population throughout the southern part 
of the island and the recent dengue outbreak in 2012. 
In Brazil, where pyrethroids were introduced for den-
gue control in 2001 (Braga & Valle 2007), pyrethroid 
resistance was soon detected (da-Cunha et al. 2005), fol-
lowed by the subsequent spread of the V1016I kdr mu-
tation throughout most of the country in less than five 
years (Martins et al. 2009, Belinato et al. 2012). None-
theless, the use of insecticides remains the main method 
for controlling and reducing mosquito populations in 

emergencies, such as outbreaks. In Madeira, although 
insecticidal application for vector control was suspend-
ed between 2008 and the recent dengue outbreak, the 
selective pressure for insecticide resistance has been 
maintained through the use of household insecticides 
(IASAÚDE 2012). Therefore, the spread of the recently 
introduced insecticide-resistant Ae. aegypti population 
is very likely, which could compromise future vector 
control measures. We recommend the continuous moni-
toring of Madeira’s Ae. aegypti population, as well as 
further studies involving samples from future years, 
to assess the local evolution of the kdr mutations and 
eventual introduction of the mosquitoes from other geo-
graphic regions to the island.
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Mitochondrial DNA [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] haplotypes recorded in Aedes aegypti 

population from Madeira Island 

 

ND4a 6 6 6 6 6 6 7 7 7 8 8 8 8 8 9 9 9 

1 1 1 3 4 9 5 6 7 1 3 5 8 9 3 7 8 

3 5 8 6 2 3 3 2 1 0 7 5 8 1 3 6 4 

Reference sequence C A A C C C T C G C G C G A T A A 

HND4-Mad T G T T T T C T A T A T A T C C C 

COIa 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

2 2 2 2 4 5 5 5 6 6 6 6 7 1 1 2 2 

0 7 7 8 9 0 1 4 1 6 7 9 8 1 3 7 9 

7 3 6 5 8 7 9 0 8 9 5 9 0 0 1 5 0 

Reference sequence G T C G G G G C A G C T C C C T G 

COI as Paupy et al. (2012) A C T A A A A T G A T C T - - - - 

COI as Paduan and Ribolla (2008) - - - - - - - - - - - - - T T C A 

a: only polymorphic positions are shown and these are numbered with reference to the published Ae. aegypti (red eyes strain) sequence of COI, 

GenBank accession AF390098 and Ae. aegypti complete sequence of the ND4, GenBank accession DQ440274. 
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