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Dynamics of Experimental Populations of Native and
Introduced Blowflies (Diptera: Calliphoridae): Mathematical
Modelling and the Transition from Asymptotic Equilibrium
to Bounded Oscillations
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The equilibrium dynamics of native and introduced blowfliesis modelled using a density-dependent
model of population growth that takesinto account important features of the life-history in theseflies. A
theoretical analysis indicates that the product of maximum fecundity and survival is the primary de-
terminant of the dynamics. Cochliomyiamacellaria, a blowfly native to the Americas and theintroduced
Chrysomya megacephalaand Chrysomya putoria, differ in their dynamicsin that the first species shows
a damping oscillatory behavior leading to a one-point equilibrium, whereas in the last two species
population numbers show a two-point limit cycle. Smulations showed that variation in fecundity has a
mar ked effect on the dynamics and indicatesthe possibility of transitions from one-point equilibriumto
bounded oscillations and aperiodic behavior. Variation in survival has much less influence on the dy-
namics.
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Chrysomya megacephala (F.) isablowfly that
originally occursin Australasia, the Oriental and
Paleartic regions, South Africa and Afrotropical
islands (Baumgartner & Greenberg 1984, Smith
1986), whereas C. putoria (Wied.) rangesin dis-
tribution from Tanzaniato Congo in Africa(Zumpt
1965, Smith 1986). These flieswere first detected
in South America around 1975 (Guimar&es et a.
1978), and have since then become established in
the Americas (Guimaraeset a. 1979, Baumgartner
& Greenberg 1984). These blowfieshave dispersed
rapidly throughout the continent and C.
megacephal a already has reached North America
and has been reported in California (Greenberg
1988, Wells 1991). Blowflies of the genus
Chrysomya have considerable medical and veteri-
nary importance because they are known to pro-
duce myiasisin humansand other animals (Zumpt
1965, Baumgartner & Greenberg 1984) and may
serve as mechanical vectors of enteric pathogens
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and parasites (Furlanetto et al. 1984, Wells 1991).
Theseflies are also considered of potential foren-
sicimportance since they can breed in carrion ex-
posed to environmental conditions (Catts & Goff
1992, Von Zuben et al. 1996).

Theinvasion of these economically important
blowflieshas apparently caused the sudden decline
in population numbers of an ecologically similar
species, Cochliomyia macellaria, which is native
to the Americas (Guimarées et al. 1979, Prado &
Guimardes 1982, Greenberg & Szyska1984). This
case of biological invasion, like many others, has
classical features such as the rapid spread of the
invaders which, in turn, can bring about the de-
cline of native species at the local and
macrogeographic scales (Hengeveld 1989, Lodge
1993). Biological invasionsrepresent the outcome
of complex interactions at the ecol ogic and genetic
levels (Pimentel 1993, Brown 1993), and the dy-
namic behavior of populations remains as an im-
portant component in the evaluation of fundamen-
tal aspectsfor the success of invasions, such as sur-
vival and extinction rates in populations
(Hengeveld 1989).

Recently, we initiated a research programme
aimed at understanding the dynamics of equilib-
rium of native and introduced blowflies. Our ap-
proach has used mathematical models based on
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non-linear finite difference equationsthat revealed
that the native and introduced blowflies differ
markedly in their equilibrium dynamics (Godoy et
al. 1993, Von Zuben et al. 1993, Reiset al. 1996).
Application of the mathematical model using pa-
rameters derived from experimental populations
showed that the two introduced species will form
stable oscillations with numbers fluctuating over a
three to four fold range in successive generations
(Godoy et al. 1993, Von Zuben et al. 1993),
whereas in the native species, C. macellaria, the
dynamicsis characterized by damping oscillations
in population size leading to one fixed point equi-
librium (Reis et a. 1996).

Theseresultswere obtained using fixed param-
eter values estimated from statistical analysis of
datafor fecundity and survival from experimental
populations. Nevertheless, it is well known that
changesin parameter val uesthat control the growth
ratein populations can change the dynamicsfrom
one-point equilibria to bounded oscillations and
continuous chaos (May 1976, May & Oster 1976,
Murray 1991). We address ourselves here to the
problem of how changes in parameter values in
the mathematical model affect the equilibrium dy-
namics of introduced and native blowflies. In what
follows we will (1) describe the rationale for the
mathematical approach taken in our modelling ef-
fort, which is based on the life-history of blow-
flies, (2) describe the stability properties of the
mathematical model, (3) describe the equilibrium
dynamicsof native and introduced species, and (4)
evaluate the sensibility of parameters that govern
the stability of the mathematical model and how
this extrapolates into changes in the equilibrium
dynamics of experimental populations of C.
macellaria, C. megacephala and C. putoria.

MATERIALSAND METHODS

Laboratory populations of C. macellaria, C.
megacephala and C. putoria were founded from
specimens collected in the campus of the
Universidade Estadual de Campinas, Campinas,
State of S&o Paulo, Brazil. Adult flieswere main-
tained in laboratory conditionsin cages (30 x 30 x
48 cm) covered with nylon at 25 + 1° C and were
fed water and sugar ad libitum. Adult femaleswere
fed fresh beef liver to permit the complete devel-
opment of the gonotrophic cycle. The experiments
were performed using the generation F,, whichis
progeny of one generation that had its life cycle
completed in the laboratory. Exploitative compe-
tition among larvae, which is known to occur un-
der natural conditions (de Jong 1976, Lomnicki
1988), was established in the laboratory by setting
up 10 larval densities ranging from 200 to 2,000
larvae per vial at intervals of 200 for each species.
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For densities 200-1,200 two replicates were used,
whereas for densities 1,400-2,000 only one repli-
cate was used. Fecundity was measured counting
the number of eggs per female, expressed as aver-
age daily egg output, based on the length of the
gonotrophic cycleat 25°C (Avancini & Prado 1986,
Linhares 1988). Maximum sample sizefor estima-
tion of fecundity was 30 females per vial. Sample
sizes smaller than 30 in some vials were due to
either low immature survival rates or incomplete
ovarian development. Survival was estimated as
the number of adults emerging from each vial.
Exponential regressionsfor fecundity and survival
as functions of increasing larval density were fit-
ted to the data for the three species using the re-
gression procedure of SAS (SAS Institute 1988).
Details of the mathematical procedures and simu-
lations are given in the appropriate sections below.

RESULTS AND DISCUSSION

Mathematical modelling of blowfly population
dynamics- In natural populations of blowflies, the
adults disperse in the search for substrates to feed
and lay eggs (Hanski 1987). The substrates are dis-
crete and ephemeral and the devel oping immatures
experience high levels of competition for limited
resources (Atkinson & Shorrocks 1981, Godoy et
a. 1996). The amount of food consumed by lar-
vae will determine the size of adultswhich is cor-
related with female fecundity, that is, larger blow-
fly femaleslay more eggsthan smaller ones (Kamal
1958, Goodbrod & Goff 1990). The life-history of
blowfliesisthus characterized by generations that
occupy patchy and discrete resources, and fecun-
dity and survival of adults are modulated by den-
sity conditions that affect the larval stage. There-
fore, the modelling of the popul ation dynamicshas
to consider discrete generations and density depen-
dence at the immature stage with a delayed effect
on the survival and fecundity of adults. Prout and
McChesney (1985) have developed a model that
takesinto account all these features. Thismodel is
based on a finite-difference equation that models
the density-dependent dynamics of immatures,
€ggs or larvae, in succeeding generations, n, , 4
and n,, as afunction of the decrease in fecundity
(F) and survival (S) with increasing immature (n)
density. The discrete-time population dynamicsis
then written as

N, 1= Y2F(n) Sn) n,
D

where fecundity and survival are decreasing func-
tions of the number of immatures. The factor %2
indicatesthat only half of the population are adult
females that contribute eggs to the next genera-
tion. The non-linearity of (1) is given by the prod-
uct F(n) Sn,). Using exponential functions, the



recursion equation describing changes in popula-
tions numbersreads
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|1- Ina] <1 (Murray 1991), leading to
1< a< €.
(10)

N, = %F SeIn n,

) 2
where F* and S” are regression intercepts describ-
ing theoretical values of maximum fecundity and
survival, respectively, and f and s are regression
coefficients which estimate the dependence of fe-
cundity and survival onincreasing levelsof larval
density. Therationalefor using exponential func-
tionsin (2) is explained below.

Theequilibrium dynamics of popul ations obey-
ing equation (2) can be assessed by the eigenvalue
| calculated at k, which isthe number of immatures
at equilibrium, that is, n,, ; = n, = k. For exponen-
tial functions these two quantities are written, re-
spectively, as
| =1- v kF*f ek gKk)- 1. kS s F(K)

\ ©)

and

(f+s) 4

Sability properties of the mathematical model

- In this section we show that the stability proper-

ties of the Prout and McChesney's model hinges

solely on the product of maximum fecundity and

survival. Only the main resultsare given here, and

thetechnical details of the stability analysiscan be

found elsewhere (Teixeira et al. 1996). Equation
(2) can be written for notational convenience as

N.=aetn,,

©)
wherea =% F*S* and b = f + s. A steady-state
solution n'(equilibrium point) associated with equa-
tion (5) is defined to be the value that satisfiesthe
relation

N = M= 10,

(6)
so that no change occursin subsegquent generations
(Murray 1991). Equation (5) hasequilibrium points
given by

n=aebn,

()

which impliesthat
m=0or m=1nalb.

8
The derivative of equation (5) with respect to n,,
evaluated at the non-zero equilibrium point n =
lna'®  yields

dn,,,

dn,

=1-1na.

)
This equation indicates that the parameter
a = Y% F*S* isthe primary determinant of the dy-
namics. Thus, the stability of the equilibrium point
n = 1na't depends only on a, which must satisfy

Theevolution of stable equilibrium pointsin equa-
tion (5) asafunction of a isshowninFig. 1. Inthe
interval 1< a < e?thereisone fixed point. Con-
tinually increasing a beyond a = €2 givesriseto a
hierarchy of bifurcating stable equilibrium points
that evolveto the chaotic regime. The dynamics of
equation (5) issimilar to that given by the logistic
and Ricker maps used to model density-dependent
population dynamics (May 1976, May & Oster
1976), and a so displays the universal behavior of
period-doubling route to chaos (Fig. 1), first dis-
covered by Feigenbaum (1983).
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Fig. 1: bifurcation diagram of stable equilibrium points (n) of
equation (5) as afunction of a for thecaseof b=1. a= F*$*
and b =f +s.

Equilibrium dynamics of native and introduced
blowflies - The equilibrium dynamics of experi-
mental populations of C. macellaria, C.
megacephala and C. putoria may be inferred us-
ing equation (2) employing regression estimates
of dependence of fecundity and survival onthein-
creasing number of immatures. Parameter estimates
using exponential regressions are given in the
Table. Exponential regressions were chosen be-
cause they provide a better fit than linear and hy-
perbolic regressions under similar experimental
conditions (Godoy et a. 1993, Von Zuben et al.
1993, Reis et a. 1996). The use of exponential
functions is also supported by the findings of
Rodriguez (1989), which indicate that the decrease
in fecundity asafunction of density of immatures
can be viewed biologically as a Poisson process,
which is described by an exponential function.

Using estimatesfor F*, S, f, and sinthe Table
with equation (2) we can construct the recurrence
relations for C. macellaria, C. megacephala and
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TABLE

Parameters of regression anaysis of fecundity and survival on larval density in Cochliomyia macellaria,
Chrysomya megacephala and C. putoria

C. macellaria C. megacephala C. putoria
Fecundity
Maximum fecundity (F*) 18.33 23.49 19.32
+3.67x101 +7.05x10°1 +4.59x101
Regression coefficient (f) 4.77x104 6.24x104 5.69x104
+1.90x10°5 +2.88x10 +2.15x10°
t value 25.05" 21.64" 26.44"
r2 0.60 0.58 0.60
ANOVA 628" 468" 699°
Surviva
Maximum survival (S") 0.788 0.916 0.970
+9.36x102 +2.47x101 +1.88x10°1
Regression coefficient () 9.85x104 1.48x10°3 1.35x10°3
+1.03x104 +2.19x104 +1.63x104
t value 9.57" 6.78" 8.30"
r2 0.87 0.77 0.83
ANOVA 92" 46 69"
a 7.22 10.76 9.37
b 0.0015 0.0021 0.0019

* P < 0.001; error estimates for F*, f, S, and s are standard deviations

C. putoria, respectively, asfollows:

Nyq= Y[(18.33 0.000477n; ) (0,788 €0.000985n)] N,
Nyqp= Y5[(23.49 g0.0006241) (0,916 €0.000148n,)] N,
Nyqp= Y5[(19.32 0.000569n:) (0,970 0.000135n,)] n,.

(11
The qualitative dynamic behavior of experimental
populationsin the three species can be appreciated
interating the set of equations (11) through time,
which shows that the qualitative dynamics differs
noticeably between the native and the invading
blowflies (Fig. 2). Cochliomyia macellaria shows
damping oscillatory behavior leading to aone-point
equilibrium, whereas in the invading species, C.
megacephala and C. putoria, population numbers
show bounded oscillations characterizing a two-
point limit cycle. Thisdistinct qualitative behavior
can aso be inferred from the eigenvalues (1 ). Us-
ing equations (3) and (4) and the parameters esti-
mated from the data (Table) one obtainsvaluesof |
as -0.9776,-1.3761, and -1.2399 for C. macellaria,
C. megacephala, and C. putoria, respectively. Eigen-
values less than 1 in module indicate a one-point
equilibrium, whereas values larger than 1 indicate
higher order cycles (Murray 1991).

Transition fromasymptotic stable equilibrium
to bounded oscillations and aperiodic behavior -
The dynamic behaviors observed for the native and
invading blowflieswere derived from the applica-
tion of fixed parameter values to the non-linear
difference equation (2). The effect of parameter

variation on the population dynamics of C.
macellaria, C. megacephala and C. putoria was
investigated running simulations varying maxi-
mum fecundity and survival, F* and S*, respec-
tively. All smulationswere carried out with Matlab
(Moler et al. 1987). In the simulations reported
here, fecundity was arbitrarily allowed to vary up
to amean daily egg output of 40 eggs.

Bifurcation diagrams show that increasing val-
ues for fecundity do produce qualitative changes
in the dynamics of the three species (Fig. 3). Inthe
native blowfly, C. macellaria, the dynamics shifts
from one-point equilibriumto bounded oscillations
in population size, including two- and four-point
limit cycles (Fig. 3). Thetwo invading species, C.
megacephala and C. putoria, whose dynamicswas
already oscillatory show increasing number of
bounded cycleswith increasing fecundity, and, for
values of fecundity larger than 34 eggs, there is
apparently a transition in the dynamics from
bounded oscillationsin population number to are-
gion of aperiodic oscillations (Fig. 3). We point
out that the upper limit of 40 eggsused in our Simu-
| ations does not match exactly the values observed
for these and other calliphorid species, since the
maximum number of eggs can be either smaller or
larger depending upon the species and the level of
competition experienced by the larvae
(Wijesundara 1957, Ribeiro 1992, Godoy et al.
1993, Von Zuben et al. 1993, Reis et a. 1994).

In the smulations involving bifurcations as a
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Fig. 2: evolution of population size n, across generations ob-
tained from equation (5) with initial value ny = 100. For
Cochliomyia macellaria a = 7.22 and b = 0.0015, Chrysomya
megacephala a = 10.76 and b = 0.0021, and C. putoria
a =9.37 and b = 0.0019.

function of the variation of survival, S, the upper
limit considered was 1.0, which represents the
maximum viability of 100%. The effect of survival
on the dynamics of blowflies is much less notice-
ablethan that of fecundity, since no morethan one
bifurcationisrealized inthe three species (Fig. 4).
Increasing values of survival do not change the
qualitative dynamics of C. megacephala or C.
putoria. Onthe other hand, valuesof survival larger
than 0.8 placethe native species, C. macellaria, in
the two-point limit cycle zone.

Our analytical resultsindicated that the prod-
uct of maximum fecundity and survival, F* S, is
the primary determinant of the dynamics of popu-
lations obeying equation (2). Of these two param-
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Fig. 3: bifurcation diagrams for stable population sizes as a
function of the variation in fecundity for Cochliomyia
macellaria, Chrysomya megacephala and C. putoria.

eters, fecundity was shown in the simulations to
be the most important demographic parameter to
bring about shifts in the dynamic behavior of ex-
perimental populations of native and introduced
blowflies. Increasing valuesfor fecundity placethe
native species, C. macellaria, in the region of
bounded oscillationsin population size. Higher or-
der cyclesand even aperiodic oscillations may arise
in the introduced blowflies, C. megacephala and
C. putoria, with increasing fecundity. The results
we obtained with native and introduced blowflies
are not unexpected since it is well known that
changesin the parameters that govern population
growth will lead to transitions from oscillatory
stable states to chaotic behavior (May & Oster



definitely establish the importance of variation in
demographic parameters and shiftsin population
dynamic behavior, and these shifts also may have
important implications for the rates of species ex-
tinction (Allen et al. 1993). Allen et a. (1993) re-
cently demonstrated that aperiodic (chaotic) behav-
ior enhances the probability of species survival if
populationsare spatially structured, that is, if popu-
lationswithin aspeciesarelinked by migration and
behave effectively as metapopulations. The con-
nection between shifts in dynamic behavior and
species extinction may provide a paradigm to in-
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Fig. 4: bifurcation diagrams for stable population sizes as a
function of the variation in survival for Cochliomyia
macellaria, Chrysomya megacephala and C. putoria.

1976). These results are even more significant in
the light of recent findings by Cavalieri & Kogak
(1995) who demonstrated the transition from steady
cycles to continuous chaos by adjusting birth and
death rates in populations of the corn borer,
Ostrinia nubalis. Similar results were reported by
Costantino et al. (1995) and Dennis et al. (1995)
for Tribolium.

Thefindings by Costantino et al. (1995), Den-
niset a. (1995), and Cavalieri and Kogak (1995)

vestigate the outcome of biological invasions, such
asthat of blowflies analyzed here. The native spe-
cies, C. macellaria, that has been reported to be
declining in popul ation numbers (Guimaraeset al .
1979, Prado & Guimarées 1982, Greenberg &
Szyska 1984), isapparently unableto enter there-
gion of aperiodic oscillations and might, accord-
ing to Allen et al.’s (1993) theory, have higher
probabilities of extinction. On the other hand, the
two invading species, C. megacephala and C.
putoria, that have increased in population num-
bers do show a potential to enter the region of
aperiod oscillations and might, again, according
toAllenetal.’s(1993) theory, have enhanced rates
of survival. We should point out that the increas-
ing probabilities of survival are associated with
spatially structured populations in the model of
Allenet a. (1993). The strong connection between
shiftsin dynamic equilibrium and rates of extinc-
tionand survival in spatialy structured populations
requires a knowledge of the effects that dispersal
may have on the dynamics and interactions be-
tween native and invading blowflies. We are cur-
rently investigating the spatial dynamics of these
fliesin order to test the hypotheses raised here.
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