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Regulation of stem cell factor expression in inflammation and
asthma
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Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast
cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed
after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1ß, a pro-inflammatory cytokine,
confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early
post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1ß-en-
hanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcrip-
tion rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including
intron1 also confirm this increase and decrease of SCF expression by IL-1ß and glucocorticoids, and the potentia-
tion by glucocorticoids of the IL-1ß-induced SCF expression. Deletion of the GRE or κB sites abolishes this poten-
tiation, and the effect of IL-1ß or glucocorticoids alone. DNA binding of GR and NF-κB are also demonstrated for
these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation
that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.

Key words: stem cell factor - inflammation - asthma

The stem cell factor (SCF), also called Kit ligand, steel
factor or mast cell growth factor (Huang et al. 1990, Mar-
tin et al. 1990, Zsebo et al. 1990), is the ligand of the prod-
uct encoded by the proto-oncogene c-kit. SCF is ex-
pressed in two forms, soluble (sSCF) and membrane-
bound (mSCF) after alternative splicing of the sixth exon,
which encodes a proteolytic cleavage site (Anderson et
al. 1991, Flanagan et al. 1991). SCF is involved in the early
phases of hematopoiesis (de Vries et al. 1991, Brandt et al.
1992) (for review, see Galli et al. 1994, Broudy 1997). In
particular, this growth factor also acts as an important
growth factor for human and murine mast cells (Galli et al.
1994, 1995, Broudy 1997), including in vitro proliferation
and differentiation of immature CD34+ progenitors into
mast cells in the bone marrow (Kirshenbaum et al. 1992),
and in peripheral blood (Rottem et al. 1994, Welker et al.
2000).

SCF improves survival of mast cells by inhibiting their
apoptosis (Mekori et al. 1993, Iemura et al. 1994). It in-
duces their chemotaxis (Meininger et al. 1992, Nilsson et
al. 1994), and plays a role in their adhesion to the extracel-
lular matrix (Dastych & Metcalfe 1994, Kinashi & Springer
1994). In its membrane form, SCF acts as an adhesion
molecule for them (Adachi et al. 1992, 1995, Kinashi &
Springer 1994). SCF induces mast cell hyperplasia in vivo
after subcutaneous injection in humans (Costa et al. 1996,
Dvorak et al. 1998). In vitro it increases the antigen-in-
duced degranulation of human pulmonary mast cells
(Bischoff & Dahinden 1992, Okayama et al. 1994) and it-
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self induces mast cell degranulation both in vitro (Columbo
et al. 1992, Takaishi et al. 1994, Taylor et al. 1996a) and in
vivo (Wershil et al. 1992, Costa et al. 1996). Mast cell num-
ber and activation are locally increased in chronic inflam-
matory diseases such as asthma (Lozewicz et al. 1988,
Beasley et al. 1989, Djukanovic et al. 1990, Bradley et al.
1991, Ollerenshaw & Woolcock 1992, Saetta et al. 1992,
Pesci et al. 1993, Laitinen et al. 1993, Bradding et al. 1994,
Koshino et al. 1996). Since SCF is the principal growth
factor for mast cells, it might be expressed in human bron-
chi and regulated in airway structural cells in pro- and
anti-inflammatory conditions. That is, increased SCF ex-
pression in the bronchi of a patient with asthma would be
associated with  increased number and activation of mast
cells. On the other hand, glucocorticoid anti-inflamma-
tory treatment of asthma may diminish SCF expression
and thereby reduce the number of mast cells. The present
review relates studies of the expression and regulation of
SCF expression in asthma conditions in vivo and in vitro.
SCF expression in asthma in vivo

In vivo, SCF expression is regulated in the bronchi of
asthmatic patients in both inflammatory and anti-inflam-
matory conditions, since this expression both increases
and diminishes, respectively, together with the number of
mast cells (Da Silva et al. 2004a). More particularly, two
studies show that SCF expression in the bronchi is high
in subjects with asthma, compared with healthy subjects
(Da Silva et al. 2004a, Al-Muhsen et al. 2004). In addition,
SCF expression is lower in glucocorticoid-treated subjects
with asthma (Da Silva et al. 2004a).

At the same time, the mast cell number is increased in
the bronchi of asthmatic patients, often as degranulated,
and decreased in the bronchi of asthmatic patients treated
with glucocorticoids, where they eventually reached nor-
mal levels. These findings of the mast cell signature con-
firmed previous data from the literature in glucocorticoid-
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treated asthmatics (Bradding et al. 1994, Koshino et al.
1996, Djukanovic et al. 1997, Olivieri et al. 1997).

Thus SCF, released by airway structural cells (Da Silva
et al. 2002, 2003, 2004b,   Kassel et al. 1998, 1999) could
play some role in increasing the number and/or activation
of mast cells in the human airways, and glucocorticoids
may decrease mast cell number and activation at least in
part through decreased SCF expression. Similar effects in
human skin are suggested by work showing that gluco-
corticoids reduce the number of mast cells and the SCF
expression (Finotto et al. 1997).

SCF expression in the bronchi and the number of mast
cells are regulated in pro- and anti-inflammatory condi-
tions, but the mechanisms for this regulation are not yet
known. This regulation of SCF expression has been stud-
ied in human airway cells in vitro to help understand how
targeting SCF expression may help to treat asthma.
SCF expression in pro- and anti-inflammatory conditions
in vitro

Effect of IL-1ß on SCF gene transcription - Interleukin
(IL)-1ß, one of the major pro-inflammatory cytokine present
within the asthmatic airways, increases the expression of
SCF mRNA and SCF protein as a function of time (0 to
2.5 h), without modifying the relative expression of the
two forms, sSCF and mSCF, at 30 min (Da Silva et al. 2004b).
Studying the effect of inhibitors of the three mitogen-
activated protein (MAP) kinase pathways showed that
the MAP kinases p38 and extracellular signal regulated
kinase (ERK)1/2 each accounted for 50% of the augmen-
tation of SCF mRNA by IL-1ß at 30 min, while the Jun
kinase pathway had no role in this effect (Da Silva et al.
2003). Chromatin immunoprecipitation experiments proved
further that the transcription factor nuclear factor (NF)-
κB binds at 30 min to a κB responsive element consensus
sequence identified in the first intron of the SCF promoter
gene (Da Silva et al. 2003). Deletion of this responsive
element as well as pre-treatment with pyrrolidine dithio-
carbamate (PDTC), a NF-κB inhibitor, shows that at 30 min
NF-κB is the only transcription factor necessary for the
early IL-1ß-induced increase in SCF expression (Da Silva
et al. 2003, 2004b).

Although other studies show that IL-1ß slightly in-
creases SCF expression by structural cells at 24 h (Aye et
al. 1992, Linenberger et al. 1995), less is known about the
mechanisms involved in these effects. Interestingly, Da
Silva et al. (2002) showed that SCF mRNA expression in-
duced by IL-1ß peaked at 2.5 h and that it returned to
normal levels within 24 h (unpublished observations). IL-
1ß is known to stimulate the MAP kinase pathways within
minutes (Lian et al. 1999), thereby stimulating such tran-
scription factors as NF-κB (Janssen-Heininger et al. 1999,
Liang & Gardner, 1999). The originality of the results by
Da Silva et al. (2003) lies in the finding that a single tran-
scription factor, located originally on an intron, transmits
the effects of IL-1ß early (30 min) during this regulation of
SCF expression (Da Silva et al. 2003). It is not yet clear if
this remains true at later periods. Indeed, other respon-
sive elements are present in the SCF gene promoter, in
particular AP-1 or CREB (Taylor et al. 1996b), that might
influence the effects of IL-1ß over a longer term, since

reports show both of these transcription factors mediate
effects of IL-1ß (Laporte et al. 2000, Song et al. 2003).

SCF expression is thus increased in vitro by inflamma-
tory conditions, as are other inflammatory mediators in-
volved in asthma, such as eotaxin, the monocyte che-
moattractant protein (MCP)-4 (Lamkhioued et al. 2000, Sato
et al. 2001), and various interleukins. Accordingly, the in-
flammatory conditions created in vitro by IL-1ß treatment,
which is responsible for the increase in SCF production,
are consistent with the conditions that induce elevated
SCF expression in vivo in the bronchi of subjects with
asthma (Da Silva et al. 2004a, Al-Muhsen et al. 2004), as-
sociated with an elevated number and activation status
of the mast cells in the airways (Da Silva et al. 2004a).

Glucocorticoids and SCF gene transcription - Glu-
cocorticoids, such as budesonide and dexamethasone,
have been shown to diminish constitutive expression of
SCF mRNA and SCF protein as a function of time (0 to
2.5 h), without modifying the relative expression of the
two forms of SCF, sSCF and mSCF at 30 min (Da Silva et
al. 2004b). This reduction was not modified by inhibitors
of the three MAP kinase pathways, thereby confirming
findings from the literature (Da Silva et al. 2003). These
authors showed additionally by chromatin immunopre-
cipitation experiments that the glucocorticoid receptor (GR)
complex binds to a GRE-like (glucocorticoid responsive
element) sequence previously described in the SCF pro-
moter (Taylor et al. 1996b, Da Silva et al. 2003, 2004b).
Furthermore, transfection experiments with deletion of the
GRE-like sequence and pre-treatment by RU486, the glu-
cocorticoid receptor antagonist, showed that at short term
(30 min) the effects of glucocorticoids on SCF expression
are receptor-dependent.

This inhibitory effect by glucocorticoids is consis-
tent with the diminution in constitutive expression of SCF
mRNA and protein at 2.5 h, previously observed (Kassel
et al. 1998). The kinetics of the glucocorticoid-induced
diminution in mRNA expression peaked at 2.5 h (Kassel et
al. 1998, Da Silva et al. 2004b). Moreover, in a short time
(30 min), the GR complex inhibited SCF expression by bind-
ing to GRE (Da Silva et al. 2003), which has been described
as a transactivator element. The GRE sequence may over-
lap the sequence of another transcription factor, one in-
volved in inhibiting basal SCF expression, but no respon-
sive element corresponding to this hypothesis has so far
been identified in the SCF promoter (Taylor et al. 1996b).
Experiments with protein co-immunoprecipitation or chro-
matin immunoprecipitation might show whether GR is ca-
pable of interacting with other transcription factors, such
as CREB or AP-1, which may, according to Taylor et al.
(1996b), play a role in basal SCF expression.

Glucocorticoids and IL-1ß-induced SCF gene tran-
scription - The glucocorticoids, budesonide and dexam-
ethasone, have been reported as surprisingly potentiat-
ing the IL-1ß-induced expression of SCF mRNA and pro-
tein at 30 min without modifying the relative expression
of the two forms of SCF (30 min, Da Silva et al. 2004b). The
effects of the three MAP kinase pathway inhibitors showed
that p38 and ERK1/2 each accounted for 50% of this IL-
1ß-induced potentiation of SCF mRNA at 30 min, while
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the Jun kinase pathway had no role then (Da Silva et al.
2003). This potentiation of SCF expression by the asso-
ciation of IL-1ß and glucocorticoids at 30 min is related to
increased SCF gene transcription (Da Silva et al. 2004b),
which in turn depends on the binding of NF-κB and of
activated GR to their respective responsive elements (Da
Silva et al. 2003). Moreover, the deletion of either of these
responsive elements, or effect of the NF-κB inhibitor,
PDTC, or of RU486 showed abolition of this potentiation,
the induction of which therefore depends on an interac-
tion between GR and NF-κB (Da Silva et al. 2003, 2004b).

Very few studies in the literature report such synergy
between the IL-1ß and glucocorticoid pathways or be-
tween NF-κB and GR. It has already been described for
the cellular-inhibitors of apoptosis proteins, c-IAPs,  for
which NF-κB and dexamethasone have additive transac-
tivator effects at 2 h, which are still greater at 24 h (Webster
et al. 2002). No proposals so far attempt to explain the
mechanisms involved in these effects. Altogether, these
results suggest that a factor with co-activating properties
may interact directly with NF-κΒ and GR (Da Silva et al.
2003). This factor must still be identified. For now, how-
ever, the direct interactions between NF-κB and GR have
involved only a diminution in gene expression and not its
stimulation or potentiation (Adcock 2001). For this rea-

son, the hypothesis can be raised that factors may be
needed to activate the bond between NF-κB and GR to
potentiate SCF expression (Figure). The general transcrip-
tion co-activator c-AMP binding protein (CBP) or the co-
activator of the glucocorticoid receptor SRC (steroid re-
ceptor co-activator) might play a role in this effect.

It is only after an hour of treatment that the expected
diminution by budesonide of the IL-1ß-induced SCF ex-
pression is observed. Glucocorticoids are well known to
inhibit the expression of mediators involved in inflamma-
tion, in particular, NF-κB. Many mechanisms for this inhi-
bition of NF-κB by glucocorticoids have been proposed
(for review, see Cato & Wade 1996). After the accumula-
tion of GR in the cell, a protein-protein interaction may
take place between NF-κB and GR (McKay & Cidlowski
1998) and prevent either the binding of NF-κB to its re-
sponsive element, or the transactivator effect of NF-κB
associated with its responsive element (Nissen & Ya-
mamoto 2000). Another possibility is the inhibition of the
MAP kinase pathways by glucocorticoids, as suggested
by the work of  Kassel et al.  (2001), who found that gluco-
corticoids induce the expression and activation of the MAP
kinase phosphatase (MKP)-1. Additional experiments
should confirm whether glucocorticoids inhibit the
transactivator effect of NF-κB on SCF expression after

A proposed mechanism involved in the stem cell factor (SCF) gene regulation by interleukin-1ß (IL-1ß) and budesonide. a: IL-1ß stimulates
mitogen-activated protein MAP kinases after binding to its receptor, leading to the activation of the transcription nuclear factor κB (NF-
κB). Activated NF-κB translocates into the nucleus, binds to the κB site present in the first intron of the SCF gene and induces SCF gene
transcription;  b: the glucocorticoid (GC) diffuses into the cell cytoplasm and binds to the glucocorticoid receptor (GR). The activated
complex translocates into the nucleus and binds the GC responsive element-like present in the SCF promoter to inhibit SCF gene
transcription;  a + b: the hypothesis resides in the requirement of a common co-factor  by the combination of IL-1ß and budesonide to
induce potentiation of the SCF gene transcription.
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1 h, or if they inhibit the binding of other transcription
factors, such as AP-1 (Diamond et al. 1990), to their re-
sponsive elements and the induction of their transac-
tivator effects.

In any case, the diminution by glucocorticoids of SCF
expression in inflammatory conditions is consistent with
the diminution of SCF expression reported in vivo, in sub-
jects with asthma treated with glucocorticoids (Da Silva
et al. 2004a). This is also true for other inflammatory me-
diators involved in asthma, such as MCP-4 (Lamkhioued
et al. 2000). This diminution of SCF expression by gluco-
corticoids may contribute to the reduction in the number
and activation status of mast cells in the airways of sub-
jects with asthma after glucocorticoid treatment.

SCF mRNA stability - Glucocorticoids and IL-1ß in-
crease the stability of SCF mRNA very early (30 min), while
neither IL-1ß nor glucocorticoids alone have any effect
on this stability at such short term (Da Silva et al. 2004b).
This stability is decreased by the association between IL-
1ß and the glucocorticoids at 2.5 h, a time point at which
IL-1ß alone increases SCF mRNA stability and where glu-
cocorticoids alone diminish it (Kassel et al. 1998, Da Silva
et al. 2002). Finally, the combination of glucocorticoids
and IL-1ß also diminish the stability of SCF mRNA at 10 h,
while neither IL-1ß nor glucocorticoids alone have any
effect on this stability (Da Silva et al. 2002). The effect of
IL-1ß alone on the increased stability of mRNAs has been
described for cyclo-oxygenase (COX)-2 mRNA (Ridley et
al. 1998). Glucocorticoids are also known to destabilize
iNOS mRNA, whereas an increased stability of iNOS mRNA
is reported at 15 h to be an effect of IL-1ß combined with
dexamethasone (Kunz et al. 1996). Nonetheless, the sig-
naling pathways leading to either stabilization or destabi-
lization are not known. The presence of key sequences,
the AURE (AU-rich responsive element) sequences in the
3' region of mRNA, generally determines whether IL-1ß
and glucocorticoids stabilize or destabilize mRNA. SCF
mRNA does not have an AURE sequence (Martin et al.
1990), however. This suggests that the mechanisms by
which IL-1ß and glucocorticoids stabilize or destabilize
SCF mRNA are still unknown. These mechanisms may
involve regulation of the poly (A+) binding proteins to
the mRNA (PABP) or of the polyadenylation process for
mRNA, which would stabilize it (Stoeckle 1992, Ross 1995).

Relative SCF expression - At short term treatment
(30 min), the relative expression of the two forms of SCF,
sSCF and mSCF, is not modified by IL-1ß, glucocorticoids
or their combination. It is known that the relative expres-
sion of sSCF and mSCF varies in vitro according to cell
type (Kassel et al. 1999) and that both forms can be in-
volved in the augmentation of the number and/or activa-
tion of mast cells. Membrane-bound SCF, for example, may
play a more important role than sSCF in the in vivo devel-
opment of mast cells, as suggested by work in mutant
mice homozygous for the Steel Dickie (Sld) allele: they
produce biologically active sSCF but not mSCF and suf-
fer from a profound mast cell deficiency (Brannan et al.
1991). mSCF also stimulates the development of hemato-
poietic cells still more than sSCF (Toksoz et al. 1992). A
possible explanation is that the mSCF stimulation of the

Kit receptor delays internalization of the SCF-Kit complex
and accordingly delays the end of the stimulation
(Miyazawa et al. 1991, Toksoz et al. 1992). Moreover, mSCF
acts as an adhesion molecule for mast cells (Kinashi et al.
1994, Adachi et al. 1995). The relative expression of the
two forms of SCF should be verified in patients with
asthma who are and are not treated with glucocorticoids
and compared with results in healthy subjects to see if
expression of these two forms varies in vivo in humans
during the disease.
Conclusion

In conclusion, SCF expression increases in pro-inflam-
matory conditions and diminishes in anti-inflammatory
conditions in vitro. These findings confirm results ob-
tained in vivo in patients with asthma. Glucocorticoids
are also shown to have unexpected effects in the regula-
tion of SCF gene at very short treatment times (30 min),
since SCF expression is potentiated by glucocorticoids in
pro-inflammatory conditions. The mechanisms involved
in this effect are only partially elucidated. The hypothesis
of the existence of a co-activator linking NF-κB and GR in
the potentiation of SCF expression still needs to be con-
firmed. Once confirmed and identified, this co-activator
might become a treatment target for inhibiting the harmful
effect of SCF in disease. The physiological role of SCF in
the airways and its role in asthma also require further
elucidation. Altogether, SCF may be proposed as an inter-
esting target for asthma treatment through its effect on
the regulation of the number and activation status of mast
cells, those inflammatory cells for which it is one of the
most important growth factors.
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