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The idea to of linking diseases and geographical loca-
tions was first mentioned by Hippocrates (460-377 BC) in 
his “Airs, waters and places”. However, it was not until 
modern technology made it possible to collect extensive 
data-sets and visualize them in the form of maps that this 
approach became widely used (Rinaldi et al. 2006). While 
sporadic progress had been made in the XVIII century, 
the most famous example was the tracing of a cholera out-
break in London to a particular well in the Soho district 
(Snow 1855). Surprisingly, in spite of the germ theory 
making headlines about the same time, the causal rela-
tionship between the cholera bacterium and the disease it 
causes was never fully verified in this case. The invention 
of the microscope almost 200 years earlier notwithstand-
ing, another three-four decades passed until the role of 
bacteria as infectious agents became fully appreciated.

However, it was not until Geographical Information 
Systems (GIS) data from satellites and computer-assist-
ed applications joined forces that the true versatility of 
GIS and remote sensing came into its own. The progress 
is just as impressive with respect to mathematical mod-
elling and spatial statistics. Indeed, modern stochastic 
modelling provides a powerful approach to study his-
toric disease outbreaks that was previously unattainable 
due to lost information and multi-sourced databases. 
For example, in their study of the epidemic of bubonic 
plague in India, 1896-1906, Yu and Christakos (2006) 
could generate informative spatio-temporal maps of 
mortality rates and use them to provide a novel perspec-

tive on the distribution and propagation of this epidemic. 
This methodology can also be applied to evaluate the 
risk for plague today as shown in the central highlands 
of Madagascar by Rahelinirina et al. (2010). They could 
correlate the spatio-temporal variability in the distribu-
tion of this disease with augmented activity in the en-
demic foci coupled with increased populations of Rattus 
rattus, the main rodent host of Yersinia pestis. 

Air-borne photography revolutionized cartography 
but the breakthrough that made the technique useful also 
for other applications did not come until standardized 
views of the terrain could be shown and the instruments 
could cover the full electromagnetic spectrum from ul-
traviolet to radio wavelengths. Indeed, the convergence 
of spectral physics, earth sciences, computer technol-
ogy and advanced statistics has resulted in an array of 
advanced tools suitable for epidemiological investigation 
(Brooker & Michael 2000). These techniques are particu-
larly useful for the study of parasitic infections, which 
rely on intermediate hosts to complete their lifecycles 
and vectors for expanding the distribution. Since not only  
their hosts/vectors, but also the parasites themselves, 
are sensitive to changes in many variables, the tempera- 
ture in particular, the limits for the distribution can be 
estimated with a good level of accuracy. Therefore, re-
motely-sensed terrestrial variables, such as temperature, 
rainfall, humidity, vegetation etc., effectively decide the 
distribution of leishmaniasis, malaria and schistosomia-
sis and other organisms, whose lifecycles involve many 
steps that cannot be rapidly adjusted. The number of  
publications in which these methods are described is in-
creasing exponentially (Hendrickx et al. 2004, Cringoli et 
al. 2005, Rinaldi et al. 2006, Bergquist & Rinaldi 2010).

Due to changes in climate and environment, sever-
al vector-borne diseases have (re)-emerged and spread 
into new (or previously controlled) areas (Hendrickx et 
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al. 2004, Rogers & Randolph 2006). Areas into which 
certain diseases can be expected to expand have been 
noted for schistosomiasis in Northern China (Yang et al. 
2006) and for malaria, leishmaniasis and dirofilariasis 
in Northern Europe (Genchi et al. 2005, 2009). Other  
important factors driving the (re)-emergence and spread 
of vector-borne parasites include vector habitat changes 
(Bhunia et al. 2011), pollution, resistance to pesticides 
and drugs and the general fall-out from globalization 
(Harrus & Baneth 2005). The changing distribution of 
previously strictly localized endemic veterinary and hu-
man infections include Babesiosis, bluetongue viral in-
fection, chikungunya, dengue fever, Lyme disease, tick-
borne encephalitis, trypanosomiasis, West Nile virus 
disease and many more (Takken & Knols 2007).

Geographical Information Science/Geographical In-
formation Systems - The “S” in GIS could just as well 
stand for “Science” as for “Systems” and even if the for-
mer would be preferable (Goodchild 2000, Kistemann 
et al. 2002), most people use the latter. However, rather 
than dwell on semantics, the GIS acronym has become 
the nomen proprium for the tool that few medical and 
veterinary epidemiologists can manage without. De-
pending on its application, slightly different definitions 
of GIS appear (Brooker & Utzinger 2007, Simoonga et  
al. 2008), but the most common understanding of the 
term can be summed up as “a powerful set of tools for 
collecting, retrieving at will, transforming and display-
ing spatial data from the real world” as proposed by 
Burrough (1986) early on. In my opinion, one of the ex-
ceptional capabilities of GIS is the simultaneous visual-
ization of various pieces of information, e.g. data related 
to health and data related to the environment. 

Classical geographic maps provide a finite set of 
data, e.g. the roads and cities, whereas GIS delivers 
flexible, digital cartography with data processing and 
analysis included. For example, it can show qualita- 
tive, general distribution maps and point-maps as well 
as quantitative maps with proportioned peaks. In addi-
tion, representations such as proportional circle maps, 
choroplethic maps and isoplethic maps, display the 
number of cases of a disease, the population at risk, the 
prevalence, the incidence, the intensity of infection etc. 
(Thrusfield 1995, Cringoli et al. 2005). GIS can also 
be used for “transect sampling” of fixed, immobile ob-
jects. This involves choosing a line, or a series of lines, 
along which the counts take place as used by Biggeri 
et al. (2006). Another useful GIS function is Kriging, 
which is a linear interpolation method based on a ran-
dom-function covariance model utilized for predicting 
the values of a variable at unsampled points based on 
observations at known locations (Berke 2004). Krig-
ing is widely used for the interpolation of climate data 
from meteorological stations and for modelling the dis-
tribution of various parasites and vectors, e.g. Ixodes 
scapularis (Nicholson & Mather 1996), malaria (Klein-
schmidt et al. 2000), alveolar echinococcosis (Pleydell 
et al. 2004), tsetse (Sciarretta et al. 2005), Calicophoron 
daubneyi (Biggeri et al. 2004) and Oncomelania hu-
pensins (Zhang et al. 2005). 

GIS data can be visualized by using either vectors or 
rasters. The former is based on storing tables containing 
the coordinates of points together with instructions how 
to find points that are independent and which ones be-
long to a common set. All lines are represented by vector 
chains and all areas by polygons, while the attributes can 
be entered into separate tables using alphanumeric char-
acters to label the specific classes or categories of proper-
ties. The raster data model, on the other hand, uses a net of 
adjacent polygons (or cells) to provide a virtual cover of a 
given part of a territory. These pixels will eventually con-
tain the attributed values of the objects they are assigned 
to represent. This type of visualization is typically utilized 
to represent continuous phenomena, e.g. land cover maps, 
digital elevation models and climate distributions.

Remote sensing - Even if Earth-orbiting satellites 
and their instruments were originally put in place for 
military purposes, remotely-sensed information pro-
vides also useful insights on geo-climatic, ecological 
and anthropogenic factors related to transmission levels 
and patterns of many communicable diseases. Although 
Cline (1970, 2006) first realized the possibilities on offer 
for epidemiological research more than 40 years ago, it 
took more than a decade before medical and veterinary 
research papers in this area started to appear more than 
sporadically. The situation is totally different today: the 
satellite technology assists both control activities and 
epidemiological research at all levels, in particular as 
health-related research is increasingly dependent on 
near-real time information. Still, there are many traps 
that need to be avoided when applying remote-sensing 
(Herbreteau et al. 2005).

The number of active satellites in use for the sup-
port of communication, broadcasting and surveillance 
varies between 900-1,000. A detailed list of past and 
present orbiting satellites can be found at the website of 
the Geospatial Data Service Centre (gdsc.nlr.nl/gdsc/
information/earth_observation/satellite_database). Geo-
stationary satellites, such as the Geosynchronous Orbit-
ing Environmental Satellites launched by the National 
Oceanic and Atmospheric Administration (NOAA), are 
used for communication and meteorology. These satel-
lites are of limited use for epidemiological purposes as 
they “sit still” at high altitudes (around 36,000 km), while 
those passing over the Polar Regions relay longitudinal 
sweeps, eventually covering the whole surface of the 
globe. These satellites follow 50 times lower elliptical 
orbits of about 100 min with “revisit” periods between 
one-41 days. For the epidemiological point of view, the 
sensors must be capable of producing high-resolution 
images, yet show large areas at different wavelengths. In 
fact, the resolution capabilities, be it spatial, temporal or 
spectral, effectively restrict data collection since a high 
spatial resolution is always associated with a low spec-
tral resolution and vice versa.

The first satellites were sent up in the late 1950s 
by the Russians. Their successful Sputnik programme 
forced the United States of America (USA) to em-
bark on an ambitious space programme, a large part 
of which was focused on collecting spectral informa- 
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tion from the Earth’s surface. The remote-sensing sci-
ence, consisting of a series of satellite missions jointly 
managed by the National Aeronautics and Space Ad-
ministration (NASA) and the Geological Survey, origi- 
nated and matured with the Landsat Program, was ini-
tiated in 1972. Its sensors have a moderate spatial reso-
lution, coarse enough for global coverage yet detailed 
enough to characterize human-scale constructions. 
The multispectral scanner and thematic mapper are the 
most useful sensors for epidemiological approaches. 
Landsat-7, the latest satellite in this series has eight 
spectral bands with a spatial resolution ranging from 
15-60 m and was launched on April 15, 1999. The next 
satellite planned, the Landsat Data Continuity Mission 
(LDCM), is scheduled to be launched in December 
2012. It will monitor land and water use, support dis-
aster response and provide evaluations of the collected 
data. The LDCM measurements will also serve Na-
tional Aeronautics and Space Administration (NASA) 
research in the areas of climate, carbon cycle, ecosys-
tems, water cycle, biogeochemistry and Earth observa-
tion. The timeline of the Landsat programme is pro-
vided at (landsat.gsfc.nasa.gov/about/timeline.html).

The satellite-borne sensors permit calculation of 
vegetation indices, land surface temperatures, atmos-
pheric and soil moisture, rainfall etc. The Normalized 
Difference Vegetation Index (NDVI) is among the most 
common vegetation indices used. It is defined as the 
difference between the visible (RED) and near-infrared 
(NIR) bands over their sum, i.e. (NIR – RED)/(NIR + 
RED), which is a specific measure of chlorophyll abun-
dance and light absorption. However, The NDVI can be 
extended to quantify herbaceous vegetation biomass, 
vegetation primary productivity, vegetation coverage 
and growth periodicity, including the impact of all these 
factors on parasite lifecycles. Apart from topography, 
water-bodies, soil, predominant vegetation, rainfall, hu-
midity etc., information of interest for the epidemiolo-
gist also includes indicators of human activities such as 
land use, cities, roads, bridges and other infrastructures. 
The Corine Land Cover provides all this on a map of the 
European landscape at the spatial resolution of 100 m 
based on visual interpretation of widely used satellite 
images. The land cover categories are hierarchically 
organized into three levels: (i) artificial areas, agricul-
tural areas, forests/semi-natural areas, wetlands and 
water bodies, (ii) physical and physiognomic entities at 
a higher level of detail, e.g. urban zones, forest types, 
lake types etc. and (iii) a number of subcategories based 
on further, less pronounced details (eea.europa.eu/data-
and-maps/data/corine-land-cover-2000-clc2000-seam-
less-vector-database).

NOAA satellites and their instruments - The primary 
sensor on board the Landsat satellites is the Advanced 
Very High Resolution Radiometer (AVHRR) instrument. 
Since 1981, this imager has been able to determine the 
temperature of cloud covers and surfaces such as land, 
water or the upper surfaces of clouds at the resolution 
of about 1 km (noaasis.noaa.gov/NOAASIS/ml/avhrr.
html). NOAA has at least two polar-orbiting satellites in 
orbit at all times with one satellite crossing the equator 

in the early morning and early evening, the other in the 
afternoon and late evening. Together they provide twice-
daily global coverage and ensure that data for any region 
of the earth are never more than six hours old, a very 
high temporal resolution. Morning-satellite data are used 
for land studies, while data from both satellites facilitate 
atmosphere and ocean studies. The first AVHRR was a 
four-channel radiometer launched in October, 1978 with 
a swath width of approximately 2,500 km (ncdc.noaa.
gov/oa/pod-guide/ncdc/docs/klm/html/c1/sec1-2.htm). 
The current version is the six-channel AVHRR/3 on 
board NOAA-19 launched in February, 2009 (en.wikipe-
dia.org/wiki/NOAA-19), which permits multi-spectral 
analysis for more precisely defining hydrologic, oceano-
graphic and meteorological parameters. Comparison of 
data from two channels can be used to observe features 
or measure various environmental parameters.

Satellite Pour l’Observation de la Terre (SPOT) 
- The French SPOT satellite programme is a series of 
high-resolution, optical imaging system, which primar-
ily explores Earth resources, but also supports studies 
of the climate, the oceans, human activities and natu-
ral phenomena (en.wikipedia.org/wiki/SPOT_satellites). 
The SPOT programme was initiated by the French space 
agency Centre National d’Etudes Spatiales in the 1980s 
and developed in association with the Belgian Scien-
tific, Technical and Cultural Services (SSTC) and the 
Swedish National Space Board (SNSB). The system 
includes ground control resources for satellite control 
and programming, image production and distribution 
run by SPOT Image, Toulouse, France. SPOT 5, with 
multi-spectral picture resolution capabilities of 10, 5 
and 2.5 m, is the latest satellite in the series. However, 
a new constellation, consisting of SPOT 6 and SPOT 
7, is planned for launch by 2012 and 2013, respective-
ly. These satellites will have a footprint of 60 m2 and 
feature 1.5 m resolution (en.wikipedia.org/wiki/SPOT_
(satellite)#SPOT_6_and_SPOT_7).

The international Earth Observing System (EOS) 
asks you to take the A train - Terra is the first satel-
lite in the EOS Program, which is a major component 
of the Earth Science Division of NASA’s Science Mis-
sion Directorate. EOS represents a coordinated series 
of polar-orbiting satellites observing the oceans, land 
cover, biosphere and atmosphere. Terra was sent up in 
2000 and began collecting what will ultimately become 
a 15-year global set of data representing Earth as an 
integrated whole. Terra carries a payload of five sen-
sors designed to monitor the state of the environment 
and ongoing changes in its climate systems (terra.nasa.
gov/About/). In 2002, this satellite was joined by Aqua, 
the first of a fleet of seven satellites flying in a forma-
tion called the “A Train” (csc.gallaudet.edu/soarhigh/A-
TrainExplain.html) designed to collect information on 
climate parameters with special reference to how ex-
treme events develop. The A-Train formation provides 
coordinated measurements, i.e. data from several dif-
ferent satellites are used together to obtain comprehen-
sive information about atmospheric components and 
processes (Table I).
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The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and the sensor investigating the Clouds and 
Earth Radiant Energy System are the only instruments 
onboard both Terra and Aqua. MODIS is one of the most 
useful multi-purpose sensors as it acquires data in 36 
spectral bands, or groups of wavelengths, from the entire 
surface of the Earth every one-two days. It is probably the  
instrument with the greatest utility for biological re-
search. The orbits of these two twin satellites are chosen 
so that Terra passes from north to south across the equa-
tor in the morning with Aqua moving in the opposite 
direction in the afternoon. In this way, a high temporal 
resolution is obtained without loss of image quality. Ta-
bles II and III provide a summary of the sensors onboard 
Terra and Aqua and their foci of data collection.

IKONOS and GeoEye - When the USA Company 
Space Imaging, launched IKONOS in 1999, it was the 
first commercial satellite designed to collect and sell 
high-resolution optical imagery. The launch was then 
heralded as one of the most significant developments 
in the history of the space age. For the first time, pan-
chromatic (black and white) and multispectral imagery 
of high resolution became available for researchers, as 
well as to the general public (en.wikipedia.org/wiki/
IKONOS). The IKONOS satellite, deriving its name 
from the Greek word eikōn (image), marks the begin-
ning of a new industry, which has amazingly trans-
formed the world in just a decade. In September, 2005, 
Space Imaging was acquired by another USA company, 
Orbital Imaging Corporation, and renamed GeoEye 
(www.geoeye.com/).

The integrated imaging payload onboard IKONOS 
enables the satellite to collect panchromatic (black and 
white) images at the 1 m resolution and multi-spectral 
data at the 4 m resolution. At this level, buildings and 
other man-made structures are clearly visible. The sen-
sors capture imagery across an 11 km swathe of the 

TABLE I
Summary information on the satellites 

of the A train constellation

Satellite Focus of mission Launch date

Aqua Recycling of water 
(rainfall, evaporation etc.)

4 May 2002

Aura Air quality 
and atmosphere dynamics

15 July 15 2004

PARASOL The microphysics 
of clouds and aerosols

18 December 
2004

CALIPSO Atmospheric vertical profiles 28 April 2006
CloudSat Climate modelling, 

weather prediction and the 
influence of cloud formation 

on the global climate

28 April 2006

OKO Build-up and absorption 
of atmospheric CO2

24 February 2009a

Glory Solar irradiance variability 
and its effect on the climate 

Aerosol properties 
and their distributions

4 Mar 2011a

a: launch failed and loss of the satellite. 

TABLE II
Overview of the more important sensors 
onboard Terra and the A train satellites

Sensor Summary description

ASTER The Advanced Space-borne Thermal Emission 
and Reflection Radiometer

CERES The Clouds and the Earth’s Radiant Energy System  
measures the Earth’s broadband energy flux

MISR The Multi-angle Imaging Spectroradiometer 
measures the distribution of aerosols, 

cloud forms and land surface
MODIS The Moderate resolution Imaging 

Spectroradiometer measures cloud properties 
and energy flux, aerosol properties, land cover, 

land use, fires and volcanic activity
MOPITT Evaluates the global distributions 

of carbon monoxide and methane 
in the troposphere through Measurements 

of Pollution in the Troposphere

TABLE III
Overview of the more important sensors 
onboard Aqua and the A train satellites

Sensor Summary description

CERES The Clouds and the Earth’s Radiant Energy System 
measures the Earth’s broadband energy flux

MODIS The Moderate Resolution Imaging 
Spectroradiometer measures cloud properties 

and energy flux, aerosol properties, land cover, 
land use, fires and volcanic activity

AMSR-E The Advanced Microwave Scanning 
Radiometer-EOS measures cloud properties, 

sea surface temperature, near-surface wind speed, 
energy flux, surface water, ice and snow

AMSU-A The Advanced Microwave Sounding Unit 
measures atmospheric temperature and humidity

AIRS The Atmospheric Infrared Sounder measures 
dust, ozone, methane, sulphur dioxide, 

water vapour and temperature
HSB Humidity Sounder for Brazil 

(VHF band equipment measuring 
atmospheric humidity)
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Earth’s surface. Once an image is obtained, a digital pro-
cessing unit compresses and formats the digital imagery 
for transmission to ground stations located throughout 
the world. In 2008, GeoEye-1 was launched. It can iden-
tify objects half a meter wide but is capable of reaching 
a ground resolution of 0.41 m in the panchromatic mode, 
which means that individual people can be spotted. 
However, due to licensing restrictions, customers other 
than the USA government are only allowed to purchase 
images that have been blurred to the half-meter resolu-
tion (launch.geoeye.com/LaunchSite/assets/documents/
GeoEye_Popular_Science.pdf).

QuickBird and WorldView - QuickBird constitutes 
the next step in visible, high-resolution surface scan-
ning. This satellite was launched in 2001 as the first of 
a planned constellation of three. It orbits at a 450 km 
high, sun-synchronous orbit and displays panchromatic 
imagery at the 0.6-0.7 m resolution and multi-spectral 
imagery at 2.4 and 2.8 m. The imagery can be imported 
for analysis into most GIS software packages. A USA 
commercial company, DigitalGlobe (en.wikipedia.org/
wiki/DigitalGlobe) launched and owns Quickbird and 
its customers range from urban planners to USA federal 
agencies. For example, much of the high-resolution im-
agery available from Google Earth and Google Maps is 
provided by DigitalGlobe.

DigitalGlobe also owns WorldView-1, a satellite built 
by the Ball Aerospace company (.ballaerospace.com/) 
and launched in 2007. This satellite has a camera with 
a panchromatic 50-cm maximum-resolution capability, 
while the next satellite in this series that was launched in 
2009, WorldView-2, provides 0.46 m panchromatic mono 
and stereo satellite image data (.spaceflightnow.com/
news/n0701/07worldview2/). With its improved agility, 
WorldView-2 is able to sweep back and forth to collect 
very large areas of multispectral imagery in a single 
pass. In this way, the instruments onboard WorldView-2 
can collect nearly 1 million km2 every day, doubling the 
collection capacity of WorldView-1. The combination of 
this capacity and its relatively high altitude enables the 
satellite to reach a revisit time of just over one day. 

Spatial-temporal modelling and statistics - Stochas-
tic modelling is becoming increasingly applicable to the 
study of disease propagation, and spatio-temporal mod-
elling is currently one of the most challenging research 
areas in epidemiology and environmental health. The 
number of theoretical papers, as well as methodologi-
cal development and field application, is growing fast. 
For vector-borne diseases in particular, the spatial and 
temporal characteristics of natural transmission play an 
important role as even minute variations in tempera-
ture and rainfall result in almost immediate changes in 
their distribution. As a consequence, spatio-temporal 
modelling is increasingly applied for a wide variety of 
arthropod and snail-borne diseases affecting both hu-
mans and animals, e.g. dengue fever (Pongsumpun et al. 
2008, Tipayamongkholgul & Lisakulruk 2011), leishma-
niasis (Ready 2008, Brandão-Filho et al. 2011), malaria 
(Mabaso et al. 2006, Dongus et al. 2009, Dogan et al. 
2010), Rift Valley fever (Vignolles et al. 2009), blue- 

tongue (Racloz et al. 2008, Willgert et al. 2011), schisto-
somiasis (Wu et al. 2007, Hu et al. 2010, Martins-Bedê 
et al. 2010), food-borne trematode infections (Suwan-
natrai et al. 2011) and plague (Rahelinirina et al. 2010). 
As mentioned above, applications even include historic 
epidemics (Yu & Christakos 2006). Methods to quantify 
excess risk and identify space-time disparities with re-
gard to health interventions for poor children have also 
emerged and provide useful and detailed information for 
guiding policy. For example, a spatio-temporal analy-
sis was performed by Sartorius et al. (2011) to identify 
risk factors associated with child mortality in a rural 
area in South Africa. A distinct spatial risk pattern was 
observed with higher risk areas being concentrated in 
poorer settlements. This study demonstrates the use of 
Bayesian geostatistical models for accurately quantify-
ing risk factors and producing maps of child mortality 
risk in a health and demographic surveillance system. A 
similar approach in the veterinary sciences (bovine Fas-
ciola infection) was also successful (Durr et al. 2005).

Maps based on raw data are generally difficult to 
interpret due to differences in disease occurrence be-
tween areas. This can partly be blamed on “noise” in 
the sampling process, but the main reason is often that 
the data derive from the sum of true, structural differ-
ences. This problem is well-known in human epidemiol-
ogy and several statistical analyses have been proposed 
to filter out the noise from the signal (Elliott et al. 2000). 
Some of these techniques have been used also in veteri-
nary medicine, e.g. regarding paramphistomosis (Big-
geri et al. 2005), echinococcosis (Berke 2004, Budke et 
al. 2005), bovine spongiform encephalitis (Abrial et al. 
2005), dicrocoeliosis and haemonchosis (Biggeri et al. 
2007), mastitis (Green et al. 2004) and foot and mouth 
disease (Lawson & Zhou 2005).

Climate-based forecast systems have been developed 
using the concept of Growing Degree Days (GDD), a heu-
ristic tool first used by horticulturists to predict flower-
ing. GDD are calculated by taking the average of the dai-
ly maximum and minimum temperatures compared to a 
base temperature, Tbase using the equation GDD = (Tmax 
+ T min)/2 - Tbase. When applied to parasites, the GDD 
concept can be useful in predicting risk and in deciding 
on disease intervention. This approach has been used for 
predicting fasciolosis, schistosomiasis, malaria (Malone 
2005) and dirofilariosis (Genchi et al. 2005). Predictive 
maps can be obtained by application of (i) heuristic sta-
tistical algorithms, (ii) standard statistical approaches 
(extensions of regression modelling, linear discriminate 
analysis in case of multivariate data, or a generalized 
linear mixed model in case of unmeasured source of 
variability) or (iii) Bayesian statistical approaches (e.g. 
the Markov Chain Monte Carlo technique). This field, 
including applicatory examples of these techniques, has 
been reviewed by Pfeiffer (2004). 

Ecological analysis - The computational power 
available today is capable of achieving high prediction 
accuracy as it allows modelling of detailed physiologi-
cal and physical processes, including large numbers of 
species and individuals. As predicted by Levin et al. 
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(1997), the quality and quantity of spatio-temporal data 
and the data assimilation capabilities are reaching the 
level where even the complexities of ecology can be ap-
proached. The main application field of GIS in veteri-
nary and public health is epidemiological and it benefits 
from the capability of GIS to integrate different databas-
es into one environment (Herbreteau et al. 2005). This 
type of analysis is based on a statistical procedure and 
targets the description of relationships existing between 
the geographic distribution of diseases and environmen-
tal risk factors (Kistemann et al. 2002).

The NDVI, land cover, land use, elevation, slope, 
aspect, lithofacies, lakes, rivers and other water bodies, 
temperature, rainfall and humidity are the most com-
monly used environmental and climate features in the 
data-layers for ecological analysis in veterinary epide-
miology. Once this information has been obtained, the 
ecological analysis is carried out by associating the dis-
ease data with the environmental characteristics extract-
ed within the buffer zones constructed around the geo-
graphic unit(s) of interest (Cringoli et al. 2005, Rinaldi et 
al. 2006, Pozio et al. 2009).

Early-Warning Systems (EWS) and surveillance - 
GIS applications lend themselves to the development 
of EWS needed to permit preemptive planning to limit 
risk and impact of emerging new diseases. Early identi-
fication is an important first step towards implementing 
effective interventions to control epidemics and reduce 
the impact on humans and/or animals (Estrada-Peña et 
al. 2007). Biology-driven models have a particular po-
tential of assessing current and future risk patterns for 
vector-dependent parasitic infections. EWS are defined 
as all initiatives leading to improved awareness and 
knowledge of the distribution of disease or infection and 
that might permit forecasting of the further evolution 
of an outbreak (FAO 1996). The ability to produce fre-
quently updated data on environmental variables perti-
nent to vector-borne disease transmission makes GIS and 
remote-sensing useful resources for the development of 
EWS (Ceccato et al. 2005). However, rather than passive 
monitoring, a surveillance system should have the capa-
bility of transferring new information with regard to the 
disease in question. To that end, an integrated set of epi-
demiological measures aiming at the identification and 
prevention of new cases in the population under control is 
desirable. Surveillance must feature characteristics inde-
pendent from the techniques used for case collection, an 
aspect which is evident when the geographical dimension 
is considered and where discontinuities in the spatial rate 
of a disease must be discovered. Naturally, surveillance 
must include diagnostics with high sensitivity and speci-
ficity for the identification of possible new cases of dis-
ease, or any variation on the natural rate (Johansen et al. 
2010). The difficulty in interpreting clusters of cases of  
disease lies in determining whether to attribute them to 
an epidemic or to a minor alteration in the occurrence of 
the disease in question (Elliott et al. 1992, 2000, Aylin et 
al. 1999). The development of a GIS infrastructure is a 
long-term process in which a wide variety of critical is-
sues, such as technological requirements, people, institu-

tional frameworks, inter/intra-institutional relationships 
and policies, must be considered. Ferre et al. (2011) have 
produced a most helpful “do-it-yourself” approach, in-
cluding the aspects mentioned above, for the early warn-
ing of emerging and re-emerging diseases.

Virtual globes - Although various virtual globes are 
now available over the Internet, Google Earth (google.
earth.com) currently dominates the market. This por-
trayal of the world is a virtual, computer-based model of 
the Earth where the user can freely change area, viewing-
angle and position. The views are interchangeable and 
can denote geographical features, man-made features 
(roads, buildings etc.) as well as quantitative data-sets 
on demography, economy or any other measure the user 
might wish to choose. An overview of the developments 
in this field during the last decade shows that possible 
uses for this new representation of the world are almost 
endless (Elvidge & Tuttle 2008). 

World Wind, created by NASA’s Learning Tech-
nologies project as an open-source 3D interactive world 
viewer (worldwind.arc.nasa.gov/java/), was released in 
mid-2004, making it one of the first applications in this 
field to be made available for public use. Both Google 
Earth and World Wind permit saving downloaded imag-
ery to the user’s hard disk enabling previously accessed 
areas to be viewed offline. Google Earth, however, must 
be activated by first logging into its server and its cache 
size is limited to 2,000 MB, whereas World Wind has no 
limit on cache size and comes with the complete 500 m 
resolution Blue Marble imagery. It is also capable of dis-
playing MODIS imagery from the Jet Propulsion Labo-
ratory’s Aqua and Terra satellites. Google Earth, on the 
other hand, is not only capable of displaying a multitude 
of urban areas in high-resolution thanks to their private 
image sources, but acquires also images captured by 
flights and terrestrial rovers that can show particular 
views, e.g. street scenes from major cities.

Virtual globe technologies are essentially tools with 
some of the functionality of applied GIS, which provides a 
relatively inexpensive, more accessible method to commu-
nicate epidemiological data to non-specialists (Stensgaard 
et al. 2009). Although most applications are general-purpose 
applications with limited analytic functions, they cannot 
in any way replace professional GIS software. Still, access 
to a virtual globe is useful as a complement to traditional 
GIS and it is therefore not out of place to list some of the  
tools available besides Google Earth (Table IV).

Thanks to the Internet and the mobile computer tech-
nologies, information is now available everywhere, in-
cluding in the field. Risk-mapping using digital geospa-
tial data resources has become an established analytical 
tool both for human and veterinary public health. Since 
a high spatial resolution is associated with a low spectral 
resolution and vice versa, data collection must be adjust-
ed to each individual application. Disease surveillance 
systems and EWS are prime examples of systems with 
immediate practical application, while the construction 
of virtual globes for epidemiological research are be-
coming increasingly important for displaying results in 
an easily understandable manner.
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