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Platelet-activating factor (PAF) is one of the most potent lipid mediators involved in inflammatory events. The
acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation
induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-
acetylhydrolase (PAF-AH), a calcium independent phospholipase A2 that also degrades a family of PAF-like oxi-
dized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least
three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observa-
tions indicate that plasma PAF AH terminates signals by PAF and oxidized PAF–like lipids and thereby regulates
inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of
dysregulated inflammation.
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Platelet-activating factor (PAF) is an important media-
tor of juxtacrine and paracrine signals between cells
(Zimmerman et al. 1990, Lorant et al. 1991, Stafforini et al.
2003), but in some cases, PAF may also have endocrine,
autocrine, and intercrine signaling roles (Bazan et al. 1991,
Prescott et al. 2000). PAF is synthesized by a variety of
cell types, including macrophages, endothelial cells, neu-
trophils, basophils, eosinophils, and fibroblasts (Prescott
et al. 2000), many of which are central to the inflammatory
and hemostatic systems. The enzymatic synthesis of PAF
is highly regulated and most commonly involves a two-
step mechanism. The first is the hydrolysis of long chain
fatty acids esterified at the sn-2 position in the glycerol
backbone of ether phospholipids and is catalyzed by cy-
tosolic phospholipase A2; subsequently the product of
this hydrolysis (lyso-PAF) is acetylated by an ace-
thyltransferase to produce bioactive PAF (Snyder et al.
1985). The biological effects of PAF are mediated by bind-
ing to a G-protein coupled receptor that specifically rec-
ognizes PAF and related PAF-like lipids (Honda et al. 1991,
McIntyre et al. 1999). The murine PAF receptor has been
deleted by homologous recombination and also
overexpressed, yielding important insights into the bio-
logical and pathophysiologic roles of the PAF signaling
system (Nagase et al. 1997, Ishii et al. 1998). Several mecha-
nisms regulate the PAF signaling system. These include
tightly controlled synthetic pathways, spatial regulation
of the display of PAF, cell-specific expression of the re-
ceptor for PAF, homologous and heterologous desensiti-
zation of the receptor, and rapid degradation of PAF by
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extracellular and intracellular acetylhydrolases. For in-
stance, homologous desensitization after repeated expo-
sure to PAF, a control mechanism that potentially limits
its signaling actions, was used to characterize specific
actions of PAF before the development of highly selec-
tive competitive antagonists (Zimmerman et al. 1985,
Cordeiro et al. 1986). Together, the redundant regulatory
mechanisms appear to have evolved to precisely control
biologic activities of PAF. Thus, unregulated or dysregu-
lated signaling by PAF can be a mechanism of disease. In
this review, we will focus on the importance of plasma
PAF-AH as a regulatory mechanism in PAF signaling path-
ways.
Subtypes and biochemical properties of PAF-AH

PAF-AH (EC 3.1.1.47) was identified as an enzyme that
hydrolyzes an acetyl ester at the sn-2 position of PAF,
inactivating it to 1-O-alkyl-sn-glycero-3-phosphocholine
(lysoPAF) (Blank et al. 1981). To date, three isoforms of
PAF-AH have been identified: plasma PAF-AH and PAF-
AH II and Ib. Plasma PAF-AH is a monomeric polypeptide
with a molecular weight of 45 kDa. PAF-AH II is an intra-
cellular enzyme with a molecular weight of 40 kDa. This
enzyme is highly expressed in liver and kidney, and shares
41% sequence identity with plasma PAF-AH (Hattori et
al. 1995). Another intracellular form of PAF-AH, the PAF-
AH Ib complex, has been found in bovine brain and con-
sists of two 26 kDa catalytic subunits, a1 and a2, which
share 63% sequence identity with each other, and a regu-
latory 45-kDa b-subunit which is the product of the Miller-
Dieker lissencephaly gene (Hattori et al. 1994). PAF-AH
Ib displays high specificity for the sn-2 acetyl group of a
phosphoglyceride while Plasma PAF-AH and PAF-AH II
preferentially hydrolyse PAF analogs with sn-2 propionyl
and butyroyl moieties (Hattori et al. 1995). A loss-of-func-
tion mutation in the plasma PAF-AH gene is reported in
4% of Japanese people, and an association of inherited
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plasma PAF-AH deficiency with inflammatory diseases
has been demonstrated (Stafforini et al. 1996, Yamada &
Yokota 1997). Exogenously added PAF has a half-life of
only 5 min in the plasma of normal subjects, whereas more
than 95% of the PAF remained unchanged after 15 min in
the plasma from plasma PAF-AH-deficient subjects
(Stafforini et al. 1987, Yoshida et al. 1996), indicating that
plasma PAF-AH is mainly responsible for degradation of
PAF in human blood. In human plasma, PAF-AH is tightly
associated with both high and low density lipoprotein
(HDL and LDL) (Stafforini et al. 1987, Yamada et al. 1994),
whereas in rodents plasma PAF-AH is mainly bound to
HDL (Pritchard 1987). In contrast to most phospholipase
A2 enzymes, PAF-AHs do not require Ca2+ for enzymatic
activity (Stafforini et al. 1987). The human plasma enzyme
PAF-AH is extensively N-glycosylated and can be inhib-
ited by serine protease inhibitors such as diisopropyl
fluorophosphate (DFP). The purified plasma PAF-AH
shows a Km value that is greater than the PAF level in
human plasma under physiological and pathological con-
ditions. Nevertheless, this enzyme has an activity (Vmax
= 170 mol/min/mg) sufficient for hydrolysis of PAF even
at very low concentrations (Stafforini et al. 1987).

As mentioned earlier, plasma PAF-AH substrate speci-

ficity decreases when the sn-2 residue is lengthened.
Plasma PAF-AH hardly hydrolyzes phosphatidylcholine
with a C9 acyl chain, but the enzyme activity is dramati-
cally increased in the presence of an aldehyde group at
the o-end of the acyl chain (Stremler et al. 1991). In addi-
tion, 1-Palmitoyl-2 (5-oxovaleroyl)-sn-glycero-3-
phosphocholine and 1-palmitoyl-2-glutaroyl-sn-glycero-
3-phoshocholine, products of oxidized 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine, and 1-
Ohexadecyl-2-(butanoyl or butenoyl)-sn-glycero-3-
phosphocholines, PAF receptor agonists found in oxi-
dized LDL are also efficiently hydrolyzed by plasma PAF-
AH, as shown in Fig. 1 (Stremler et al. 1991, Stafforini et al.
1997, Marathe et al. 1999). Importantly, all these substrates
have potent biological effects and may contribute to patho-
logical events when they accumulate inappropriately
(Prescott et al. 2000).  A phosphate group is not essen-
tially required for hydrolysis by PAF-AH since some short-
chain diacylglycerols and triacylglycerols can be hydro-
lyzed by the enzyme. Therefore, it seems that the minimal
structural requirement for a plasma PAF-AH substrate may
be the portion of a glyceride derivative that includes a sn-
2 ester, and a reasonably hydrophobic chain in the posi-
tion occupied by the sn-1 chain (Min et al. 2001).

Fig. 1: PAF-AH hydrolyzes PAF and oxidized PAF-like lipids to their inactive metabolite Lyso-PAF. A: hydrolysis of sn-2 bound acetate
of PAF inactivates it to Lyso-PAF; B: hydrolysis of sn-2 bound oxidatively fragmented arachidonoyl residues of butenoyl or butanoyl PAF-
like lipids to Lyso-PAF.
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PAF-AH gene, regulation of its expression and gene
polymorphism

Tjoelker et al. (1995) cloned the human plasma PAF-
AH cDNA by screening a human macrophage cDNA li-
brary. The encoded protein is composed of 441 amino
acid residues. The gene for human plasma PAF-AH is
mapped at chromosome 6p12-21.1 and comprises 12 ex-
ons (Stafforini et al. 1996). The primary structure of plasma
PAF-AH is unique and includes a small region of homol-
ogy, a GXSXG motif. An active site triad, formed by Ser-
273 with His-351 and Asp-296 is critical for its catalytic
properties and is similar to that in several neutral lipases
(Tjoelker et al. 1995). The presence of the GXSXG motif in
plasma PAF-AH is consistent with observations that the
enzyme activity can be blocked by the active site Ser-
specific inhibitor, diisopropyl fluorophosphate.

In vitro studies have identified hematopoietic cells and
hepatocytes as the source of plasma PAF-AH. Macroph-
ages synthesize and secrete plasma PAF-AH activity dur-
ing differentiation from monocytes to macrophages (Elstad
et al. 1989, Narahara et al. 1993, Wu et al. 2004). The in-
crease in the synthesis and secretion of plasma PAF-AH
during differentiation from monocytes to macrophages
can be seen as a mechanism of control of acute inflamma-
tion. In addition, plasma PAF-AH may also serve as a
marker for macrophage differentiation in experimental
models and clinical syndromes. The remarkable difference
in plasma PAF-AH mRNA expression between monocytes
and macrophages is likely to be the result of plasma PAF-
AH promoter regulation (Cao et al. 1998). Nucleotide se-
quence of 3.5 kb 5’ to the transcription initiation site re-
veals numerous cis-acting promoter elements, including
Sp1 sites, MS2 binding consensus sequences, MS1 site,
Pu.1 box and STAT binding consensus sequences (Cao
et al. 1998, Karasawa et al. 2003). Recently, Wu et al. (2004)
showed that the ability of LPS to induce transcriptional
activation of PAF-AH involves enhanced transactivation
function of Sp1 via p38-MAPK activation.

In addition to macrophages, other hematopoietic cells
such as mast cells also secrete plasma PAF-AH in response
to the inflammatory stimuli (Nakajima et al. 1997). Recently,
Asano et al. (1999) analyzed subjects who had received
an allogeneic bone marrow transplant and demonstrated
that PAF-AH activity in plasma depended on the donor’s,
but not on the recipient’s genotype, confirming that PAF-
AH activity in plasma originates from hematopoietic stem
cell-derived cells such as macrophages, but not from hepa-
tocytes. The expression of plasma PAF-AH mRNA and
production of plasma PAF-AH protein are increased in
the resident macrophages of the liver in response to LPS
exposure (Howard et al. 1997). Up-regulation of the plasma
PAF-AH expression appears to be an important mecha-
nism for elevating the local and systemic ability to inacti-
vate PAF and oxidized phospholipids in order to minimize
PAF-mediated pathophysiology resulting from exposure
to LPS (Howard & Olson 2000). However, in mouse mod-
els of endotoxemia and bacterial sepsis, plasma activity
of PAF-AH is significantly decreased within 24 h after the
challenge and then returns to baseline in surviving ani-
mals (Gomes et al., unpublished data). One possible ex-

planation for this discrepancy is that the massive amounts
of PAF produced under endotoxic and septic conditions
is down modulating the expression of the PAF-AH since
PAF itself was shown to inhibit the secretion of PAF-AH
by macrophages through a calcium-dependent mechanism
(Narahara et al. 2003). Nevertheless, we have observed
that PAF induces, rather than inhibits, PAF-AH expres-
sion in macrophages using a PAF-AH reporter construct
and a different subset of macrophages (Cao et al. 1998),
indicating that the effect of PAF on PAF-AH expression
is variable, depending on the macrophage type and the
experimental conditions. Another distinct possibility is
that PAF-AH activity in sepsis appears to be time-depen-
dent, for example, activity can be rapidly depressed and
then come back to normal or supra normal values (Gomes
et al., unpublished data). All together, these evidence in-
dicate that the PAF-AH gene contains elements that con-
fer responsiveness to inflammatory challenge.

Autosomal recessive deficiency of plasma PAF-AH
activity in Japanese families was first reported Miwa et al.
(1988), and later this was showed to be due to a loss-of
function mutation (Val279Phe, exon 9, position 994; G→T)
in the plasma PAF-AH gene (Stafforini et al. 1996). An-
other loss-of-function mutation (Gln281Arg, exon 9, posi-
tion 1001, A→G) is also found in the Japanese population
(Yamada & Yokota 1997). The incidence of the V279F mu-
tation is reported to be high in healthy Japanese with
heterozygous and homozygous frequencies of 27 and 4%,
respectively (Stafforini et al. 1996). Although this muta-
tion has previously been reported exclusively in the Japa-
nese population, later on it was reported also in Kirghiz
and Turkish populations (Balta et al. 2001). The identifi-
cation of genetic lesions that abolish plasma PAF-AH
activity was an important step towards the investigation
of the role of this enzyme in diseases. Indeed, PAF-AH
mutations have been associated with several diseases with
inflammatory background including, asthma, atheroscle-
rosis, myocardial infarction, and dilated cardiomyopathy
(Karasawa et al. 2003).
PAF-AH in diseases and disease models

Many in vitro and in vivo observations indicate that
plasma PAF-AH regulates inflammation by terminating
signals triggered by PAF and oxidized PAF-like lipids
(Imaizumi et al. 1995, Prescott et al. 2000, Stafforini 2001).
In fact, upon cloning it was demonstrated that the recom-
binant form of plasma PAF-AH blocks inflammatory re-
sponses triggered by administration of exogenous PAF
to experimental animals (Tjoelker et al. 1995). Addition-
ally, deficiency of plasma PAF-AH due to a genetic muta-
tion (see above) is correlated with severity or negative
outcomes in several inflammatory and/or  thrombotic and
cardiovascular diseases such as asthma (Stafforini 2001),
necrotizing enterocolitis (Imaizumi et al. 1995), myocardial
infarction (Yamada et al. 1998), stroke (Hiramoto et al. 1997),
non-familial dilated cardiomyopathy (Ichihara et al. 1998),
and cerebral hemorrhage (Yoshida et al. 1998). Moreover,
the prevalence of the mutant genotype (V279F) was sig-
nificantly more frequently in patients with atherosclerotic
occlusive disease than in control subjects (Unno et al.
2000). Therefore, loss-of-function mutations leading to
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hereditary deficiency of plasma PAF-AH activity may con-
tribute to the spectrum of severity in inflammatory syn-
dromes.

Studies in experimental animals and humans indicate
that PAF may be an important mediator of asthma. PAF
promotes eosinophil recruitment to sites of allergic in-
flammation through activation of the eosinophil adhesion
molecules and through direct and indirect chemotactic
effect (Silva et al. 1989, e Silva et al. 1991, Martins et al.
1993). In a murine model of allergen-induced asthma, the
administration of recombinant plasma PAF-AH had a
marked effect on late-phase pulmonary inflammation,
which included a significant reduction in airway eosino-
phil infiltration, mucus secretion, and airway hyperreac-
tivity in response to methacholine (Henderson et al. 2000).
Moreover, Stafforini et al. (1999) reported that the preva-
lence of the V279F mutation in asthmatic subjects was
higher than in Japanese healthy controls and that the se-
verity of asthma was highest in homozygous-deficient
subjects. By contrast, conflicting results were also re-
ported in the study by Satoh et al. (1999) where the allele
frequency of the V279F mutation in patients with asthma
was not distinct from that in Japanese healthy controls.
Also, a phase II study showed that the administration of
human recombinant plasma PAF-AH to atopic subjects
with mild asthma failed to reduce either earlier- or late-
asthmatic response to bronchial allergen challenge (Henig
et al. 2000). This discrepancy between pre-clinical studies
and the negative phase II trials is largely unexplained, but
it is possible that dose and route of administration of
recombinant plasma PAF-AH may not have been ad-
equate. Furthermore, clinical asthma is an heterogeneous
syndrome with several stages; thus, the appropriate pa-
tient subgroup may not have been identified.

In addition to asthma, numerous studies have sug-
gested an involvement of PAF in the pathology of sys-
temic anaphylaxis. Most manifestations of the anaphy-
lactic shock are reproduced by an injection of PAF into
animals (Martins et al. 1987, Imaizumi et al. 1995), and high
levels of PAF have been detected in the serum of rodent
anaphylactic models (Pinckard et al. 1979). Also, PAF-re-
ceptor knock-out mice showed lower mortality than wild-
type controls after antigen challenge (Ishii et al. 1998).
Consistent with this, recombinant plasma PAF-AH im-
proved the mortality in PAF-induced and antigen-induced
anaphylactic shock models in mice (Fukuda et al. 2000),
suggesting that excessive PAF generation is causing
dysregulated anaphylactic inflammation that can be con-
trolled by recombinant plasma PAF-AH.

PAF has also been shown to significantly participate
in myocardial reperfusion injury (Loucks et al. 1997). In
that respect, important biological activities of PAF include
neutrophil activation and chemotaxis, alterations in vas-
cular permeability and platelet activation (Martins et al.
1988, 1989, Zimmerman et al. 1990). Here again, pre-clini-
cal data indicate that administration of recombinant plasma
PAF-AH reduced myocardial injury induced by ischemia/
reperfusion in rabbits by regulating exacerbated inflam-
mation (Morgan et al. 1999). The roles of endogenous
PAF-AH in atherosclerotic complications have recently
been reviewed (Eisaf & Tselepis 2003, Chen 2004).

Another important syndrome of dysregulated inflam-
mation is sepsis. Sepsis is one of the most frequent causes
of death in intensive-care patients worldwide. In the
United States alone approximately 700,000 people are af-
fected annually and 210,000 deaths are accounted for
(Angus & Wax 2001, Martin et al. 2003). The currently
definition for sepsis states that this syndrome is the inter-
section between systemic inflammatory responses (SIRS)
and the presence of infection (Bone et al. 1992), but more
recently sepsis is being considered a consequence of
poorly regulated innate immune response to microbial
products (Glauser 2000). Widespread activation of cells
responsive to pathogens results in uncontrolled systemic
inflammation with the release of an array of inflammatory
mediators including cytokines, reactive oxygen species
and lipid mediators such as PAF. These factors in combi-
nation can induce vascular dilatation and increase in per-
meability with leakage of plasma components, and extrava-
sation and activation of leukocytes to tissues and organs.
In addition, inflammatory mediators and pathogen com-
ponents will also activate the coagulation system caus-
ing disseminated intravascular coagulation. Together,
those effects will lead to hypoperfusion and tissue hy-
poxia that apparently are the main cause of organ dys-
function, which represents the often-lethal stage of sep-
sis (Riedemann et al. 2003, Van Amersfoort et al. 2003).

There are substantial evidence to believe that PAF or
PAF-like lipids are central effectors in the sepsis syndrome
(Mathiak et al. 1997, Tetta et al. 1997, Zimmerman &
McIntyre 2004). Among these is evidence that PAF con-
tributes to acute sequestration of neutrophils and their
adhesion to endothelial cells (Bozza et al. 1994, Zim-
merman et al. 1996) as well as their accumulation in the
site of inflammation (Bozza et al. 1994) after endotoxin
(lipopolysaccharide) administration. A provocative obser-
vation is that overexpression of the PAF receptor in-
creases lethality in response to lipopolysaccharide ad-
ministration in mice (Nagase et al. 1997), although animals
made genetically deficient in the PAF receptor remained
susceptible to endotoxin with vascular and cytokine re-
sponses equivalent to wild type controls (Ishii et al. 1998).

In humans, an initial observation was the presence of
intravascular PAF activity in children with sepsis
(Bussolino et al. 1987). Another early study demonstrated
that there was increased bioactivity characteristic of PAF
in samples from septic patients when compared with con-
trols (Lopez Diez et al. 1989). In subsequent studies, in-
creased PAF bioactivity was also reported in plasma
samples from patients with bacteremia compared with
blood from control subjects (Heuer 1991). Despite encour-
aging results with PAF receptor antagonists in animal
models of endotoxemia and sepsis (Chang et al. 1987, 1990,
Rabinovici et al. 1990), most of the clinical trials conducted
with these drugs have not confirmed the benefits of these
drugs in humans (Dhainaut et al. 1998, Suputtamongkol
et al. 2000). Importantly, Graham et al. (1994) reported de-
creased PAF-AH plasma activity in blood samples from
septic patients and that the half-life of PAF was prolonged
in the plasma of septic patients who died compared to
survivors or normal volunteers. We have confirmed this
observation and expanded it to show that PAF-AH plasma
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be determined, and likely involve the multiple challenges
inherent to sepsis trials. In addition, subsets of septic
patients (i.e. those with depressed levels of endogenous
PAF-AH rather than those in whom it was returned to
normal or supra-normal levels) may be the best candi-
dates for treatment with the recombinant enzyme. As an
additional variable, there is evidence that the severity of
sepsis influences the efficacy of blocking therapies and
that a positive effect of PAF-AH may have been less readily
detected in the phase III trial (Minneci et al. 2004). More-
over, multiple, redundant pathophysiological components
appear to be simultaneously activated in sepsis, and it is
unlikely that therapy directed at any one of them will dra-
matically improve survival in the clinical setting. Rather, a
combination of therapies directed at many arms of the

Fig. 2: plasma PAF-AH activity at different time points after the
challenge of mice with LPS, or a virulent strain of Neisseria
meningitidis (serogroup B N44/89).

activity was also decreased in a time dependent fashion
in models of endotoxemia and meningococcemia in mice
(Fig. 2). In each of these models, there was an initial de-
crease in the levels of PAF-AH activity that persisted up
to 48 h. At later time points, there was a recovery in the
levels of PAF-AH activity in surviving animals. In addi-
tion, the data illustrate variability in PAF-AH activity lev-
els over time and triggered by different inflammatory and
infectious challenges that may be relevant to variability
in PAF-AH activity levels in sepsis in humans. One po-
tential mechanism for decreased plasma PAF-AH activity
is inactivation of the enzyme by oxidation (Ambrosio et
al. 1994, Stafforini et al. 1997). Therefore, in conditions of
shock or in the cellular environment of septic inflamma-
tion, oxidants may induce synthesis of PAF or generation
of oxidized phospholipid and concomitantly inactivate
plasma PAF-AH.

Based on those results we have hypothesized that
recombinant PAF-AH could be used to replace the en-
dogenous activity to normal or increased levels and that

this procedure would have beneficial effects on sepsis
syndrome. In fact, treatment with recombinant PAF-AH
reduced systemic inflammation and death in surrogate
models of sepsis and endotoxemia (Gomes et al., unpub-
lished data).  These results suggest that PAF-AH may
play a key role in the control of dysregulated inflamma-
tory responses triggered during bacterial infections and
provide additional evidence that plasma PAF-AH is a ter-
minator of inflammatory signals in humans. However, de-
spite the remarkable protective effect shown by the ad-
ministration of recombinant PAF-AH to septic patient in
an initial phase II clinical study (23% mortality reduction)
(Schuster et al. 2003), a larger phase III study did not
confirm this effect (Opal et al. 2004). The reasons for the
difference in the Phase II and Phase III results remain to

Fig. 3: the PAF Signaling System Mediates Activation Responses in
Inflammation and Thrombosis.  A: the PAF signaling system in-
cludes a cell surface receptor that is constitutively present on the
plasma membranes of platelets and a variety of leukocyte subtypes
and intracellular signal transduction pathways that are linked to the
PAF receptor via G proteins and other molecular intermediates.
Engagement of the  PAF receptor by its ligands, PAF and certain
structurally-similar PAF-like oxidatively modified phospholipids
(Ox-Pl), induces functional responses in these target cells and oth-
ers. In some physiologic and pathologic circumstances the PAF
signaling system links the inflammatory and thrombotic cascades;
B: cellular activities triggered by the PAF signaling system are regu-
lated by several mechanisms, as illustrated in the specific example
of synthesis of PAF by human endothelial cells and its activation of
target polymorphonuclear leukocytes (PMNs).  These regulatory
mechanisms include a tightly controlled synthetic pathway, PAF
receptor expression on specific target cells, juxtacrine activation
of target cells by membrane-associated PAF (spatial regulation of
signaling ) and degradation of PAF and Ox-Pl by cellular and plasma
enzymes, the PAF acetylhydrolases. See text and cited references
for details.
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septic process, may prove to be the best approach and
rPAF-AH may prove to be a valuable tool in specific con-
ditions.
Concluding remarks

The PAF signaling system is specialized for informa-
tion transfer in the inflammatory and thrombotic systems,
in addition to mediating responses of several other cell
types (Zimmerman et al. 2002). One important feature is
the expression of the PAF receptor on both platelets and
innate immune effector cells. Signaling via the PAF recep-
tor induces homeostatic cellular responses but there is
also extensive experimental and clinical evidence that PAF
signaling can mediate pathologic events if it is dysregu-
lated, and that this is a mechanism of disease.  One way
that PAF signaling can become dysregulated is by de-
pression or failure of endogenous regulatory checkpoints
that limit the biologic activities of the PAF signaling sys-
tem. Our studies and those of others outlined in this re-
view identify plasma PAF-AH as one of the key regula-
tory factors involved, and show that its levels are modu-
lated in inflammation and injury induced by sepsis and
other pathologic conditions (Fig. 3). These observations
provide new insights into molecular control in inflamma-
tory responses and provide additional evidence that the
PAF signaling system is a critical component in innate
immune pathways and their links to hemostasis and throm-
bosis.
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