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Mycobacterium leprae is among the most monomor-
phic of bacterial pathogens and shows little genomic se-
quence diversity between isolates from different conti-
nents, ethnic groups or host species (Truman et al. 2011). 
There are no known pathological variants of M. leprae, 
yet leprosy is manifest over a broad clinical and histo-
pathological spectrum with widely divergent immuno-
logical features. Typically a rare disease in populations, 
only a small proportion of humans appear to be suscep-
tible to the infection. Though environmental exposures 
may have some modulating influence on an individual’s 
response to M. leprae, the spectrum of host responses 
and general susceptibility to leprosy appear to be innate 
or genetically derived.

Most genetic studies addressing issues of suscep-
tibility to leprosy or the immunological pathways in-
volved in pathogenesis of the infection have been con-
ducted in human populations. This is in part due to an 
appropriate focus on the relevant host species; but it also 
is a matter of the general paucity of animal models for 
leprosy and the few laboratories around the world that 
are equipped to deal with M. leprae-infected animals. 
However, animal models can contribute to our under-
standing about immunogenetics in leprosy, especially 

through comparative studies to confirm the relative im-
portance of specific genetic markers and in deciphering 
the underlying mechanisms involved in the expression 
of different disease phenotypes.

Even early leprosy investigators noted differing 
growth potentials for M. leprae according to the genetic 
background of the mouse strains being used in their foot 
pad studies (Reisner 1943, Shepard 1962, Pattyn 1965). 
Variations in susceptibility to mycobacterial infection 
among mice have been recognized for more than 60 
years and investigation of the differential susceptibility 
of mouse strains to infection with Mycobacterium bo-
vis (BCG) led to discovery of a single autosomal gene 
(Bcg/Nramp1/Slc11a1) that determines susceptibility to 
M. bovis, Mycobacterium lepraemurium and a variety 
of atypical mycobacteria (Gros et al. 1981, Schurr et al. 
1990). Today, a wide variety of genetically engineered 
“knockout” mouse strains are available and directed 
mutagenesis can be used to create a large number of 
specific genetic defects. Engineered mice are now be-
ing used to dissect the immune response pathways that 
influence granuloma formation during infection with 
M. leprae and to address specific issues with regards to 
disease susceptibility. In addition, armadillos are now 
recognized as natural hosts of M. leprae and recent com-
pletion of their whole genomic sequence now makes it 
possible to explore their genetic background and specific 
physiological responses to M. leprae infection. 

The course of M. leprae-infection in animals is much 
shorter than in humans. Experimental studies in animal 
hosts with well defined genetic backgrounds can bring 
unique insights into the immunogenetic factors that 
might influence leprosy in humans. In this paper we 
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A variety of host immunogenetic factors appear to influence both an individual’s susceptibility to infection with 
Mycobacterium leprae and the pathologic course of the disease. Animal models can contribute to a better understand-
ing of the role of immunogenetics in leprosy through comparative studies helping to confirm the significance of various 
identified traits and in deciphering the underlying mechanisms that may be involved in expression of different disease 
related phenotypes. Genetically engineered mice, with specific immune or biochemical pathway defects, are particu-
larly useful for investigating granuloma formation and resistance to infection and are shedding new light on borderline 
areas of the leprosy spectrum which are clinically unstable and have a tendency toward immunological complications. 
Though armadillos are less developed in this regard, these animals are the only other natural hosts of M. leprae and 
they present a unique opportunity for comparative study of genetic markers and mechanisms associable with disease 
susceptibility or resistance, especially the neurological aspects of leprosy. In this paper, we review the recent contribu-
tions of genetically engineered mice and armadillos toward our understanding of the immunogenetics of leprosy.
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summarize data evolving from the use of genetically en-
gineered mouse strains and nine-banded armadillos with 
regard to factors affecting overall susceptibility to infec-
tion with M. leprae and the pathogenesis of leprosy.

Ethics - Experiments were approved by the Institu-
tional Animal Care and Use Committee and performed 
in compliance with all applicable state and federal laws 
and regulations in accordance with Policy on Humane 
Care and Use of Laboratory Animals. The National 
Hansen’s Disease Program’s Assurance of Compliance 
(#A3032-01) is registered with the Office of Laboratory 
Animal Welfare.

Mouse strains used to study immunogenetics of lep-
rosy - Conventional (immunocompetent) mice - Charles 
Shepard (1960) demonstrated the multiplication of M. le-
prae in the foot pads of mice in the early 1960’s. Based 
on the knowledge of the preference of M. leprae for the 
cooler areas of the body, this was the first time the ba-
cilli had been successfully and reproducibly cultured 
outside the human host. In this model of infection, an 
inoculation of a few thousand bacilli into the foot pads 
of immunocompetent mice results in growth which 
plateaus at approximately one million organisms. The 
histopathological changes consist of small granulomas 
containing infected macrophages and lymphocytes and 
there is essentially no dissemination of infection. Thus, 
immunocompetent mice are by and large resistant to dis-
ease development with M. leprae. Although growth was 
limited, this ability to “culture” M. leprae was a break-
through which launched numerous studies (reviewed in 
Levy & Ji 2006), including the isolation and propagation 
of bacilli from human lesions, evaluation of new leprosy 
therapeutics and development of assays for the detection 
of drug resistant strains of M. leprae and diagnostics. 
In addition, it allowed for fundamental investigations of 
host resistance and vaccine evaluation.

Athymic nu/nu and other immunecompromised mice 
- Soon after the development of this standard “mouse 
foot pad assay,” various investigators applied this tech-
nique to immunodeficient murine strains, in part, with 
the aim of developing models more representative of 
human lepromatous leprosy (LL). Studies in neonatally 
thymectomized or congenitally athymic mice and rats 
(Rees 1966, Colston & Hilson 1976, Dawson et al. 1983, 
Chehl et al. 1983), T900r mice (Ebenezer et al. 2002), 
as well as later studies in SCID mice (Yogi et al. 1991, 
Azouaou et al. 1993), established the significance of 
lymphocytes, especially T cells, in host defence in lep-
rosy. In athymic nu/nu mice, multiplication of M. leprae 
in the foot pad can reach 1 x 1010 or more bacilli with 
the infected tissue composed primarily of macrophages 
heavily laden with the bacilli (Hagge et al. 2004). In 
this regard, athymic nu/nu mice show characteristics 
of LL disease. In addition to their immunological sig-
nificance, athymic nu/nu mice are utilized for routine 
culture of large numbers of highly viable M. leprae for 
experimental use (Truman & Krahenbuhl 2001).

Gene knockout mice - The development of genetically 
engineered mice has opened the possibility for addition-

al murine models for the study of leprosy. Using mice 
with deficiencies at specific points in the cascade of the 
immune response provides more options for analyzing 
the effects of infection compared to the essentially all-
or-nothing approach afforded by immunocompetent and 
athymic nu/nu mice. This is especially promising in the 
search for models for the borderline areas of the spec-
trum which are clinically unstable and have a tendency 
toward immunological complications that are poorly 
defined (Scollard et al. 2006a). One must acknowledge, 
however, that leprosy is a complex disease. Entry into 
the spectrum and progression of the disease is likely in-
fluenced by an amalgamation of several personal (e.g., 
age, hormones) and environmental (e.g., poor nutri-
tion, co-infections with immunemodulating parasites, 
viruses, or worms, or exposure to other mycobacteria) 
pressures, as well as genetic factors which can affect 
long term immune status. It is, therefore, unlikely that a 
single gene determines the outcome of infection across 
varied endemic populations and environments. Howev-
er, studying infection in the context of defined immune 
deficiencies can lend insights into both the causal and 
resultant aspects of exposure and may suggest targets for 
prevention, early diagnosis and improved treatments. 

In our gene knockout mouse studies, we have uti-
lized the Shepard model and a higher dose lepromin 
test-like model (Adams et al. 2000, 2002, Cooper et al. 
2002a, Hagge et al. 2007, 2009). The Shepard model is 
used for bacterial growth and enumeration and molecu-
lar and histological evaluation. As a complement, the 
high dose model is used to determine the ability of the 
host to form a granuloma in response to M. leprae infec-
tion. It employs a sufficient initial inoculum to stimu-
late a relatively rapid and larger cellular infiltrate. Foot 
pad induration can be easily measured over time as an 
external indicator of cellular infiltration. Moreover, foot 
pad granuloma cells can be harvested at various times 
post-infection for sophisticated exploration of their 
composition and function by flow cytometry and mo-
lecular analyses. Clinical correlates for these types of 
granuloma investigations have been attempted (Moura 
et al. 2007), but can be difficult at endemic field sites as 
access to the requisite technology and fresh skin biop-
sies from leprosy patients rarely co-exist.

In addition, using the higher dose infection model 
has enabled us to examine the granuloma as opposed 
to relying on the lymph nodes for discerning immuno-
reactivity. Since lymph node cells are typically easy to 
obtain and of sufficient number for advanced methods of 
analyses, they have been studied in place of the granu-
loma population and regarded as representative of the 
immuneprotective response. In our studies, however, we 
found a striking difference in the cellular composition at 
the site of infection itself and the popliteal lymph nodes 
draining this site (Hagge et al. 2007, 2009). While the 
lymph nodes of M. leprae-infected immunocompetent 
mice are composed of B cells and naïve CD4+ T cells, the 
lymphocytes which infiltrate the foot pads are primarily 
CD4+ effector T cells, presumably there due to a selec-
tive immigration or retention of these cells in the granu-
loma (Table I). Thus, it is important to emphasize the 
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significance of these relevant cells. In leprosy, the host 
response to M. leprae centres around the establishment, 
composition, configuration and actions of the granuloma 
and these characteristics are distinctive depending on 
the patient’s position in the clinical/immunepathological 
spectrum. It is in this microenvironment that immunity 
to M. leprae is carried out and results from the intricate 
interaction of the various host cells and their products 
with the organism and its constituents.

It has long been speculated that there may be a genetic 
predisposition(s) for contracting leprosy upon exposure 
to M. leprae. Polymorphisms in several genes in both the 
innate and adaptive phases of the immune response have 
been associated with susceptibility to intracellular infec-
tions (reviewed in van de Vosse et al. 2009, Alter et al. 
2011, Cardoso et al. 2011b). Below is an overview of the 
outcomes of M. leprae infection in mice with a knockout 
in some of the genes associated with leprosy.

Interleukin (IL)-12/IL-23/interferon (IFN)γ axis - 
Deficiencies in the IL-12/IL-23/IFNγ axis are associated 
with mendelian susceptibility to mycobacterial diseases 
(MSMD), a group of inherited genetic mutations re-
sulting in the impaired development along the T helper 
(Th)1 cytokine pathway (van de Vosse et al. 2009, Cot-
tle 2011). MSMD results in a severe impairment of the 
protective host response and a high susceptibility prima-
rily to poorly pathogenic environmental mycobacterial 
and M. bovis BCG associated vaccines. Mutations have 
been identified in the IL-12p40 subunit, IL-12Rβ1 chain, 
the IFN-γR1 and IFN-γR2 chains, tyrosine kinase 2 and 
nuclear factor-κB (NF-κB)-essential modulator. Muta-
tions can be recessive or dominant and result in partial 
or complete gene deficiency. Importantly, recent stud-
ies have linked rare amino acid changes in IL-12Rβ1 to 
childhood tuberculosis (Boisson-Dupuis et al. 2011).

IL-12/IL-23 knockout mice - IL-12 and IL-23 are key 
regulatory cytokines in innate and adaptive immunity. 
IL-12, produced early in infection by macrophages and 
monocytes, promotes the development of a Th1 type 
cell mediated immune response which is crucial for an-
timicrobial immunity to intracellular pathogens. IL-23 
is produced primarily by macrophages and dendritic 
cells; however, instead of inducing the differentiation 
of naïve T cells into IFNγ generating Th1 cells, IL-23 
induces an alternative T cell subset, Th17 cells, which 

produce the proinflammatory cytokine, IL-17. This re-
sponse is important for the induction of chronic inflam-
mation and granuloma formation (reviewed in Khader 
& Gopal 2010, Torrado & Cooper 2010). Both IL-12 and 
IL-23 share a common p40 subunit and p40-/- mice have 
a reduced ability to control growth of M. tuberculosis 
(Cooper et al. 2002b, Khader et al. 2005).

To evaluate the roles of IL-12 and IL-23 in experimen-
tal leprosy, we studied M. leprae infection in p40-/- mice. 
As shown in Fig. 1A, growth of M. leprae was significant-
ly enhanced in p40-/- mice (p < 0.01). Histopathologically, 
C57BL/6J foot pads exhibited mild lymphocytic and his-
tiocytic infiltrates; p40-/- mice also developed only a mild 
inflammation. In the high dose model, foot pad induration 
was markedly decreased compared to that of C57BL/6J 
mice (Fig. 1B). Leukocyte accumulation into both con-
trol and p40-/- foot pads consisted primarily of αβ+CD4+ T 
cells and CD11b+ macrophages; however, the % CD8+ cell 
infiltration was augmented in p40-/- mice. Furthermore, 
CD69 and CD25 expression were markedly augmented in 
the p40-/- foot pads, especially on the CD8+ T cell popu-
lation. Expression of IFNγ and tumour necrosis factor 
(TNF), cytokines crucial to an effective Th1 response 
and CXCL-10, CCL3 and CCL4, chemokines important 
in granuloma formation, were significantly lower in p40-/- 

foot pads compared to C57BL/6J foot pads as infection 
progressed (Fig. 1C). These results indicate that, com-
pared to C57BL/6J mice, p40-/- mice exhibited a decreased 
ability to control M. leprae growth and evidenced reduced 
foot pad induration with altered T cell composition and 
cytokine/chemokine production due to the lack of protec-
tive IL-12 and proinflammatory IL-23, respectively.

IFNγ knockout mice - A key role for CD4+ and CD8+ T 
cells in immunity to mycobacterial infections is the pro-
duction of IFNγ, a cytokine important for antimycobac-
terial activity and for regulating IL-17-producing T cells 
(Cruz et al. 2006). In humans, an association between 
leprosy resistance and the single nucleotide polymor-
phism (SNP), IFNG +874T, has been found (Cardoso et al. 
2011b). To study the role of IFNγ in experimental leprosy, 
control and IFNγ-/- mice were infected in the foot pads as 
per the Shepard model (Adams et al. 2002). Initially, the 
rate of growth of M. leprae was similar in both strains 
of mice, but growth continued and plateaued at approxi-
mately one log higher in IFNγ-/- mice. By nine months 

TABLE I
Cellular composition of the foot pads and lymph nodes of Mycobacterium leprae-infected mice

Marker Foot pad Lymph node

Leukocytes Macrophages > lymphocytes Lymphocytes > macrophages
Lymphocytes T cells > B cells B cells > T cells
T cells CD4+ > CD8+ CD4+ = CD8+

CD4+ Effector > naïve Naïve > effector
CD8+ Effector > naïve Naïve > effector
Macrophages I-A+ > I-A- I-A- > I-A+
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post-infection, the foot pads of the M. leprae-infected 
IFNγ-/- mice were visibly enlarged, indicating that cel-
lular infiltration and granulomatous response continued 
to develop even after M. leprae growth was restrained. 
In contrast to control mice, IFNγ-/- mice exhibited large 
aggregates of mononuclear cells, were not organized into 
well-formed granulomas and contained only small collec-
tions of randomly interspersed lymphocytes, all features 
of borderline lepromatous lesions. Moreover, while few 
Ly6G+ polymorphonuclear (PMN) cells are ever found 
in the foot pads of control mice, there were substantial 
increases in both the number and percentage of PMNs in 

the IFNγ-/- foot pads. Of interest, this regulation of PMN 
infiltration into leprosy granulomas by IFNγ may be of 
use in the study of leprosy reactions.

LT-α knockout mice - Using whole genome based ge-
netic approaches (positional cloning), Alcais et al. (2007) 
identified a polymorphism, LTA+80 located in the pro-
moter region of the lymphotoxin-α (LTα) gene, that was 
significantly associated with an increase in leprosy per 
se. This association was found in three distinct popula-
tions of patients (i.e. Vietnamese, Indian and Brazilian) 
and was strongest in patients first diagnosed when less 
than 16 years old. Immunologically, LTα has been im-

Fig. 1: Mycobacterium leprae infection in p40-/- mice. A: C57BL/6J (circles) and p40-/- (triangles) mice were infected in each hind foot pad with 
6 x 103 viable M. leprae (Shepard growth model). At 90, 180, 360 and 540 days post-infection, the number of acid fast bacilli (AFB) per foot pad 
was determined. Each symbol represents one mouse. The threshold of counting ability is 4.8 x 103 AFB per foot pad; B: C57BL/6J (circles) and 
p40-/- (triangles) mice were inoculated in each hind foot pad with 3 x 107 viable M. leprae (high dose granuloma model). Foot pad induration 
was measured using a Vernier caliper. Data shown is mean ± standard deviation of four mice per group; C: foot pad tissue from mice in B was 
harvested at 30, 126 and 261 days post-infection and RNA was purified and subjected to real-time polymerase chain reaction for cytokines and 
chemokines. Gene expression is normalized (n) using GAPDH mRNA expression. Data shown are means ± standard deviation; IFN: interferon; 
TNF: tumour necrosis factor; *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001. 
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plicated in the development of cell mediated immunity, 
the induction of chronic inflammation, the development 
of secondary lymphoid organs, cytokine, chemokine and 
cell adhesion molecule expression and T cell activation 
and memory cell persistence (Kratz et al. 1996, Rennert 
et al. 1996, Roach et al. 2001, Ware 2005, Soroosh et 
al. 2011). While the actual role of LTα in host defense 
against leprosy has not been identified, its probable 
proinflammatory functions are supported by its detec-
tion in tuberculoid leprosy lesions and in type 1 reac-
tions (Yamamura et al. 1991, Bleharski et al. 2003). 

In our studies (Hagge et al. 2009), multiplication of 
M. leprae in the foot pads of control and LTα-deficient 
mice was similar early in infection. However, bacterial 
counts were significantly higher in the LTα-deficient 
mice late in infection, indicating a continued viable state. 
Few lymphocytes accumulated in the foot pad tissue. 
In the foot pad induration model, induration developed 
more slowly in LTα-deficient mice, compared to control 
mice, was not sustained and actually declined. Flow 
cytometric analyses demonstrated few lymphocytes in 
LTα-deficient foot pads, but the popliteal lymph nodes 
contained significantly more T cells compared to con-
trol mice, indicating an aberration in cell trafficking. 
LTα-deficient foot pads also exhibited a significantly 
lower expression of inflammatory cytokines and chem-
okines. These data indicate that LTα influences the onset 
of adaptive immunity to M. leprae and is essential for 
the maintenance of the granulomatous response during 
the chronic stage of infection in the mouse model. These 
features may underlie the association of genetic variants 
in the LTα gene and human leprosy.

TNF knockout mice - TNF is an important mediator 
in both innate and adaptive immunity and plays a piv-
otal role in inflammatory phenomena that culminate 
in either pathogenesis or resistance in mycobacterial 
disease (Adams et al. 1995, Flynn et al. 1995, Bean et 
al. 1999, Kaneko et al. 1999, Lin et al. 2010). Recent-
ly, the association of SNP TNF-308A with protection 
against leprosy was confirmed (Cardoso et al. 2011a). 
There is impaired TNF production in TLR2-deficient 
mouse macrophages upon stimulation with M. leprae 
(Bochud et al. 2003). Perhaps the best indicator of the 
importance of TNF in host defence against leprosy was 
revealed during treatment of individuals with anti-TNF 
therapy for rheumatoid arthritis who subsequently 
manifested borderline leprosy (Scollard et al. 2006b); 
moreover, when the anti-TNF therapy was discontin-
ued, the patients developed type 1 reactions.

We have evaluated the role of TNF in experimental 
leprosy using both TNF-/- and TNFR1-/- mice (Hagge et 
al. 2009). Upon M. leprae infection, growth was aug-
mented 10-fold throughout the nine-12 month infec-
tion period compared to control mice, emphasizing the 
importance of TNF in protection in both the acute and 
chronic stages of infection. Histopathologically, TNF-/- 
and TNFR1-/- mice developed an extensive and diffuse 
lymphocytic infiltration that consisted predominantly of 
CD4+ T cells. Foot pad induration was initially delayed 
in both knockout strains, but developed to near control 
levels by 28 days post-infection (DA Hagge et al., un-

published observations). Flow cytometric analyses dem-
onstrated that leukocyte accumulation in all strains con-
sisted primarily of αβ+CD4+ effector T cells and I-Ab+ 
macrophages; however, this response, as well as CD69+ 
T cell infiltration, was augmented in the knockout mice. 
Expression of inflammatory cytokines and chemokines 
was elevated in TNF-/- and TNFR1-/- foot pads compared 
to control mice. These data suggest that TNF is crucial 
for the development and maintenance of an organized 
and protective granuloma and for the temperance of the 
inflammatory response in experimental leprosy.

IL-10 knockout mice -	 IL-10 is generated by T cells 
and macrophages and is an inhibitor of proinflamma-
tory cytokine production. IL-10-/- mice experimentally 
infected with many intracellular pathogens succumb rap-
idly, not due to overwhelming growth of the organisms, 
but from a severe pathology associated with an intense 
production of inflammatory mediators. There is evidence 
that IL-10-/- mice have increased resistance to mycobac-
terial infection, forming larger granulomas contain-
ing macrophages with enhanced antimicrobial activity 
(Jacobs et al. 2000) and IL-10 supplementation in vitro 
prolongs M. leprae survival in macrophages (Fukutomi 
et al. 2004). In human genetic studies, the -819T allele, 
located in the promoter region of the IL10 gene, is associ-
ated with leprosy susceptibility (Cardoso et al. 2011b).

Upon foot pad infection using the Shepard model, 
similar growth kinetics for M. leprae multiplication were 
observed in both control and IL-10-/- mice (unpublished 
observations). Histopathologically, IL-10-/- mice devel-
oped an increase in the numbers of lymphocytes, macro-
phages and especially epithelioid cells, compared to con-
trol mice. IL10-/- mice also yielded slight increases in both 
foot pad induration and in the numbers of cells isolated 
from the foot pad in the high dose model. Therefore, IL-10 
deficiency has only a mild immunomodulatory effect on 
M. leprae infection in the already resistant mouse model. 
Studies examining IL-10 deficiency in conjunction with 
other cytokine knockouts are currently underway.

PARK2 knockout mice - Using a positional cloning 
approach, genetic variants in the shared promoter region 
of the PARK2 and PACRG genes have shown an asso-
ciation with susceptibility to leprosy (Mira et al. 2004). 
In this study, significant linkage of chromosomal region 
6q25 with leprosy was found. Systematic association 
scanning of the linkage peak interval detected an as-
sociation of PARK2/PACRG promoter variants with lep-
rosy on two diverse ethnic backgrounds (i.e. Vietnam-
ese and Brazilian). PARK2 and PACRG are part of the 
cellular ubiquitination system. PARK2 encodes an E3 
ligase, parkin and has been associated with early onset 
juvenile Parkinson’s disease. Parkin plays a role in con-
trolled proteolysis, modulation of the cellular anti-oxi-
dants response and mitochondrial function and regula-
tion of innate immunity (Alter et al. 2011). It also has an 
anti-apoptotic effect (Berger et al. 2009) and promotes 
autophagy. Thus, it may have a role in protection against 
intracellular pathogens by promoting bacterial killing 
while avoiding apoptosis (Deretic 2010). Little is known 
regarding the function of PACRG. 
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In an attempt to understand the immunological im-
plications of PARK2 and leprosy, we evaluated M. le-
prae infection in PARK2 knockout mice. Mice were 
infected in the foot pads with M. leprae and bacterial 
growth was monitored for up to 12 months. Multiplica-
tion of M. leprae in the PARK2 foot pads was similar to 
that of the wild type (WT) littermate controls through-
out infection (Fig. 2A). Interestingly, M. leprae-infected 
PARK2 foot pads exhibited elevated expression of IFNγ, 
TNF, IL12p35 and IL12/23p40 at four months post-in-
fection, just prior to the peak of M. leprae growth which 
is halted due to the onset of adaptive immunity (Fig. 2B). 
In the foot pad induration model, foot pad enlargement 
was greater in the knockout compared to the WT foot 
pads (Fig. 2C). However, when lymphocyte and myeloid 
cells in the foot pads and lymph nodes were assessed 
by flow cytometry, there was no difference in the pro-
portion of cell populations between the PARK2 and WT 
foot pads with any marker studied (i.e. CD3, CD4, CD8, 
CD69, CD44hiCD62lo, CD44hiCD45RBlo, B220, NK1.1.1, 
Ly6G, CD11b, CD11c, IAb). Bone marrow derived mac-
rophages from both strains of mice supported M. leprae 
viability when infected with the bacilli in vitro. While 
the results in the PARK2 knockout mice were not as 
dramatic as those seen in many of the cytokine knock-
out mice, the effects of PARK2 on leprosy susceptibil-
ity may be extremely subtle and overcome by the strong 
adaptive immune response generated in the otherwise 
immunocompetent mouse model.

The armadillo model for immunogenetics in leprosy 
- Armadillos are well developed as the “hosts-of-choice” 
for in vivo propagation of M. leprae. Their unique sus-
ceptibility to experimental infection and capacity to de-
velop heavy burdens of M. leprae with extensive neuro-
logical involvement has been well documented (Job et 
al. 1991, 1992, Truman & Sanchez 1993, Scollard et al. 
1996, 2006a, Scollard & Truman 1999). The animals are 
typically inoculated intravenously with 1 x 109 highly 
viable M. leprae prepared through serial passage in nude 
mouse foot pads (Truman & Krahenbuhl 2001). However, 
like humans, armadillos are not uniformly susceptible to 
infection and the response of individual animals can be 
highly idiosyncratic (Job et al. 1982, 1985b). Susceptible 
animals begin to show signs of a disseminated disease 
within six-12 months of inoculation and the infection 
will reach harvestable levels in 18-24 months (Truman 
et al. 1986). However, a proportion of the animals that 
we inoculate reliably resist experimental infection. Ear-
ly reports noted that only about 50% of the armadillos 
experimentally inoculated with M. leprae appeared to 
develop disseminated leprosy suitable for propagative 
purposes (Kirchheimer & Sanchez 1981, Job et al. 1983). 
In our laboratory today, 89% of the animals classified 
as lepromatous through lepromin skin testing develop 
disseminated infections after experimental inoculation 
and over a five year period we found 30/271 animals in-
oculated to be resistant to M. leprae.

Histopathological spectrum in armadillos - The his-
topathological appearance of M. leprae lesions in armadil-
los is indistinguishable from those seen in humans (Job et 

al. 1982, 1983, 1985c). Armadillos are fully intact immu-
nologically and their robust immune system allows them 
to survive quite well in the natural environment where 
they have close contact with many soil micro-organisms. 
Armadillos are not especially prone to infection with other 
mycobacteria and on exposure to M. leprae they exhibit 
the full spectrum of histopathological responses like that 
seen in humans. The type of leprosy that each animal 
might manifest can be classified according to the Ridley-
Jopling scale (ranging from lepromatous to tuberculoid) 
using the Mitsuda response to lepromin (Job et al. 1982, 
1983, 1985a). In a survey of 392 armadillos from leprosy 
enzootic and non-enzootic areas across the southern Unit-
ed States of America (USA), we found that 281 (71%) were 
classifiable as LL while the remaining animals exhibited 
histopathological reactions typical of �������������������borderline leproma-
tous, borderline tuberculoid or tuberculoid tuberculoid 
leprosy lesions (Table II). Armadillos occupy a broad geo-
graphic range in USA (Taulman & Robbins 1996). How-
ever, the type of leprosy that each animal might manifest 
seems to have no relationship to their differing environ-
mental exposures and appears to be innate.

Genetically identical quadruplicates - Armadillos 
always give birth to genetically identical quadruplicates 
and a heritable component in the armadillo’s response 
to M. leprae also can be seen among litter-mates (Storrs 
& Williams 1968). As shown in Table III, seven/eight 
of the sibling sets that we experimentally infected with 
M. leprae showed similar susceptibility and manifested 
similar numbers of bacilli at the time of harvest or re-
moval. Individual litters appeared to be either high or 
low responders with siblings yielding more than 1 x 109 
M. leprae/gram of reticuloendothelial tissue or exhibit-
ing non-productive infections with either low bacillary 
counts (< 1 x 109 M. leprae/gram) or suffering complica-
tions from the experimentally induced infection requir-
ing their early removal from the colony. Observations on 
human genetically identical twins with leprosy also sug-
gest an innate predisposition for the infection and mirror 
the similarity in responses seen here among armadillo 
siblings (Alter et al. 2011). 

Influence of polymorphisms in Toll-like receptor 
(TLR): an important key for activation of the innate im-
mune system is interaction with TLR - These highly con-
served type 1 trans membrane proteins (Akira & Takeda 
2004, Misch et al. 2010) are expressed on different im-
mune cells and recognize various pathogen-associated 
molecular patterns. TLR interaction can initiate an in-
flammatory response that augments killing or contain-
ment of invading organisms (Iwasaki & Medzhitov 
2004) or activate signalling pathways that alter the ex-
pression of various chemokines and cytokines. Polymor-
phisms in TLR alleles have been linked to susceptibil-
ity or resistance to a large range of microbial infections 
(de Diego et al. 2007) and specific polymorphic loci on 
TLR-1, TLR-2 and TLR-4 have been linked with the host 
response to leprosy in humans (Misch et al. 2010). 

Dimerization of TLR1 and TLR2 is required for 
recognition of many mycobacterial proteins and li-
popeptides (Heldwein & Fenton 2002, Berrington & 
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Fig. 2: Mycobacterium leprae infection in PARK2-/- mice. A: wild type (WT) (circles) and PARK2-/- (triangles) mice were infected in each hind 
foot pad with 6 x 103 viable M. leprae. At 30, 60, 90, 120, 150 and 180 days post-infection, the number of acid fast bacilli (AFB) per foot pad was 
determined. Each symbol represents one mouse. The threshold of counting ability is 4.8 x 103 AFB per foot pad; B: RNA was purified from foot 
pad tissue from mice in (A) and subjected to real-time polymerase chain reaction for cytokines. Gene expression is normalized using GAPDH 
mRNA expression. Data shown are means ± standard deviation; C: WT (circles) and PARK2-/- (triangles) mice were inoculated in each hind foot 
pad with 3 x 107 viable M. leprae. Foot pad induration was measured using a Vernier caliper. Data shown is mean ± standard deviation of four 
mice per group; IFN: interferon; TNF: tumour necrosis factor; *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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Hawn 2007). Polymorphisms on TLR1 at 1805GG and 
743GG have been associated with impaired NFκ-B sig-
nalling and various immunological responses to M. le-
prae affecting overall susceptibility to leprosy and the 
onset of reactional episodes, especially type 1 reactions 
(Johnson et al. 2007, Schuring et al. 2009). TLR2 poly-
morphisms also have been implicated in the immuno-
logical response to M. leprae. A SNP at locus C597T 
was particularly associated with reversal reactions in 
leprosy (Bochud et al. 2008) and another at C2029T 
was found to abrogate the ability of TLR-2 to mediate a 
response to M. leprae stimulation (Bochud et al. 2003). 
An additional polymorphism on TLR4 (896GG) also 
has been significantly linked to leprosy susceptibility 
(Bochud et al. 2009).

To explore the relationship TLR polymorphisms 
might have with the armadillo’s response to M. leprae, we 
surveyed animals that had been routinely inoculated for 
in vivo propagation. We examined for various SNP loci 
and compared the frequency of each genotype among an-
imals that had developed a disseminated infection within 
the usual two year time frame or which had completely 
resisted M. leprae for at least three years and never de-
veloped a detectable phenolic glycopid-1. IgM antibody 
response. Animals with disseminated infections were 
further subdivided as high or low responders depending 
on their yield of bacilli from reticuloendothelial system 
tissues at harvest (< 107 bacilli/gm = low responders and 
> 1011 bacilli/gm = high responders) (Table IV). 

Using human TLR sequences as a template, we ob-
tained the sequences of armadillo TLR genes from trace 
files at National Center for Biotechnology Information 
with the Dasypus archive. The armadillo consensus se-
quences retrieved were translated in-silico to the protein 
sequence and compared to the human TLR proteins. 
Armadillo TLR-1 showed 80% (627/784) identity and 
89% (699/784) positive amino acid homology. Available 
sequence identity for armadillo TLR2 and TLR4 com-
pared to the human genes were 86% and 83% respec-
tively. With primers designed to amplify regions flank-
ing loci where SNP had been identified on human TLR, 
we inspected the sequences amplified from armadillos 
for polymorphisms. This technique could only detect 
homozygous polymorphisms.

We were unable to identify any polymorphism on ar-
madillo TLR4 similarly positioned to G896A (D299G) 
as had been described human studies (Bochud et al. 
2009) and we also found no polymorphisms on TLR2 
corresponding to the general region of C2029 (Kang & 

TABLE II
Ridley-Jopling classification of armadillos from enzootic and non-enzootic areas using lepromin-A

Classification
Type (state)

BL
n (%)

BT
n (%)

LL
n (%)

TT
n (%)

Total
n (%)

Enzootic (Louisiana) 34 (12.5) 34 (12.5) 194 (71.3) 10 (3.7) 272 (69.4)
Non-enzootic (Florida, Mississippi, Texas) 9 (7.5) 13 (10.8) 87 (72.5) 11 (9.1) 120 (30.6)

Total 43 (10.9) 47 (12) 281 (71.6) 21 (5.3) 392 (100)

chi-squared analysis show confirms that reactivity to lepromin varies among armadillos, but is not significantly different statis-
tically (p = 0.13) between animals from different parts of the United States of America range. BL: borderline lepromatous; BT: 
borderline tuberculoid; LL: lepromatous leprosy; TT: tuberculoid tuberculoid.

TABLE III
Similarity of harvest results among sets of sibling armadillos 

experimentally infected with Mycobacterium leprae

Sibling 
set Animal

Harvest bacillary count per gram liver

High Low Removed

A 9D24 - 1 x 107 -
A 9D25 - 2.4 x 105 -
A 9D27 - 1.1 x 108 -
B 9D37 - - Culled
B 9D38 - - Culled
B 9D39 - - Culled
C 9D43 1.1 x 109 - -
C 9D44 1.0 x 109 - -
D 9D46 - - Culled
D 9D47 - - Culled
E 9D53 - - Culled
E 9D54 - 1.4 x 106 -
E 9D56 - 2.4 x 108 -
E 9D57 - - Culled
F 8D93 - - Culled
F 8D94 - 3.6 x 106 -
F 8D95 - - Culled
G 16F 5.3 x 109 - -
G 16F1 1.7 x 1010 - -
G 16F2 7.8 x 109 - -
H 19F1 7.9 x 109 - -
H 19F2 - 3.9 x 107 -

among seven/eight of the sibling sets experimentally infected, 
each animal in the litter tended to respond similarly. Gener-
ally, litters were either high responders producing greater than  
1 x 109 M. leprae/gram of liver or they yielded a non-produc-
tive infection with either low bacillary counts (< 1 x 109 M. 
leprae/gram) or failed to thrive physically and required their 
early removal from production. Siblings were inoculated with-
out lepromin screening. 
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Chae 2001). However, we did find a polymorphism on 
armadillo TLR2 (C570T) located at a slightly different 
position than one previously reported on human TLR2 
(C597T) (Bochud et al. 2008). With our small sample 
size the frequency was not significantly different sta-
tistically between groups. However, this mutation was 
present in two/10 armadillos that had completely re-
sisted experimental infection compared to only one/34 
that developed disseminated disease after experimental 
inoculation with M. leprae. 

We also found two SNPs on armadillo TLR1 that 
were in slightly different positions than had been de-
scribed in human studies (Johnson et al. 2007, Schuring 
et al. 2009). Armadillo TLR1 SNPs (A750G and A1879G) 
were found in the same general region of (A743G and 
T1805G) identified in the human gene sequence (Misch 
et al. 2008). The SNP, A750G was a synonymous poly-
morphism found in about 14% of the animals and its fre-
quency did not differ significantly between the groups 
screened (Table IV). However, A1879G was non-synon-
ymous polymorphism resulting in an amino acid change 
Arg 627 Gly and was found in about 6% of all the ani-
mals screened (Table IV). This SNP was absent among 
animals that developed a disseminated disease, but was 
found in four/10 animals that completely resisted ex-
perimental infection for more than three years and ap-
peared to be significantly associated with resistance to 
M. leprae in the armadillo (odds ratio 72.69, confidence 
interval 95% 3.498-1510, p = 0.0004). Additional studies 
will define the immunological response profile related 
to this genotype. However, this polymorphism may be 
an effective marker for resistance to M. leprae infection 
among armadillos and could prove to be a useful tool in 
selecting animals for experimental uses. 

In review, animal models can play an important role 
in advancing our understanding of immunogenetic fac-
tors in leprosy through comparative studies helping to 
confirm the significance of various traits or polymor-
phisms observed in human studies and in deciphering 
the underlying mechanisms that may be involved in ex-
pression of different disease related phenotypes. Each 
model has distinctive benefits and uses. The mouse is 
ideal for studying the dynamic interplay of different 
aspects of the immune response to leprosy, especially 

in the formation and regulation of the granuloma. The 
ability to knockout specific pathways and investigate 
infection with a wide array of well defined immuno-
logical reagents and molecular probes is unparalleled. 
Though considerably more cumbersome, the armadillo 
is the only animal model with natural susceptibility to 
infection with M. leprae and they closely recapitulate 
many clinical aspects of leprosy seen in humans, espe-
cially extensive neurological involvement. With recent 
completion of their whole genomic sequence, armadillo 
specific reagents are no longer out of reach. An exten-
sive battery of molecular reagents is already available 
and recombinant cytokines and anti-cytokine polyclonal 
and monoclonal antibodies are being generated (Adams 
et al. 2005, Pena et al. 2008). Thus, studying defined 
infections in mouse and armadillo models can provide 
insights into the host-pathogen interactions involved in 
this complex disease.
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