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A century of research: what have we learned about the interaction of
Trypanosoma cruzi with host cells?

Maria Julia Manso Alves', Renato Arruda Mortara?/*

'Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brasil ?Disciplina de Parasitologia,
Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Escola Paulista de Medicina,
Rua Botucatu 862 6° andar, 04023-062 Sao Paulo, SP, Brasil

Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to “new tripano-
somiasis” by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to un-
derstanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the
parasite within the vertebrate host, and although much has been learned over this century, differences in strains
or isolates used by different laboratories may have led to conclusions that are not as universal as originally inter-
preted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had
been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be
grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T.
cruzi 11, linked to human disease; however, a third lineage, T. cruzi Ill, has also been proposed. Hybrid isolates,
such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El
Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host,
and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface
components of parasites and some of the host cell receptors with which they interact have been described. Herein,
we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different
infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it
and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some
of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interac-
tions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of
signalling cascades involving both parasite and cellular components.
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Outlook butions have provided insights into both the ultrastruc-
tural organisation of the parasite (De Souza 2008) and
the participation of both parasite and cellular in infection
(Zingales & Colli 1985, De Souza 2000, Alves & Colli
2008). In Fig. 1, we have selected milestones that help to
describe a trajectory of discovery that, like that of science
in general, is not linear in time. Because several events
overlap in time and relevance and therefore cannot be
dissociated, references to particular findings may appear
more than once. It is noteworthy that some of these events
were initially thought to be of general importance in the
biology of T. cruzi-host cell interactions, yet later turned
out to be restricted to a particular parasite strain, clone or
even target host cell. It has become increasingly apparent
that a complex interplay of signalling cascades, involv-
ing both parasitic and cellular components, seem to oper-
ate in the infection process (Burleigh & Andrews 1995b,
1998, Burleigh & Woolsey 2002, Yoshida 2006, Alves &
Colli 2007, Scharfstein & Lima 2008, Yoshida & Cortez
2008). The parasite infective forms considered herein are
metacyclic (MT) and tissue-culture derived trypomastig-
otes (TCTs), as well as extracellular amastigotes (Fig. 2);

Since the pioneering studies by Hertha Meyer and
co-workers (Meyer 1942, Meyer & Xavier 1948), which
initiated in vitro studies of 7Trypanosoma cruzi develop-
ment in cultured cells, and the subsequent detailed de-
scriptions provided by James Dvorak and co-workers on
how cells become infected by 7. cruzi trypomastigotes
(Dvorak & Hyde 1973, Dvorak & Howe 1976), numer-
ous studies have been undertaken to elucidate the mo-
lecular mechanisms that underlie the complex process
of parasite entry into mammalian host cells. In order
to accomplish these studies, a great deal of effort has
been devoted to isolating parasites and determining the
optimal conditions for their growth and differentiation
(Camargo 1964, Baker & Price 1973, Pan 1978a, Engel
et al. 1982, Villalta & Kierszenbaum 1982, Petry et al.
1987, De Souza 2000). A number of significant contri-
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Fig. 1: major events in Trypanosoma cruzi-host cell interactions. a: Chagas (1909, 1911); b: Meyer (1942), Meyer and Xavier de Oliveira (1948);
c: Alves and Colli (1974, 1975), de Lederkremer et al. (1980), Lima and Kierszenbaum (1982), Zingales et al. (1982), de Lederkremer and Colli
(1995); d: Brener (1969), Silva and Nussenzweig (1953), Howells and Chiari (1975), Brener (1977), Melo and Brener (1978), Bice and Zeledon
(1970); e: Miles (1974), Brener (1977), Alcantara and Brener (1978), Melo and Brener (1978), Souto et al. (1996), Briones et al. (1999), Brisse et al.
(2000), Robello et al. (2000), Devera et al. (2003), Gaunt et al. (2003), Elias et al. (2005), Junqueira et al. (2005); f: Alves and Colli (1974, 1975),
Araujo-Jorge and De Souza (1984), Avila et al. (1989), Andrade et al. (1991), Ouaissi et al. (1991), Travassos and Almeida (1993), Previato et al.
(1994), Souto-Padron et al. (1994), Parodi et al. (1995), Kahn et al. (1996), Silva et al. (1998, 2006); g: Nogueira and Cohn (1976), Henriquez et
al. (1981), Lima and Kierszenbaum (1982), Piras et al. (1982, 1983, 1985), Nogueira (1983), Villalta and Kierszenbaum (1983, 1984), Ouaissi et
al. (1985), Snary (1985), Schenkman et al. (1991a), Schenkman and Mortara (1992); /: Piras et al. (1985), de Titto and Araujo (1987), Mbawa et
al. (1991), McKerrow (1991), Schenkman et al. (1991b), (1992, 1993), Eakin et al. (1992), Meirelles et al. (1992), Chaves et al. (1993), Colli (1993),
Cross and Takle (1993), Burleigh et al. (1997), Santana et al. (1997), Procéopio et al. (1998), Grellier et al. (2001), Santos et al. (2005); i: Alves
and Colli (1975), Zingales et al. (1982), Parodi et al. (1983), Andrews et al. (1984, 1988), Araujo-Jorge and De Souza (1984), Alves et al. (1986),
Scharfstein et al. (1986), Piras et al. (1987), Avila et al. (1989), Couto et al. (1990, 1993), Yoshida et al. (1990), Andrade et al. (1991), Ouaissi et al.
(1991), Mortara et al. (1992), Villalta et al. (1992a), Ming et al. (1993), Ruiz et al. (1993), Schenkman et al. (1993), Travassos and Almeida (1993),
Previato et al. (1994), Souto-Padroén et al. (1994), Parodi et al. (1995), Kahn et al. (1996), Yoshida et al. (1997), Silva et al. (1998, 2006), Manque
et al. (2000), Almeida and Gazzinelli (2001), Magdesian et al. (2001), Baida et al. (2006); j: Pereira (1983), Previato et al. (1985), de Titto and
Araujo (1987), Schenkman et al. (1991b), (1992, 1993), Chaves et al. (1993), Colli (1993), Cross and Takle (1993); k: Previato et al. (1985), Fre-
vert et al. (1992), Parodi et al. (1992), Schenkman et al. (1992), Kahn et al. (1993), Frasch (1994), Chuenkova and Pereira (1995), Manque et al.
(2000), Malaga and Yoshida (2001), Atayde et al. (2004), Yoshida (2006), Alves and Colli (2008); /: Behbehani (1973), Dvorak and Hyde (1973),
Alexander (1975), Tanowitz et al. (1975), Nogueira and Cohn (1976), Kipnis et al. (1979), Meirelles et al. (1982a), Schenkman et al. (1988, 1991),
Mortara (1991), Schenkman and Mortara (1992); m: Nogueira and Cohn (1976), Pan (1978b), Carvalho et al. (1981, 1999), Hudson et al. (1984),
Umezawa et al. (1985), Carvalho and De Souza (1986), Ley et al. (1988), Kahn et al. (1995), Fernandes and Mortara (2004), Mortara et al. (2005,
2008), Fernandes et al. (2006, 2007), Silva et al. (2006), da Silva et al. (2009, unpublised observations); n: Moreno et al. (1994), Tardieux et al.
(1994), Burleigh and Andrews (1995a), Dorta et al. (1995), Wilkowsky et al. (1996), Rodriguez et al. (1997, 1999), Caler et al. (2000, 2001),
Scharfstein et al. (2000), Yoshida et al. (2000), Tan and Andrews (2002), Garzoni et al. (2003), Yoshida and Cortez (2008); o: Henriquez et al.
(1981), Lima and Kierszenbaum (1982), Nogueira (1983), Piras et al. (1983), Villalta and Kierszenbaum (1983, 1985), Ouaissi et al. (1985), Snary
(1985), Schenkman et al. (1988, 1991), von Kreuter and Santos Buch (1989), Mortara (1991), Ortega-Barria and Pereira (1991), Scharfstein et al.
(2000), Magdesian et al. (2001), Woolsey et al. (2003), Fernandes et al. (2007a); p: Nogueira and Cohn (1976), Henriquez et al. (1981), Meirelles
et al. (1982b), Nogueira (1983), Piras et al. (1983), Colli (1984), Schenkman et al. (1991), Schenkman and Mortara (1992), Tardieux et al. (1992),
Vieira et al. (1994), Carvalho et al. (1999), Procopio et al. (1999), Cortez et al. (2006), Ferreira et al. (2006), Bartholomeu et al. (2008); ¢: Milder
and Kloetzel (1980), Meirelles et al. (1986), Carvalho and De Souza (1989), Andrews (1995), Wilkowsky et al. (2002), Andreoli and Mortara
(2003), Stecconi-Silva et al. (2003), Woolsey et al. (2003), Andrade and Andrews (2005); »: Milder and Kloetzel (1980), Meirelles et al. (1987),
Andrews and Whitlow (1989), Ley et al. (1990), Hall et al. (1992), Stecconi-Silva et al. (2003), Andrade and Andrews (2004), Rubin-de-Celis et
al. (20006); s: Baker and Price (1973), Behbehani (1973), Dvorak and Hyde (1973), Tanowitz et al. (1975), Nogueira and Cohn (1976), Pan (1978c),
Milder and Kloetzel (1980), Franke de Cazzulo et al. (1994), Aoki et al. (1995), Bertello et al. (1996), Garg et al. (1997), Almeida-de-Faria et al.
(1999), Tonelli et al. (2004); #: Atwood et al. (2005), El Sayed et al. (2005a, b).
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Fig. 2: Trypanosoma cruzi trypomastigotes as well as extracellular
amastigotes are capable of infecting mammalian cells in culture.
Scanning electron micrograph shows 7. cruzi trypomastigotes (black
arrows) and extracellular amastigotes (curved black arrow) invading
Vero cells. Opened downward arrows show surface protrusions com-
patible in size with internalised amastigotes. Bar = 5 um. Image from
reference Procopio et al. (1999).

al. 1979, Alcantara & Brener 1980, Meirelles et al. 1982b,
Wirth & Kierszenbaum 1984, Zwirner et al. 1994, Go-
mes et al. 1995, Alves & Colli 2007). More recently, it
was discovered that there are differences in the invasion
mechanisms engaged by the distinct infective forms of
the parasite from the two major phylogenetic lineages,
an observation that has opened new avenues to study
this already intricate process (Mortara et al. 2005, 2008,
Yoshida 2006, 2008).

It is generally accepted that in order for cell invasion
to occur, 7. cruzi infective forms need to physically at-
tach to the host cell surface. This process usually takes
a few minutes in vitro, and it is not uncommon to ob-
serve trypomastigotes attaching and detaching from a
target cell, as if ‘probing’ it before invasion (Dvorak &
Hyde 1973, Dvorak & Howe 1976, Nogueira & Cohn
1976, Andrews & Colli 1982, Meirelles et al. 1982a,
Lima & Villalta 1988, Schenkman et al. 1991c, Villalta
et al. 1992b). Attachment can be separated from inva-
sion by lowering the temperature or fixing target cells
(Andrews & Colli 1982, Meirelles et al. 1982a, Schenk-
man et al. 1991c). Several lines of evidence suggest that
motile trypomastigotes promptly attach to and invade
live cells through an active mechanism that does not re-
quire intact host cell microfilaments (Kipnis et al. 1979,
Schenkman et al. 1991c, Schenkman & Mortara 1992),
but instead depends on parasite energy (Schenkman et
al. 1991c). In contrast, extracellular amastigotes do not
attach to fixed cells, and their invasion depends on func-
tional host cell microfilaments (Mortara 1991, Proco-
pio et al. 1998, Mortara et al. 2005). Once attachment
is established, signals exchanged (see above references
and section below) activate parasite-driven invasion of
trypomastigotes (Kipnis et al. 1979, Schenkman et al.
1991c, Schenkman & Mortara 1992) or induce “phago-
cytosis-like” entry of amastigotes (Nogueira & Cohn
1976, Procopio et al. 1998, 1999).

It has been demonstrated that a number of parasite
and host cell components (such as proteins/glycoproteins
and other glycoconjugates) participate in the attachment
phase of the invasion process (Burleigh & Andrews
1995b, 1998, Burleigh & Woolsey 2002, Andrade &
Andrews 2005, Alves & Colli 2007, Yoshida & Cortez
2008) and consequently play a role in signalling ex-
changes. More recently, it has also been shown that lipid
rafts in the host membrane may also take part in this
process (Barrias et al. 2007, Fernandes et al. 2007a). The
complexity of the invasion process can be gleaned from
the examples provided in the section dealing with the
multitude of signalling events involving 7. cruzi- host
cell interactions.

Another important factor of the multitude of studies
in this area is the extensive variety of host or target cells.
These include macrophages, epithelial and endothelial
cells, fibroblasts, dendritic cells, neurites as well as car-
diomyocytes (Meyer 1942, Meyer & Xavier de Oliveira
1948, Nogueira & Cohn 1976, Henriquez et al. 1981,
Meirelles et al. 1982a, 1987, 1999, Morris et al. 1988,
1990, Schenkman et al. 1988, Araujo-Jorge 1989, Ortega-
Barria & Pereira 1991, Aprigliano et al. 1993, Procopio
et al. 1998, 1999, Huang et al. 1999, Chuenkova & Perei-
ra 2001, Garzoni et al. 2003, Melo et al. 2004, Taniwaki
etal. 2006, Coimbra et al. 2007, Bartholomeu et al. 2008,
Lu et al. 2008, Poncini et al. 2008, Scharfstein & Lima
2008). This single variable exemplifies the multitude of
host cell and parasite components that, upon interaction,
lead to activation of the signalling pathways discussed
below. Moreover, the plethora of molecules involved in-
creases when different strains of parasite are compared.
The analysis of the invasion mechanism (or mechanisms)
of host cells by 7. cruzi based on data from the literature
can be restricted to one cell type-one or strain until more
general conclusions can emerge. However, in the case of
in vivo studies, the infection route must also be consid-
ered (Hoft 1996, Hoft et al. 1996, Yoshida 2008).

Biology of T. cruzi-host cell invasion

Paradigmatic studies have provided new insights
into the invasion mechanisms of 7. cruzi. Some of these
studies have observed that calcium-dependent lysoso-
mal recruitment takes place during trypomastigote in-
vasion (Tardieux et al. 1992, Andrews 2002). Accord-
ing to this model, TCTs engage a signalling process that
culminates with the formation of the parasitophorous
vacuole (PV) (Burleigh & Andrews 1998, Burleigh &
Woolsey 2002). Additional evidence suggests the par-
ticipation of components of the early endocytic traffick-
ing pathway, such as dynamin and Rab5, and indicates
that the lysosomal process might be both more elabo-
rate and downstream of earlier events (Wilkowsky et al.
2002). Previous studies (Todorov et al. 2000, Wilkowsky
et al. 2001) have used a quantitative approach to iden-
tify the role of phosphatidyl-inositol 3-kinase (PI3-K)
(Woolsey et al. 2003) in the lysosomal pathway and ob-
served that this key cellular component is involved in a
lysosome-independent 7. cruzi internalisation pathway
utilised by TCTs. Trypomastigotes that use this route
mobilise phosphorylated inositides during the formation
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of the PV. These molecules then mature and become
enriched in the same compartments as the lysosomal
marker LAMP-1 (Tardieux et al. 1992, Procopio et al.
1998, Woolsey et al. 2003, Andrade & Andrews 2004,
Fernandes et al. 2007b). One important outcome of this
work was to demonstrate for the first time the relative
contributions of each mode of entry, namely PI3-K
(50%), lysosome (20%) and endosomal routes (20%)
(Woolsey et al. 2003). The available information about
the mechanisms of amastigote penetration is compara-
tively scarcer than that of trypomastigotes. In studies
on interactions with macrophages, it has been noted that
members of the Gp85/TS antigen family engage man-
nose receptors to gain entry to professional phagocytes
(Kahn et al. 1995). Carbohydrate epitopes seem to play
a role in the initial steps of invasion in non-phagocytic
cells (Silva et al. 2006). The relative roles of PI3-K, en-
dosomal trafficking and LAMP-1 (Procopio et al. 1998)
pathways in extracellular amastigote invasion are still
not fully understood.

After entering host cells, parasites are usually found
in an acidic membrane-bound compartment referred
to as phagosome or PV, that may be comprised of host
cell plasma membrane, or endosomal or lysosomal in its
origin (Milder & Kloetzel 1980, Meirelles et al. 1986,
Carvalho & De Souza 1989, Hall et al. 1991, Schenk-
man & Mortara 1992, Wilkowsky et al. 2002, Woolsey
et al. 2003, Andrade & Andrews 2004, Fernandes et
al. 2007b). The time of residence inside the PVs may
vary between infective forms, ranging from 1-2 h in the
case of amastigotes and TCTs (Meirelles et al. 1986,
Ley et al. 1990, Hall et al. 1992, Stecconi-Silva et al.
2003, Andrade & Andrews 2004, Rubin-de-Celis et al.
2006) to several hours in the case of MT trypomastig-
otes (Stecconi-Silva et al. 2003, Rubin-de-Celis et al.
2006). These then eventually escape and differentiate
into amastigotes in the cytoplasm (De Souza 1984,
2000, 2005, Andrews 2000).

Once inside the host cells, trypomastigotes and
amastigotes secrete TcTOX, a complement 9 (C9) fac-
tor-related molecule that, at low pH, will destroy the PV
membrane and allow the parasite access to the cytosol
(Andrews & Whitlow 1989, Andrews 1990, Andrews
et al. 1990, Ley et al. 1990, Manning-Cela et al. 2001,
Rubin-de-Celis et al. 2006). Raising the intracellular
pH with weak bases affects MT invasion and substan-
tially delays escape from the PV, increasing the latency
from about 2-10 h. By contrast, the kinetics of amasti-
gote invasion and escape are not affected by this treat-
ment (Stecconi-Silva et al. 2003). This lytic activity is
likely to be facilitated by parasite transialidase activity
on the lumenal glycoproteins that protect the PV (Hall
et al. 1992, Stecconi-Silva et al. 2003, Rubin-de-Celis et
al. 2006). In agreement with the idea that the glycosyla-
tion of lysosomal lumenal glycoproteins is relevant for
the protection of the PV membrane, parasites promptly
escape from PVs formed in CHO cells deficient in sia-
lylation (Stecconi-Silva et al. 2003, Rubin-de-Celis et al.
2006). So far, TcTOX activity has been observed in ex-
tracellular amastigotes (Ley et al. 1990, Stecconi-Silva
et al. 2003) and TCTs (Manning-Cela et al. 2001, An-

dreoli & Mortara 2003, Rubin-de-Celis et al. 2006). In
contrast, MT trypomastigotes display both very weak
transialidase activity and undetectable TcTOX (Andreoli
& Mortara 2003, Stecconi-Silva et al. 2003). Therefore,
whereas extracellular TCTs and amastigotes display a
somewhat predictable behaviour regarding cell invasion
and escape, at present we do not have a consistent model
to fully understand how MT trypomastigotes actually
escape from their PVs. Using polyclonal antibodies to
C9, it has recently been shown that amastigotes express a
TcTOX-related compound (Andreoli et al. 2006); this tool
may be useful for mapping this compound throughout
the intracellular traffic in the different infective forms.
Recent work has shown that the kinetics of endosomal
and lysosomal marker accumulation, and their subsequent
loss - indicative of parasite escape into the cytoplasm - is
not correlated with either the infective form or phyloge-
netic group of the parasite tested under these particular
conditions (Fernandes et al. 2007b).

Once free in the cytoplasm, trypomastigotes dif-
ferentiate into amastigotes; these forms then begin to
grow by binary fission for up to nine cycles (Dvorak &
Hyde 1973). During the course of intracellular growth,
the parasite disrupts host cellular structure, attach-
ment to the substrate becomes loose and basic functions
such as contractility are impaired (Meyer & Xavier de
Oliveira 1948, Dvorak & Hyde 1973, Low et al. 1992,
Pereira et al. 1993, 2000, Carvalho et al. 1999, Hall et
al. 2000, Taniwaki et al. 2005, 2006). Usually, with the
cytoplasm loaded with a couple of tens of amastigotes,
host cell division becomes arrested (Meyer & Xavier
de Oliveira 1948, Low et al. 1992). During the differ-
entiation of amastigotes into trypomastigotes, preced-
ing cell rupture and the release of the parasite into the
surrounding medium, intermediate epimastigote-like
forms have been observed (Meyer & Xavier de Oliveira
1948, Almeida-de-Faria et al. 1999, Tonelli et al. 2004).
When the cell becomes filled with trypomastigotes, the
plasma membrane ruptures and significant degenerative
processes can be observed, probably due to the intense
mechanical movement of the parasites (Meyer & Xavier
de Oliveira 1948, Low et al. 1992, Pereira et al. 1993,
Taniwaki et al. 2005, 2006). Interestingly, the intracellu-
lar cell cycle of 7. cruzi seems to be independent of the of
the host cell nucleus, as all developmental stages can be
found within enucleated host cells infected with trypo-
mastigotes (Coimbra et al. 2007). Although the precise
mechanism underlying cell rupture has been inferred as
being mostly mechanical in nature, it has been known
since the original studies by Hertha Meyer that different
cell types present distinct susceptibilities to cellular rup-
ture by the intracellular parasites (Meyer 1942, Meyer &
Xavier de Oliveira 1948).

The precise mechanisms that govern the intricate sig-
nalling exchanges between the parasite and the host cell
are discussed in a separate section. As indicated above,
several studies have found that amastigotes, prematurely
released from infected cells or generated by the extra-
cellular differentiation of released TCTs, can also infect
cultured cells and animals (Behbehani 1973, Nogueira
& Cohn 1976, Hudson et al. 1984, Carvalho & De Souza
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1986, Ley et al. 1988, Mortara 1991). Systematic stud-
ies on cell invasion and PV escape carried out in several
laboratories have reinforced the notion that each infec-
tive form of the parasite has a unique interplay with the
specific target host cell with which it interacts. Not only
the parasite infective form, but also the strain (and phyl-
ogenetic origin) will determine the outcome of this inter-
action (Milder & Kloetzel 1980, Carvalho & De Souza
1986, 1989, Meirelles et al. 1986, Ley et al. 1990, Hall
et al. 1992, Andrews 1994, Ochatt et al. 1997, Stecconi-
Silva et al. 2003, Rubin-de-Celis et al. 2006, Fernandes
et al. 2007b). The variety of mechanisms used for cell in-
vasion and escape from the PVs by amastigotes and try-
pomastigotes is consistent with the complex repertoires
of both infective forms and surface molecules that the
parasite has evolved to ensure host colonisation (Ley et
al. 1990, Hall et al. 1992, Andrews 1994, Yoshida 2002,
Mortara et al. 2005, Yoshida & Cortez 2008, da Silva et
al. 2009). Adding to this already complex scenario, less
canonical host cell invasion mechanisms should also be
mentioned. These include the phagocytosis of apoptotic
T cruzi infected lymphocytes (Freire-de-Lima et al.
2000, Luder et al. 2001, Lopes et al. 2007, De Meis et al.
2008) and the less-studied autophagic pathway (Romano
et al. 2009). It is similarly worth mentioning that there
are a variety of receptors linked to the host immune sys-
tem, such as Toll-like receptors that parasite molecules
engage with during in vivo infections, and which there-
fore may also play a key role in the host-parasite inter-
play (Tarleton 2007).

Signalling mechanisms and molecules involved in T.
cruzi invasion

The number of identified interacting components
that may play a role in 7. cruzi-host cell interactions is
continually growing. For recent reviews on this rapidly
evolving field, the reader is referred to the following ref-
erences: De Souza (2000, 2002), Burleigh and Woolsey
(2002), Yoshida (2002), Andrade and Andrews (2005),
Mortara et al. (2005), Alves and Colli (2007), Scharf-
stein and Lima (2008), Yoshida and Cortez (2008). Mul-
tiple interactions between molecules from the parasite
and the host lead to the internalisation of the parasite and
an increase of cytosolic Ca?" in both the host cells and
in the parasite during invasion (Morris et al. 1988, Mo-
reno et al. 1992, 1994, Krassner et al. 1993, Burleigh &
Andrews 1995b, 1998, Docampo et al. 1995, Dorta et al.
1995, Wilkowsky et al. 1996). From the point of view of
various types of host cell, contact with TCTs (Tardieux
et al. 1994), MTs (Dorta et al. 1995) and extracellular
amastigotes (Fernandes et al. 2006), but not epimasti-
gotes (Tardieux et al. 1994), gives rise to a transient cal-
cium influx. The same phenomena was observed when
either specific molecules involved in 7. cruzi cell inva-
sion or uncharacterised factors released by the parasite
(Tardieux et al. 1994, Burleigh & Andrews 1995a) were
incubated with the host cell.

Calcium influxes have been associated with the for-
mation of PVs or with parasite evasion from the vacuoles
and successful infection (Burleigh & Andrews 1998,
Burleigh & Woolsey 2002, De Souza 2002, Andrade

& Andrews 2004, Burleigh 2005). Among the 7. cruzi
components involved in invasion are molecules belong-
ing to the Gp85/trans-sialidase superfamily (Gp85/TS)
and mucin-like proteins present on the surface of the
parasite. Both are encoded by large gene families (~1430
and ~863 gp85/TS and mucin-encoding genes, respec-
tively) (Colli 1993, Frasch 1994, Schenkman et al. 1994).
As interesting examples, members of the Gp85/TS fam-
ily are developmentally regulated by postranscriptional
mechanisms, with Gp82 and Tec85 glycoproteins ex-
pressed mainly in the MT and TCT forms, respectively.
Gp82 binds to gastric mucin and Tc85 binds to members
of the laminin and fibronectin families in the extracel-
lular matrix (ECM); however, other receptors cannot
be ruled out as Tc85 molecules have been described as
multi-adhesion glycoproteins (Wirth & Kierszenbaum
1984, Ouaissi et al. 1984, 1985, Noisin & Villalta 1989,
Santana et al. 1997, Magdesian et al. 2001, Ulrich et al.
2002, Nde et al. 2006, Yoshida 2008). It should be men-
tioned that other molecules expressed in 7. cruzi bind
to ECM elements such as heparin, heparan sulfate, col-
lagen and thrombospondin-1 (Ortega-Barria & Pereira
1991). A synthetic peptide based on the conserved FLY
domain (VTVXNVFLYNR) present in all members
of the Gp85/TS family promotes dephosphorylation of
an intermediate filament protein (cytokeratin 18) that
leads to cytoskeleton reorganisation and activation of
the ERK1/2 signalling cascade; as a result, there is an
increase in the entry of parasites into epithelial cells
(Magdesian et al. 2007). On the other hand, it has been
shown that an inactive form of TS from TCT that binds
sialic acid triggers NF-kB activation, the expression of
adhesion molecules on endothelial cells and upregula-
tion of parasite entry in a FLY-independent and carbo-
hydrate-dependent way (Dias et al. 2008). Recently, TS
has been linked to the invasion of TrkA (nerve growth
factor receptor)-expressing cells (e.g., dendritic cells) by
a mechanism that involves triggering TrkA-dependent
and PI3-K/AkKT kinase signalling events (Melo-Jorge
& Pereira-Perrin 2007). The presence of Gp82 on MT
trypomastigotes induces calcium transients that result in
phosphorylation of a 175 kDa protein in MTs (CL strain)
and Ca®" mobilisation in the host cell through a sequence
of events involving PTK, PLC and IP3 (Yoshida 2006,
2008, Yoshida & Cortez 2008). Interestingly, although
p35/50 mucins are the main MT surface components
involved in the attachment phase of the G strain of 7.
cruzi (Ruiz et al. 1993) and Gp85/35 mucins are impor-
tant acceptors of sialic acid catalysed by trans-sialidase,
sialyl residues (Schenkman et al. 1993) are not involved
in the invasion mechanism (Yoshida et al. 1997). On
the other hand, the role of sialic acid in TCT invasion,
together with other lectin-like interactions, has yet to
be fully clarified (Libby et al. 1986, Ming et al. 1993,
Schenkman et al. 1993, 1994, Yoshida et al. 1997, Stec-
coni-Silva et al. 2003, Rubin-de-Celis et al. 2006, Dias
et al. 2008).

Another mechanism for the attachment-independent
invasion of trypomastigotes phase involves the activa-
tion of the TGFp signalling pathway (Silva et al. 1991,
Ming et al. 1995, Araujo-Jorge et al. 2008). The agent
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involved in mediating the signalling remains elusive, but
it seems to be thermo-labile and hydrophobic in nature.
It is likely that a protease secreted by the parasite might
activate latent TGFB-associated with ECM components,
allowing activation of Smad 2/3 pathway through the
TGFP receptors (I and II) present on the surface of host
cells. The pivotal role of this pathway in infectious of
heart tissues and consequently in the chagasic myocar-
diopathy has been described (Araujo-Jorge et al. 2008).

Other molecules not involved directly in receptor-
ligand interactions are nonetheless fundamental to es-
tablishing infection by 7. cruzi. Inhibitors of the prolyl
oligopeptidase (POP Tc80), a serine protease that hydro-
lyses human collagens types I and IV and fibronectin
blocks the entry of TCTs into cultured cells (Harth et
al. 1993, Santana et al. 1997, Grellier et al. 2001). Cruzi-
pain, the major cysteine protease present in all stages
of T. cruzi, has also been implicated in the internalisa-
tion process due to its ability to generate bradykinin
and increase parasite entry through B2-type bradyki-
nin receptors. A link between innate and adaptive im-
mune responses through bradykinin has therefore been
proposed. It is worth mentioning in this context that the
invasion of host cells by MTs of the CL strain depends
on tyrosine phosphorylation and the IP.-dependent
(1,4,5-inositol-triphosphate) release of calcium from en-
doplasmic reticulum (ER) stores, whereas MTs of the G
strain engage adenylate cyclase and cause calcium to be
mobilised from acidocalcisomes (Neira et al. 2002). No
comparative data between both strains is evaluable for
TCTs, but inhibitors of class I and class 11T PI3-K ac-
tivities block the entry of the parasite into macrophages,
suggesting the involvement of different isoforms of this
kinase (Todorov et al. 2000). On the other hand, it seems
that calcium mobilisation from acidocalcisomes, but not
from the ER, is important for cellular invasion by extra-
cellular amastigotes of either the G or CL strains (Mor-
tara et al. 2005, Fernandes et al. 2006, Scharfstein et al.
2007, 2008, Scharfstein & Lima 2008).

A lot of attention was initially given to the signal-
ling pathways active inside the host cell during 7. cruzi
infection, as well as to the identification of ligands and
receptors involved in the infection process. Although a
great deal has been learned from sequencing the 7. cruzi
genome (EI Sayed et al. 2005a, b), including mapping its
190 kinases and 86 phosphatases (Parsons et al. 2005,
Brenchley et al. 2007), knowledge about the signalling
pathways active in the parasite is still scarce and, mostly,
fragmented. It is evident that the complexity of the sys-
tem has yet to be overcome.

Perspectives

It is clear that the mechanisms of invasion used by
T cruzi TCTs, MT trypomastigotes and extracellular
amastigotes are divergent. Adding to this complexity is
the finding that there are mechanistic variations between
isolates of the two main phylogenetic groups that also
depend on the type of host cell analysed. To circumvent
this issue, specific host lineages and 7. cruzi strains and/
or clones could be chosen as models to be used by the

scientific community in order to reveal urgently needed
information about the general mechanisms that govern
mammalian cell invasion.

A great deal more research has been done to estab-
lish the signalling pathways in the host cells than in the
parasite during infection. The 190 kinases and 86 phos-
phatases identified in the 7. cruzi genome should, hope-
fully, provide the necessary tools to increase interest in
the field and provide more complete mechanistic expla-
nations of the infection process.
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