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Schistosomiasis mansoni is an endemic disease in 
approximately 54 countries in the Americas and Afri-
ca (WHO 1985, Chitsulo et al. 2000). Schistosomiasis 
is facilitated by the presence of susceptible intermedi-
ate host mollusks of the Biomphalaria genus. The snail 
fauna of the genus Biomphalaria in the state of Minas 
Gerais (MG) are represented by seven species: Biompha-
laria glabrata, Biomphalaria straminea, Biomphalaria 
tenagophila, Biomphalaria peregrina, Biomphalaria 
schrammi, Biomphalaria intermedia and Biompha-
laria occidentalis (Katz & Carvalho 1983, Carvalho 
et al. 1987, 1988, 1989, 1994, 1997, 1998). In Brazil, 
there are three species of Biomphalaria (B. glabrata, B. 
tenagophila and B. straminea) that are naturally infected 
by Schistosoma mansoni. Among those found in MG, B. 
glabrata is considered the most important intermediate 
host due to its wide geographical distribution, high in-
fection indices and efficient transmission of the disease. 
B. tenagophila is naturally infected by S. mansoni in 
MG and it is responsible for the maintenance of disease 

foci in the city of Itajubá (Katz & Carvalho 1983). B. 
straminea, although never found to be infected in MG, 
was considered responsible for the schistosomiasis focus 
in Paracatu (MG) (Carvalho et al. 1988).

The mollusks of the Biomphalaria genus live in a 
wide range of habitats, particularly in shallow and slow-
running waters, such as lakes, lagoons, wells, cisterns, 
swamps, brooks, irrigation ditches and drainage ditches, 
where the substratum can be a muddy or rocky bed and 
with floating or rooted vegetation. As these mollusks are 
distributed over large geographic areas and their popula-
tions are adapted to different environmental conditions, 
they can tolerate large variations in the physical, chemi-
cal and biological environment in which they live (Gui-
marães et al. 2008).

The presence of mollusks of different species can be 
viewed as categorical data, which can be obtained by 
fieldwork. The geostatistical procedures for classifying 
spatial categorical attributes in a Geographical Informa-
tion Systems (GIS) can be used to infer events in areas 
with no information, based on sample points of the cat-
egorical attribute under interest (Felgueiras 1999).

Schistosomiasis distribution in MG is not regular, as 
areas of high prevalence are close to non-endemic re-
gions. Therefore, despite advances in knowledge in the 
study of schistosomiasis, the disease remains a major 
public health problem in the country, requiring larger 
investments in preventive measures such as sanitation 
and health education, as well as in studies that enable 
disease control through geoprocessing methodologies 
(Guimarães et al. 2009).
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Geographical information systems (GIS) are tools that have been recently tested for improving our understanding 
of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model 
and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression 
model (R2 = 0.39) was established, after a variable selection phase, with a set of spatial variables including the pres-
ence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and 
percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the 
state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 
1 (R2 = 0.97), 2 (R2 = 0.60), 3 (R2 = 0.63) and 4 (R2 = 0.76). Based on these models, a schistosomiasis risk map was 
built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. 
The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which 
can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies.
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Because schistosomiasis is a disease determined in 
space and time by risk factors, the GIS is a powerful tool 
that might be used to better understand the disease prev-
alence and risk factor distributions. The joint use of GIS 
and statistical techniques permits the determination of 
risk factors and geolocalisation of risk areas, leading to 
the optimisation of resources and to the choice of better 
strategies for controlling the disease (Beck et al. 1997, 
2000, Bavia et al. 2001). 

The influence of climate and environmental vari-
ables on the distribution of schistosomiasis has been 
documented by Appleton (1978) and Brown (1994). GIS 
has also been used to study schistosomiasis in several 
countries: in Asia (Cross et al. 1996), Brazil (Bavia et al. 
2001, Freitas et al. 2006, Guimarães et al. 2006, 2008, 
2009, Martins-Bedé et al. 2009), Chad (Beasley et al. 
2002, Brooker et al. 2002), China (Zhou et al. 2001, Seto 
et al. 2002, Yang et al. 2005), Egypt (Malone et al. 1994, 
1997, Abdel-Rahman et al. 2001), Ethiopia (Kristensen 
et al. 2001, Malone et al. 2001), Philippines (Cross et 
al. 1996), Tanzania (Brooker et al. 2001) and Uganda 
(Kabatereine et al. 2004).

The main objectives of this paper were to develop ge-
oprocessing methods and tools to characterise the spatial 
distribution of schistosomiasis to construct representative 
scenarios of potential schistosomiasis areas and to make 
inferences about the presence of the species of Biompha-
laria (B. glabrata, B. tenagophila and/or B. straminea), 
the intermediate hosts of S. mansoni, in MG, Brazil.

MATERIALS AND METHODS

Schistosomiasis prevalence values were obtained from 
the Brazilian Schistosomiasis Control Program (SCP) 
through the Annual Reports of the Secretary of Public 
Health Surveillance and the Secretary of Health in MG.

The SCP in MG began in 1986 and since 2000 has 
been under the coordination of the Secretary of Health 
in MG in collaboration with municipal health systems. 
The aim of the SCP is to prevent the occurrence of the 
hepatosplenic form and to prevent its transmission in 
focus areas (SESMG 2006). The Kato-Katz technique 
is the method used to determine prevalence, examining 
one slide per person.

Data on the distribution of Biomphalaria mollusks 
were provided by the Laboratory of Helminthiasis and 
Medical Malacology of the René Rachou Research In-
stitute. Mollusks were collected in breeding places from 
different municipalities in MG at different times, using 
scoops and tweezers and then packed to be transported 
to the laboratory (Souza & Lima 1990). Specific iden-
tification was performed according to the morphology 
of the shells, reproductive system and renal ridge of the 
mollusks (Deslandes 1951, Paraense & Deslandes 1955a, 
b, 1959, Paraense 1975, 1981) and more recently by low 
stringency polymerase chain reaction and restriction 
fragment length polymorphism (Vidigal et al. 2000). 

Moderate-resolution imaging spectroradiometer 
(MODIS) images were obtained for MG in two sea-
sons, summer (from 17 January-1 February 2002) and 
winter (from 28 July-12 August 2002). MODIS images 
with 250 m of spatial resolution, which was used in this 

study, encompassed the blue, red, near-infrared and mid-
dle infrared bands, the normalised difference vegetation 
index (NDVI) and the enhanced vegetation index (EVI).

The linear spectral mixture model is an image-
processing algorithm that generates sub-pixel images 
with the appropriate proportion of each component (veg-
etation, soil and shade) inside the pixel, which is estimat-
ed by minimising the sum of the squares of the errors. In 
this work the so-called vegetation, soil and shade frac-
tion images were generated using the MODIS data and 
the estimated values for the spectral reflectance compo-
nents were also used as an input to the model.

The digital elevation model (DEM) was obtained by 
the Shuttle Radar Topography Mission (SRTM). SRTM 
consisted of a specially modified radar system that 
flew onboard the Space Shuttle Endeavour during an 
11-day mission in February 2000. The ground altitude 
used in this experiment is given by the value of SRTM 
DEM for each ground pair of coordinates in 90 m of 
spatial resolution. The local declivity was derived from 
SRTM DEM by an appropriate filtering approximation 
of a first-order derivative.

The meteorological variables consisted of total pre-
cipitation and the minimum and maximum temperature 
for summer and winter seasons, which were obtained 
from the Centro de Previsão de Tempo e Estudos Climáti-
cos of the Instituto Nacional de Pesquisas Espaciais, on 
the same date as MODIS images.

The social variables used were from the Human De-
velopment Index (HDI): HDI-income, HDI-longevity and 
HDI-education for the years 1991 and 2000 (HDIE00). 
The environmental data (calcareous areas, sanitation and 
water quality, hydric and health indices) were obtained 
from the Companhia de Pesquisa de Recursos Minerais, 
the Brazilian Sistema Nacional de Indicadores Urbanos 
and the Fundação João Pinheiro. The spatial distribution 
of schistosomiasis prevalence and the Biomphalaria spp 
data are presented in Fig. 1A, B, respectively.

Geostatistics methods and multiple linear regression 
were employed to estimate the presence of the interme-
diate host and the schistosomiasis disease, respectively. 
Geostatistics methods, such as kriging, are techniques to 
interpolate the value of a random field at an unobserved 
location from observations of its value at nearby locations 
(Guimarães et al. 2009). Regression analysis is a statisti-
cal technique that uses the relationship between two or 
more variables so that one can be predicted by the others 
(Freitas et al. 2006, Guimarães et al. 2006, 2008).

Indicator kriging - The research area was situated 
in MG, with an approximate area of 588,384.30 km² 
in 853 municipalities. ��������������������������������  It includes 15 river basins: Bu-
ranhém, Doce, Grande, Itabapoana, Itanhém, Itapemi-
rim, Jequitinhonha, Jucuruçu, Mucuri, Paraíba do Sul, 
Paranaíba, Pardo, Piracicaba/Jaguari, São Francisco 
and São Mateus.

The Biomphalaria mollusk data included no informa-
tion about their geolocation, which is a prerequisite for ap-
plying geostatistical procedures. To overcome this prob-
lem and the limitation of the maximum number of data 
entries of the Spatial Planning for Regions in Growing 
Economies software (Câmara et al. 1996), the mollusk at-
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tributes (class of species and localisation) were distributed 
along the drainage network of 15 river basins, according 
to the methodology used by Guimarães et al. (2009).

The classes used for this paper were defined as B. 
glabrata, B. tenagophila, B. straminea, B. glabrata + 
B. tenagophila, B. glabrata + B. straminea, B. tenago-
phila + B. straminea, B. glabrata + B. tenagophila + B. 
straminea and without Biomphalaria.

The class without Biomphalaria included informa-
tion about the non-occurrence of Biomphalaria spp or 
information about non-transmitter species in Brazil, 
such as B. peregrina, B. schrammi, B. intermedia and 
B. occidentalis.

Indicator kriging may be defined as a technique of 
statistical inference, which allows the estimation of val-
ues and the uncertainties associated with the attribute 
during the spatialisation of a sample property (Felguei-
ras 1999). It is a nonlinear estimator, which is applied 
on a sample set of the attribute whose values are modi-
fied according to a nonlinear transformation. Accord-
ing to Felgueiras (1999), indicator kriging is considered 
non-parametric because it does not use any kind of dis-
tribution of a priori probability for a random variable. 
Instead, it enables the construction of a discretised ap-
proximation of the cumulative distribution function of 
the random variable.

Variogram models were fitted for each class, in each 
basin, through exploratory analysis, using the geostatis-
tical procedures. These procedures involved the cre-
ation of experimental semivariograms and fitting them 
to mathematical theoretical models. The fittings were 
not automatic but interactive, because the users, after 
a first fit, check its suitability to the theoretical model 
(Camargo 1997). After model fitting, indicator kriging 
procedures were applied to obtain an approximation of 
the conditional distribution function of the random vari-
ables. Based on the estimated function, maps of mollusk 
spatial distributions along with the corresponding un-
certainties for the entire basin were built.

Linear regression models for prevalence risk esti-
mation - In this paper, a relationship between schistoso-
miasis prevalence and the aforementioned variables was 
established by using multiple regression models. 

Because the prevalence data were provided at the 
municipality level, all input variables were integrated 
inside the municipalities’ boundaries using GIS systems 
(ArcGis, Environment for Visualizing Images) and ex-
ported to a standard spreadsheet for statistical analysis 
and modelling. 

The multiple linear regressions were employed based 
on two approaches: the global model, where a linear re-
gression model was established to estimate the disease 
throughout the state and the regional model, which con-
sisted of two steps. In the first step, homogeneous and 
contiguous regions were determined for the state, using 
biological variables (related to the mollusk’s habitat) 
and the Skater algorithm (Assunção et al. 2006, Martins 
2008). The second step consisted of fitting different lin-
ear regression models for each region.

The global and regional models were built using the 
data from the 123 municipalities, presented in Fig. 2, 
where prevalence information and presence or absence 
of B. glabrata are available. The fitted models were then 
used to build the risk map for the entire MG, by applying 
the models to the remaining municipalities.

A logarithmic transformation for the dependent vari-
able (prevalence, denoted by Pv) was made, as it im-
proved the correlation with independent variables. 

Because multicollinearity effects among the inde-
pendent variables were detected, a variable selection 
technique was used to choose a set of variables (or trans-
formations of them) that better explained the dependent 
variable. The variable selection was done by the R2 cri-
terion, using all possible regression procedures (Neter et 
al. 1996). This selection technique consists of the identi-
fication of a subset with few variables and a coefficient 
of determination, R2, sufficiently close to that when all 
variables are used in the model. Interaction effects were 
also included in the model. 

Fig. 1: spatial distribution of the (A) schistosomiasis prevalence and (B) Biomphalaria spp.
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ence or absence of B. glabrata (BG), summer minimum 
temperature (TNs), winter EVI (EVIw) and water from 
springs or wells (WP).

The final regression model, with R2 = 0.39, based on 
the 123 municipalities, was:

^Pv = e (-7.18 + 0.49BG + 0.36TNs + 5.83EVIw + 0.01WP) - 1

Fig. 4A shows the estimated prevalence for all MG 
municipalities using the above estimated regression 
equation. Fig. 4B shows the plot of the residuals, result-
ing from the difference between observed (Fig. 1A) and 
estimated (Fig. 4A) schistosomiasis prevalence. In Fig. 
4B, dark colours (red and blue) represent overestimated 
values, light colours (red and blue) represent underes-
timated ones and in white are the municipalities where 
the estimated prevalence differed very little from the 
true values.

RESULTS 

All aforementioned variables were generated and 
put in a database using the software TerraView/TerraLib 
(http://www.dpi.inpe.br/geoschisto/). 

Kriging - The indicator kriging procedure, based on 
the fitted semivariograms, was applied using the sample 
data presented in Fig. 1B, to generate a regular grid of 
250 m of resolution (x, y) over MG. The result was a 
map of the species distribution and a map of the uncer-
tainties associated with the classification. Fig. 3A illus-
trates the classes associated with the Biomphalaria spp, 
with a maximum level of uncertainty of 0.78. The map 
of uncertainties (Fig. 3B) showed that the higher uncer-
tainties were concentrated along class transition areas. 
Consequently, in regions where several classes may oc-
cur, more transitions were found and, therefore, higher 
uncertainties were obtained. 

Multiple linear regressions

Global model - Fifty-one quantitative independent 
variables were used in the statistical analysis: meteoro-
logical, social and biological variables and remote sens-
ing data derived from MODIS and SRTM.

Besides quantitative variables, one qualitative vari-
able (binary) was also used to represent the presence or 
absence of B. glabrata:

BG =
1 presence of the B. glabrata

0 otherwise

The analysis of the correlation matrix showed that 
some variables had non-significant correlations with 
Pv at a 95% confidence level and some variables were 
highly correlated among themselves, indicating that the 
model could be further simplified. 

After variable selection using the R2 criterion, the 
final chosen model was that with four variables: pres-

Fig. 2: schistosomiasis prevalence and the presence (in gray) or not (in 
white) of the Biomphalaria glabrata from the 123 municipalities.

Fig. 3A: estimated Biomphalaria spp distribution with a maximum 
level of uncertainties of ≤ 0.78; B: uncertainties associated with the 
classification.
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Fig. 5A shows the result of the regionalisation. Fig. 
5B shows the estimated prevalence for all MG munici-
palities using the above estimated regression equation. 
Fig. 5C shows the plot of the residuals. In this Fig., dark 
colours (red and blue) represent overestimated values 
and light colours (red and blue) underestimated ones, 
and in white are the municipalities where the estimated 
prevalences differed very little from the true values.

The results indicate that during the summer season 
the risk of contracting schistosomiasis increases, prob-
ably due to high concentrations of the snails in the drain-
age, caused mainly by lack of sanitation and high tem-
perature, among other factors and by people searching 
for hydric collections, for either drinking or bathing. 

The TN and the EVI were positively correlated with 
schistosomiasis prevalence. This is consistent with the ad-
equate environmental conditions for the development of the 
intermediate hosts, as the snails settle in places with tem-
peratures above 15°C and areas covered by vegetation.

Additionally, our analysis showed that the presence of 
B. glabrata was directly related to the prevalence of the dis-
ease. Furthermore, the positive correlation of the variable 
WP may be related to the use of WP that is contaminated.

The presence of B. glabrata increased the value of the 
prevalence compared to the municipal districts where B. 
glabrata was not found, as can be observed by the fol-
lowing calculations:

Estimated increase by averaging the data - From the 
prevalence data, it is possible to compute the average of 
the prevalence for the municipalities with B. glabrata 
(μPG) and without B. glabrata (μPG):

μPG = 13.44   μPG = 9.24   ...   μPG / μPG = 1.46

where PG indicates the B. glabrata presence and PG the ab-
sence. Therefore, on average, the prevalence of the munici-
palities μPG is 46% larger than the municipalities μPG.

Estimated increase by the regression - From equa-
tion (1) for the municipalities where B. glabrata was not 
found (BG = 0) then

^PvPG + 1 = e (-7.18 + 0.36TNs + 5.83EVIw + 0.01WP)

and for the municipalities where B. glabrata was found 
(BG = 1)
^PvPG + 1 = e (-7.18 + 0.36TNs + 5.83EVIw + 0.01WP) e0.49 = (PvPG + 1) e0.49^

Because e0.49 = 1.63, it is possible to say that (disre-
garding the + 1 in the equations), on average, the mu-
nicipalities with a prevalence of PG were approximately 
63% larger than the municipalities lacking PG, which 
is not too far from the ratio of the average prevalence 
found before (1.46).

Regional model - The regionalisation (division of 
MG into four homogeneous regions) was performed us-
ing the following variables: geology, hydrological index, 
Biomphalaria spp, EVIW, health necessity index, DEM, 
accumulated precipitation and average temperature. The 
result of the regionalisation is shown in Fig. 5A.

The linear regression model for each of the four re-
gions was developed with the same 51 variables used in 
the global model. For each of the four regions, a different 
number of variables were selected to generate the best 
regression models.

The final models generated for each of the four re-
gions were:

^Pv1 = e (0.92 + 0.28WN - 0.29E) -1  =>  R2 = 0.97
^Pv2 = e (0.86 + 0.12PCw + 8.3BG*NDVIw - 0.22BG*QTA) - 1  =>  R2 = 0.60
^Pv3 = e (12.1 - 0.002DEM + 0.68TNs - 0.82TXs + 2.61NHI) - 1  =>  R2 = 0.63

^Pv4 = e (-3.93 + 0.004DEM + 6.45HDIE00 + 0.07C) - 1  =>  R2 = 0.76
where WN: percentage of households with another form 
of access to water; E: percentage of households with 

Fig. 4: global model: A: estimated prevalence using the global regression equation; B: residuals (difference between observed and estimated 
schistosomiasis prevalence).
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bathroom or toilet and septic tank; PCW: winter precipita-
tion; QTA: water percentage in the municipality; TXS: sum-
mer maximum temperature; NHI: need-of-health index; C: 
percentage of housing with bathroom or toiled connected 
to a ditch.

The equation for Region 1 (R1) reflects the effect of the 
sanitation and the WN. This region was not an endemic 
area; there were only some foci of the disease. In this re-
gion, the R2 obtained was 0.97. Model 1 presents a variable 
access to water as the general model.

The model described in Region 2 (R2) shows that the 
PG associated with the effect of vegetation (NDVIW) and 
QTA were the determining factors for schistosomiasis. The 
R2 obtained for this model was 0.60. 

For Region 3 (R3), the environmental characteristics 
related to the disease prevalence were DEM, NHI and the 
effect of the variability of the summer temperature. The R2 

for this model was 0.63. The relation between the disease 
and temperature was expected, as during the summer sea-
sons the risk of contracting schistosomiasis increases, due 
to the aforementioned factors in the global model.

The model described in Region 4 (R4) shows that preva-
lence was associated with the DEM, HDIE00 and higher C. 
The R2 obtained was 0.76. These variables represent aspects 
of the topography that may or may not favour the formation 
of small water collections, where the snails can find propi-
tious breeding conditions.

The Table presents the residual sum of squares, sample 
size, degrees of freedom (sample size minus number of 
parameters in equation) and the residual mean square for 
the global model, for each region and for the total regional 
model. From this Table it can be seen that the residual mean 
square dropped from 0.55-0.3 (a reduction of more than 
45%) when individual models were fitted for each region. 
This highlights the importance of using regional models.

Overall, the global and regional models had at least 
one of the following characteristics: (i) the PG, (ii) en-
vironmental conditions favourable to disease trans-
mission/habitat of the snails and (iii) sanitation. These 
characteristics are the same as those of epidemiological 
importance for the occurrence of disease: environmen-
tal conditions fostering the presence and development of 
snails (infection of the intermediate host) and presence 
or lack of sanitation (water contamination implies the 
presence of S. mansoni cercariae).

DISCUSSION

The importance of the joint use of GIS and remote sens-
ing for disease risk was demonstrated. In addition, we may 
conclude that the joint use of GIS and statistical techniques 
permitted the estimation of schistosomiasis prevalence.

The generated results show that kriging is a consistent 
tool and that the obtained risk map can be used as an aux-
iliary tool to formulate proper public health strategies and 
guide fieldwork, considering the places with a higher prob-
ability of occurrence of the most important species.

Fig. 5: regional model: A: regionalisation using the Skater algorithm; 
B: estimated prevalence using the regional regression equation; C: re-
siduals (difference between observed and estimated schistosomiasis 
prevalence).
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Variables from different sources (social, meteoro-
logical, remote sensing and biological) were used in this 
paper. Schistosomiasis prevalence was estimated by two 
models, a global and a regional, which showed that the 
PG, sanitation, vegetation index and temperature are 
important variables, as it appears in both global and re-
gional models. 

Results of the regression models show that regionali-
sation improves disease estimation in MG. Moreover, the 
global and regional models also confirmed the importance 
of the use of biological variables to characterise the snail 
habitat in the endemic area of MG. Most of the selected 
explanatory variables were related to sanitation and water 
and health quality or were directly related to the presence 
of the snail. The use of regionalisation also improved gen-
eralisation, especially in the non-endemic areas, where 
the schistosomiasis prevalence data are scarce.

Martins-Bedé et al. (2009), using socioeconomic vari-
ables for regionalisation and applying the same methods 
cited in this paper, also obtained superior results with the 
regional model compared to the global model.

It is interesting to note that the variables selected for 
each region are consistent with the socio-environmental 
conditions in each of them. R1, the most developed region, 
is influenced mainly by sanitation. Sanitation is also an 
important factor for R4, which is the poorest and least 
developed region. Additionally, these regions have mu-
nicipalities with the highest schistosomiasis prevalence in 
MG. The topographical factors and the temperature effect 
become important in R3 and R4, where the largest differ-
ences in altimetry occur. Factors such as rain, amount of 
water and vegetation are important in R2, which is the dri-
est region of MG.

This paper can contribute significantly to the choice of 
strategies by public health officials, allowing them, on the 
one hand, to narrow the set of municipalities in MG for 
which treatment and sanitation should be priorities and, 
on the other hand, to focus on preventive measures in the 
municipalities where transmission can occur. 

The next phase of this study will estimate schistoso-
miasis prevalence using locality data (localities that have 
coordinate and prevalence information).

TABLE
Residual analysis for global and regional models

  Residual sum of squares Sample size Degrees of freedom Residual mean square

Global model 64.91 123 118 0.550a

Region 1 0.23 8 5 0.047
Region 2 22.28 49 45 0.495
Region 3 8.22 44 39 0.211
Region 4 1.38 22 18 0.077

Total regional 32.12 123 107 0.300a

a: a reduction of more than 45% in the residual mean square, which highlights the importance of using regional models. 
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