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Selective suppression of leukocyte recruitment in allergic
inflammation

CL Weller, PJ Jose, TJ Williams+
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Imperial College London, London SW7 2AZ, UK

Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably
allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge
of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt
symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflam-
mation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important
based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect
both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types,
without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This
necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble che-
moattractants signals and cell-cell adhesion molecules.
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Allergic reactions appear to represent an aberration
of a host defence reaction to helminth parasites. For rea-
sons not well understood, agents present in the environ-
ment that would otherwise be innocuous, stimulate the
immune system to produce a localised inflammatory re-
sponse on re-exposure to allergen. This response is regu-
lated by polarised CD4+ Th2 lymphocytes and involves
the production of allergen-specific IgE and the recruit-
ment and activation of the effector cells characteristic of
host responses to parasitic worms. In allergic asthma,
cross-linking of mast cell-bound IgE by allergens results
in the release of preformed and de novo synthesised me-
diators that induce acute bronchoconstriction, mucus
secretion and increased vasopermeability. Further,
chemoattractants are produced by many cell types in the
tissue and these substances induce the local accumula-
tion of inflammatory cells. Of these, eosinophils and ba-
sophils have received the most attention because of their
close association with allergic-type reactions. Eosinophils
accumulate in very high numbers and have been under
the spotlight for a number of years as potential targets for
therapeutic intervention. This article describes some of
the current knowledge of the role of eosinophils in aller-
gic reactions, the mechanisms involved in their recruit-
ment and the potential for inhibiting their accumulation.
Eosinophil trafficking

Eosinophils are derived from haematopoietic stem cells
in the bone marrow. IL-5 is important for their differentia-
tion, proliferation and maturation in the marrow: for re-
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view see: (Kay et al. 2003, Zabeau et al. 2003). IL-5 is also
able to induce the release of mature eosinophils into the
blood by stimulating their migration across the marrow
sinus endothelium (Collins et al. 1995, Palframan et al.
1998). Recruitment into tissues involves the action of lo-
cally-produced chemoattractants acting in concert with
adhesion molecules. The α4β1 integrin expressed on eosi-
nophils appears to be particularly important in vivo (Weg
et al. 1993), binding to VCAM-1 expressed on venular
endothelial cells. The Th2 cytokines IL-4 and IL-13 are
able to increase the expression of VCAM-1 by endothe-
lial cells which will facilitate eosinophil attachment to the
surface of the endothelium. Locally produced IL-5 does
not appear to be particularly important as a chemoattrac-
tant for eosinophils; here chemokines have an important
role (see below). However, locally–produced IL-5 does
have an important function in increasing the survival of
eosinophils once they have reached the tissues.
Chemokines as chemoattractants for eosinophils

None of the leukocyte chemoattractants identified up
until towards the end of the 1980’s was able to explain
how phases of selective leukocyte accumulation occurred
in different types of inflammatory reactions. Potent
chemoattractants (originally identified by their chemot-
actic activity in Boyden chambers in vitro) were known,
such as C5a, leukotriene B4, formyl-methionyl peptides
and platelet activating factor, but none of these exhibited
leukocyte-type specificity. The discovery of the first
chemokines led to the realisation that a large family of
structurally-related small proteins exists. Approximately
50 human chemokines and 20 receptors have been identi-
fied to date (for reviews, see Luster 1998, Moser et al.
2004). Chemokines often stimulate several different re-
ceptors and a given leukocyte type often expresses more
than one type of receptor. Moreover, a leukocyte can also
change its chemokine receptor expression pattern when
presented with different microenvironments. Despite these
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complications, it is now possible to begin to understand
how leukocytes can traffick from one compartment to an-
other, thus providing potential new targets for therapeu-
tic intervention. In the early 1990’s we realised that none
of the known chemoattractants was selective for eosino-
phils and so could not account for the eosinophil-rich
infiltration observed in allergic reactions. We therefore,
began a project to identify such mediators generated in
vivo.  Sensitised guinea pigs were challenged with an
aerosol of ovalbumin to produce acute bronchoconstric-
tion followed by a delayed response associated with eosi-
nophil infiltration. Bronchoalveolar lavage (BAL) fluid,
taken at intervals after the allergen challenge, was bioas-
sayed for chemoattractant activity by injecting it intrad-
ermally in naïve assay animals and measuring the local
accumulation of circulating 111In-eosinophils. We found
that BAL fluid taken from 3-6 h after challenge contained
eosinophil chemoattractant activity. This was purified
using sequential HPLC systems, with bioassay of the frac-
tions at each stage using the skin system in vivo. Protein
sequencing revealed a novel 73 amino acid CC chemokine
that we called “Eotaxin” (Griffiths-Johnson et al. 1993,
Jose et al. 1994). Guinea pig Eotaxin was cloned using
degenerate primers based on the sequence of the guinea
pig protein (Jose et al. 1994, Rothenberg et al. 1995). Con-
stitutive message was found in the lung and was
upregulated on allergen challenge of sensitised animals.
Subsequently, mouse (Rothenberg et al. 1995, Gonzalo et
al. 1996), rat (Ishi et al. 1998, Williams et al. 1998) and
human (Garcia-Zepeda et al. 1996, Kitaura et al. 1996,
Ponath et al. 1996) Eotaxin homologues were cloned.
These proteins have high sequence homology and all are
potent eosinophil chemoattractants.

RANTES, some of the monocyte chemoattractant pro-
teins (MCPs) and MIP-1α are other CC chemokines that
are also known to stimulate eosinophil responses. How-
ever, these proteins are non-selective and stimulate a wide
variety of cell types besides eosinophils. More recently,
two more “Eotaxins” with high functional similarity, but
rather low sequence similarity, when compared with the
originally-discovered Eotaxin have been identified
(Forssmann et al. 1997, Patel et al. 1997, White et al. 1997,
Shinkai et al. 1999). To distinguish these three distinct
gene products, the names Eotaxin-1 (CCL11, formerly
Eotaxin), Eotaxin-2 (CCL24) and Eotaxin-3 (CCL26) are
used (Zlotnik et al. 2000).
The Eotaxin receptor, CCR3

The Eotaxin receptor, CCR3, is a 7-transmembrane-
spanning receptor that is highly expressed on eosino-
phils. This has been cloned in man (Daugherty et al. 1996,
Kitaura et al. 1996, Ponath et al. 1996) mouse (Post et al.
1995, Gao et al. 1996) and guinea pig (Sabroe et al. 1998).
Human CCR3 binds Eotaxin-1, Eotaxin-2, Eotaxin-3 and
MCP-4 with high affinity, whereas RANTES and MCP-3
bind with lower affinity. Guinea pig Eotaxin-1 is highly
potent as a stimulator of human eosinophils (Jose et al.
1994) but, conversely, human Eotaxin-1 is inactive on
guinea pig cells, although it is active on rat eosinophils
(Sanz et al. 1998, Kudlacz et al. 1999). Despite the fact that
human RANTES stimulates human eosinophils, RANTES

from other species has, in general, low activity on ho-
mologous eosinophils (Campbell et al. 1997). Unexpect-
edly, human RANTES binds to guinea pig CCR3 (Jose et
al. 1994, Sabroe et al. 1998) and acts as an antagonist in
vitro and in vivo (Marleau et al. 1996).

In the guinea pig, there is no evidence to date of en-
dogenous CC chemokines, other than Eotaxin-1, acting
on eosinophils. Anti-Eotaxin-1 antibodies completely block
eosinophil accumulation induced by BAL fluid obtained
from allergic and non-allergic inflammatory reactions
(Humbles et al. 1997). A neutralising antibody to guinea
pig CCR3 blocks responses of guinea pig eosinophils to
Eotaxin-1 in vitro and prevents eosinophil accumulation
in response to Eotaxin-1 in vivo (Sabroe et al. 1998). In
mouse models of allergic airway inflammation, eosinophil
recruitment appears to be mediated by a number of CC
chemokines acting via CCR3 and, depending on the model
and the mouse strain, MIP-1α acting through CCR1
(Gonzalo et al. 1998, Ma et al. 2002). In man, MIP-1α can
also stimulate eosinophils in vitro but this is in only a
subpopulation of individuals, whereas Eotaxin-1 is active
on eosinophils from all donors (Sabroe et al. 1999).
Regulation of chemokine production by Th2 cytokines

T-lymphocytes are critical elements in regulating al-
lergic reactions (Basten et al. 1970). Allergy is generally
associated with a polarisation of T-helper lymphocytes
into the Th2 type (Robinson et al. 1992, Romagnani 1994),
as first defined in the mouse (Mosmann et al. 1986). How-
ever, there is also evidence for a co-existence of Th1 and
Th2 responses in mouse allergy models (Li et al. 1998
Randolph et al. 1999). Th2 cells characteristically produce
IL-4, IL-5, IL-10 and IL-13. Neutralisation of IL-4 sup-
presses lung responses to allergen challenge when the
antibody is administered before sensitisation. However,
neutralisation of IL-13, but not IL-4, suppresses responses
when the antibody is administered just before allergen
challenge (Wills-Karp et al. 1998). Depletion of T-cells with
an anti-CD3 antibody just before challenge suppresses
Eotaxin-1 production and eosinophil accumulation
(MacLean et al. 1996). Further, transfer of allergen-spe-
cific Th2 cells to naïve mice, followed by aerosol allergen
challenge, induces eosinophil accumulation associated
with Eotaxin-1 production in the lung (Li et al. 1998).

Although Th2 lymphocytes are critical for regulating
eosinophil accumulation and activation in allergic inflam-
mation, these cells do not appear to be a major source of
eosinophil chemoattractant chemokines. Studies in guinea
pigs (Gonzalo et al. 1996, Humbles et al. 1997, Li et al.
1997) and man (Lamkhioued et al. 1997, Mattoli et al. 1997,
Ying et al. 1997, Nakajima et al. 1998), using in situ
hybridisation and immunohistochemistry, show that the
major sources of Eotaxin-1 are inflammatory cells such as
macrophages, as well as eosinophils themselves, and also
airway smooth muscle cells, vascular endothelial cells and,
in particular, airway epithelial cells. Two Th2 cytokines,
IL-4 and IL-13, have been shown to act synergistically
with TNFα to induce Eotaxin-1 production in human cells
in culture (Mochizuki et al. 1998, Terada et al. 2000). The
first study linking Eotaxin-1 production to IL-4 was made
in the mouse (Rothenberg et al. 1995) where it was shown
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that tumours transfected with the IL-4 gene induced eosi-
nophil recruitment associated with Eotaxin-1 mRNA
upregulation in vivo. In addition, in IL-4 knockout mice
and in anti-IL-4 treated mice a diminished Eotaxin-1 mRNA
expression was observed (Chensue et al. 1997, Ruth et al.
1998). Similarly, it was shown in rats that intradermally-
injected IL-4 induced eosinophil accumulation associated
with Eotaxin-1 mRNA expression, which was suppressed
by a neutralising antibody to Eotaxin-1 (Sanz et al. 1998).

Chemokines are also likely to be of critical importance
in many of the upstream events involved in sensitisation
to allergens. Thus, chemokines are involved in T and B
cell trafficking and distribution under basal conditions
and the recruitment of dendritic cells to tissues, followed
by their movement to regional lymph nodes (Cyster 1999,
2003, Dieu et al. 1998, Ward et al. 1998, Kim et al. 1999,
Moser et al. 2004).
Regulation of blood eosinophil levels

Eosinophils normally circulate in the blood in low num-
bers (1-4% of blood leukocytes) and there is evidence
from guinea pig models that recruitment to sites of aller-
gic inflammation is poor unless mechanisms exist to el-
evate circulating eosinophil numbers (Collins et al. 1995).

IL-5 (originally discovered in the mouse (Sanderson
et al. 1985) is clearly important for eosinophilopoeisis, in
stimulating differentiation and proliferation of eosinophils.
It was shown in the guinea pig that intravenous IL-5 can
also induce the acute release of a pool of mature eosino-
phils from the bone marrow and that this has a profound
enhancing effect on eosinophil recruitment in the skin
induced by intradermally-injected Eotaxin-1 (Collins et al.
1995). The mechanisms involved in this release process
have been analysed in detail using a system where the
microvasculature of the guinea pig femoral bone marrow
is perfused in situ (Palframan et al. 1998). In this system
IL-5 induces a massive migration of eosinophils across
the endothelium into the sinuses, a process which in-
volves β1 and β2 integrins acting in opposite directions.

Eotaxin-1 also releases eosinophils when infused into
the arterial supply to the femoral bone marrow (Palframan
et al. 1998). This appears to relate to the chemotactic ef-
fect of Eotaxin-1 across the sinus endothelium, as op-
posed to the chemokinetic effect of IL-5 (Palframan et al.
1998). A combination of the chemotactic effect of Eotaxin-
1 and the chemokinetic effect of IL-5 acting synergisti-
cally induces very pronounced eosinophil release
(Palframan et al. 1998).

IL-5 and Eotaxin-1 are generated in response to aller-
gen in the sensitised lung. Eotaxin-1 is a powerful
chemoattractant for eosinophils, but IL-5 has low activity
as an eosinophil recruiting agent into tissues (Collins et
al. 1995). Both mediators diffuse into the circulation and
act synergistically to induce eosinophil release from the
bone marrow into the blood. These cells are then avail-
able to be recruited into the lung (Humbles et al. 1997).
These conclusions are consistent with the effects of a
neutralising antibody to IL-5 in the guinea pig, which was
shown to block bone marrow eosinophil release, blood
eosinophilia and recruitment into the lung (Humbles et al.
1997). Eotaxin-1 has also been implicated in the acute re-

lease of eosinophil progenitors into the circulation
(Palframan et al. 1998).

The bone marrow pool of mature eosinophils is also
found in man but represents only a minor population in
the mouse. In man, eosinophil progenitors have been de-
tected in the circulation of atopic patients (Gibson et al.
1991) and, in asthma, Eotaxin-1 has been shown to have
the capacity to mobilise the bone marrow pool of mature
cells (Robinson et al. 1999). Eotaxin-1 gene-deleted mice
have reduced circulating eosinophils (Rothenberg et al.
1997). This may relate to acute eosinophil release from the
bone marrow, but is probably more closely connected with
a reported role for Eotaxin-1 in leukopoiesis in this spe-
cies (Peled et al. 1998).

In addition to its expression on eosinophils, CCR3 has
also been shown to be expressed on basophils (Uguccioni
et al. 1997), mast cells (Ochi et al. 1999, Romagnani et al.
1999) and some Th2 lymphocytes (Gerber et al. 1997,
Sallusto et al. 1997, Bonecchi et al. 1998); all cells associ-
ated with the allergic response.
Chemokines in allergic airway inflammation

Eotaxin-1 generation has been detected in guinea pig
(Jose et al. 1994, Rothenberg et al. 1995, Humbles et al.
1997) and mouse (Gonzalo et al. 1996, MacLean et al. 1996)
models of allergic airway inflammation. However, the situ-
ation is more complex in mice where antibodies to Eotaxin-
1, MIP-1α, RANTES, MCP-3 and MCP-5 have all been
shown, at least partially, to inhibit eosinophil recruitment
(Gonzalo et al. 1996, Jia et al. 1996, Lukacs et al. 1997,
Stafford et al. 1997). Mice with a targeted deletion of the
Eotaxin-1 gene were shown by Rothenberg et al. (1997) to
have a 70% reduction in lung eosinophils 18 h after aller-
gen challenge, but this effect diminished at later time
points. In contrast, Yang et al found no detectable effect
of Eotaxin-1 gene deletion on eosinophil recruitment (Yang
et al. 1998). These studies agree with the idea that other
ligands, including some CC chemokines, may be involved
in the mouse.

The mouse has provided invaluable information about
allergic reactions particularly with respect to the role of T-
cells (see below), but interpretation of the role of
chemokines and eosinophils is complicated by variations
dependent on strain and differences in sensitisation/chal-
lenge protocols (eg. single vs multiple challenge models).
Marked differences were observed when responses of
sensitised mice to one or two allergen challenges were
compared (Campbell et al. 1998). A single challenge with
cockroach antigen induced eosinophil accumulation as-
sociated with the production of Eotaxin-1 and MIP-1α.
Two challenges, separated by 2 days, induced a larger
eosinophil infiltrate that was largely due to Eotaxin-1. Air-
way hyperresponsiveness in both protocols was also
more dependent on Eotaxin-1 than on MIP-1α. However,
the antibody to Eotaxin-1 blocked hyperresponsiveness
in response to two challenges. These results may, in part,
relate to the ability of Eotaxin-1 to induce activation and
degranulation of eosinophils (Tenscher et al. 1996, Elsner
et al. 1996), a property not shared by MIP-1α (Campbell et
al. 1998). In some models, eosinophil activation correlates
with airway hyperresponsiveness to spasmogens. How-
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ever, there are clearly other routes to airway dysfunction
and examples where hyperresponsiveness can be sepa-
rated from eosinophil activation.

Eotaxin-1 and Eotaxin-2 expression is upregulated in
many cell types in human asthmatic airways (Lamkhioued
et al. 1997, Mattoli et al. 1997, Ying et al. 1997, 1999). Fol-
lowing allergen challenge of allergic asthmatic subjects,
an increase in the percentage of Eotaxin-1 positive cells in
induced sputum (Zeibecoglou et al. 1999) was found and
also a time-dependent increase in Eotaxin-1 levels in BAL
fluid (Brown et al. 1998). In contrast, RANTES was the
only detectable eosinophil chemoattractant to be found
in human BAL fluid after allergen challenge (Teran et al.
1996) even though this chemokine is less potent than
Eotaxin-1 in chemotaxis assays. In the absence of a delib-
erate allergen challenge, increased levels of Eotaxin-1 have
been found in extracts of induced sputum from asthmatic
patients (Yamamoto et al. 2003, Dent et al. 2004). We be-
lieve that the majority of the Eotaxin-1 is bound to the
mucus matrix as we found this chemokine in extracted
sputum from asthmatic subjects but not  in BAL fluid or
extracts of sputum cells (unpublished data). Further, we
have found that Eotaxin-1 binds more strongly than
RANTES to components of the mucus matrix, which may
account for the preferential detection of RANTES in BAL
fluid and of Eotaxin-1 in sputum. The upregulation of CC
chemokines with the ability to recruit eosinophils to the
airways suggests that antagonists of CCR3 may provide
novel therapy in asthma.
Therapeutic intervention to block eosinophil recruitment
selectively

The role of eosinophils in the pathology of allergic
reactions remains highly contentious, despite intensive
study in terms of basic cell biology, animal modelling and
clinical investigations: (for a recent review see (Williams
2004). The major therapeutic targets that have been ex-
plored are IL-5 and Eotaxin-1/CCR3.

Deletion of the IL-5 gene (Foster et al. 1996) or use of
antibodies to neutralise IL-5 (Hamelmann et al. 1999) have
been shown to suppress eosinophil recruitment to the
lung and in many, but not all cases (Corry et al. 1996),
inhibit hyperresponsiveness of the airways in animal
models of allergic airways disease. Eotaxin-1/IL-5 double
knockout mice exhibited a profound suppression of eosi-
nophil recruitment into lung and hyperresponsiveness
(Mattes et al. 2002). Studies in allergic cynomolgus mon-
keys showed that a single dose of anti-IL-5 antibody could
suppress eosinophil recruitment and airways hyper-
responsiveness for several months. These results encour-
aged the initiation of clinical trials in mild atopic asthmat-
ics (Engler et al. 1980) and chronic severe asthmatics (Kips
et al. 2003). Unfortunately, although blood eosinophil lev-
els were much reduced, no effects on lung function were
observed. This argued against a significant role for eosi-
nophils in airway hyperresponsiveness, although later
studies revealed that the antibody treatment only depleted
lung eosinophils by 55%, despite the marked depletion of
blood eosinophils (Flood-Page et al. 2003).

Eosinophils can release products such as cationic pro-
teins and activated oxygen species that can damage the

airways as well as products, such as leukotrienes, that
cause bronchoconstriction. Eosinophils can also release
cytokines and growth factors that provide them with a
potential role in immunoregulation and tissue remodel-
ling. Of particular interest as eosinophil products are TGFα
and TGFβ1. Interestingly, the suppression by anti-IL-5
(Blyth et al. 2000) or IL-5 gene deletion (Trifilieff et al.
2001, Cho et al. 2004) of lung tissue eosinophils was asso-
ciated with an attenuation of tissue remodelling in chronic
murine models of repetitive allergen challenge, and with a
decrease in the content of TGF β1 in the lung (Cho et al.
2004) was observed. This has also been observed in man:
here treatment with anti–IL-5 has been shown to reduce
indices of tissue remodelling in allergic reactions in the
skin (Phipps et al. 2002) and lung (Flood-Page et al. 2003).
The importance of eosinophils in tissue remodelling has
recently been brought into focus in GATA-1 knockout
mice lacking eosinophils. These mice exhibited convinc-
ing evidence of suppression of tissue remodelling after
chronic allergen challenge of the lung (Humbles et al. 2004)
but in this case no change was seen in TGFβ1 expression
suggesting that other eosinophil-derived reagents are
involved.

The major effects of therapy aimed at IL-5 are attenu-
ation of eosinophil production by the bone marrow and
reduction of eosinophil survival. An alternative is to in-
hibit eosinophil recruitment into tissue, where the Eotaxins
are thought to play a major part, acting via CCR3. Several
low molecular weight CCR3 receptor antagonists have
been developed that can effectively block eosinophil mi-
gration (White et al. 2000, Sabroe et al. 2000, Naya et al.
2001, Varnes et al. 2004). Some of these compounds have
reached the early stages of clinical trials.
Conclusions

Eosinophils are a prominent feature of allergic inflam-
mation, notably in asthma and these cells are believed to
be major effector cells of tissue damage. The search for
eosinophil-selective chemoattractants led to the discov-
ery of Eotaxin-1 and related CC chemokines that act via
the subsequently-discovered Eotaxin receptor, CCR3. The
evidence accumulated has provided a working hypoth-
esis to explain mechanisms involved in eosinophil recruit-
ment and the links between Th2 lymphocytes regulating
allergic inflammation and eosinophils. Small molecule an-
tagonists of CCR3 may provide a new generation of thera-
peutic compounds for allergy and asthma.
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