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The Pneumocystis life cycle
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First recognised as “schizonts” of Trypanosoma cruzi, Pneumocystis organisms are now considered as part 
of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the 
Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fun-
gi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few excep-
tions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further 
evidence for the existence of conjugation and meiosis in Pneumocystis organisms. Dynamic follow-up of stage-to-
stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of 
the still hypothetical Pneumocystis life cycle. Although difficult to achieve, stage purification seems a reasonable 
way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the 
historical milestones leading to the current knowledge available on the Pneumocystis life cycle.

Key words: Pneumocystis - cell sorting - life cycle stages - ploidy - mating

History of research on the Pneumocystis life cycle

The history of the Pneumocystis genus, which was 
reviewed recently (Calderón-Sandubete et al. 2002, 
Redhead et al. 2006), begins in Brazil, where Carlos 
Chagas (1879-1934) first discovered Pneumocystis cys-
tic forms in 1909 while he was assessing malaria pro-
phylaxis measures in the state of Minas Gerais (Dela-
porte 2003). Chagas observed such forms in the lungs 
of guinea pigs inoculated with the blood of two children 
with trypanosomiasis and in the lungs of the first hu-
man case of acute American trypanosomiasis (Chagas 
1911, Delaporte 2003). He wrongly thought that such 
forms revealed the occurrence of a schizogonic process 
in Trypanosoma cruzi, and for this reason he proposed 
to name the genus Schizotrypanum (Chagas 1909). In 
1910, Antonio Carini (1872-1950), while director of the 
São Paulo Pasteur Institute (Brazil), found similar cysts 
in the lungs of rats (Rattus norvegicus) infected by Try-
panosoma lewisi (Carini 1910). He sent tissue samples to 
Alphonse Laveran at the Pasteur Institute of Paris, where 
two Laveran’s fellows, Mr. and Mrs. Delanoë, observed 
similar pulmonary cysts in sewer rats (R. norvegicus) 
from Paris that were not infected by trypanosomes. 
They concluded that the pulmonary cystic bodies re-
ported by Chagas and Carini were indeed a new biologi-
cal entity unrelated to trypanosomes (Delanoë & Delanoë 
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1912, Hughes 1987, Calderón-Sandubete et al. 2002) and 
they speculated about its potential relationship with coc-
cidian protozoa. They suggested naming it Pneumocystis 
carinii: “Pneumo” in relation with lung tropism, “cystis” 
because of its typical shape and “carinii” to honour Dr. 
Antonio Carini (Delanoë & Delanoë 1912). Delanoë and 
Delanoë (1912) only mentioned cystic forms and no refer-
ence was made to non-cystic forms of Pneumocystis for 
a long time. In 1942, van der Meer and Brug published 
the first light microscopy photographs of Pneumocystis 
trophic and cystic forms in human beings [accompanied 
by concise and aesthetic drawings’ reproduced in the book 
by Hughes (1987)]. 

Although many authors (for instance, Jirovec 1964, 
Kim et al. 1972) suggested hypotheses regarding the Pneu-
mocystis life cycle, the best ones were based on ultrastruc-
tural observations (Vavra & Kucera 1970, Campbell 1972, 
Vossen et al. 1978, Matsumoto & Yoshida 1984, Yoshida 
1989, Dei-Cas 2000). Thus, a major event in the history 
of Pneumocystis life cycle research was undoubtedly the 
finding of synaptonemal complexes in the nucleus of early 
sporocytes, indicating the occurrence of a meiotic divi-
sion, i.e., of a sexual cycle (Matsumoto & Yoshida 1984). 
Thus, these authors proposed an original Pneumocystis 
life cycle hypothesis with a high heuristic value (Dei-Cas 
et al. 2004, 2006, Aliouat-Denis et al. 2008) that associ-
ates both sexual and asexual modes of multiplication 
(Matsumoto & Yoshida 1984, Yoshida 1989).

The fungal nature of Pneumocystis was suggested by 
Vavra and Kucera (1970) on the basis of ultrastructural 
studies. It was further strengthened by Ruffolo (1994) 
when he proposed to rename the Pneumocystis stages 
according to fungal terminology. The controversy about 
the fungal versus protozoan nature of Pneumocystis re-
mained until the end of the 1980s when the first definite 
proof of its fungal nature was provided (Edman et al. 
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1988, Stringer et al. 1989). The genus Pneumocystis has 
its own designated Pneumocystidaceae family (Eriksson 
1994), which belongs to the subphylum “Taphrinomyco-
tina” sensu Eriksson and Winka 1997 or “Archiascomy-
cetes” sensu Nishida and Sugiyama 1994. The monophyl-
etic taxon “Taphrinomycotina” includes ecologically and 
morphologically diverse fungi that diverged early from 
Ascomycota (Sugiyama et al. 2006).

Pneumocystis life cycle stages

Hypotheses on the Pneumocystis life cycle stem 
from transmission electron microscopy (TEM) mi-
crographs and three-dimensional reconstructions of 
Pneumocystis organisms as well as recent molecular 
data. All known life cycle stages of Pneumocystis have 
been found in the lungs of infected mammals and, 
more rarely, in extrapulmonary locations primarily in 
severely immunocompromised hosts (Ng et al. 1997, 
Anuradha & Sinha 2007). Several authors have drawn 
slightly different hypothetical life cycle schemes in 
which both sexual and asexual reproduction alternate 

in vivo (Yoshida et al. 1984, Yoshida 1989, Cushion 
2004, Dei-Cas et al. 2004, De Souza & Benchimol 
2005, Thomas & Limper 2007, Aliouat-Denis et al. 
2008). Lack of robust, long-term culture has prevented 
detailed dynamic follow-up of differentiation of the 
Pneumocystis life cycle stages. Thus, it was formerly 
impossible to test hypotheses on the life cycle.

Trophic forms, sporocytes and mature cysts are 
usually considered as the three main morphological 
forms involved in the Pneumocystis life cycle. Trophic 
forms are the most abundant of all Pneumocystis life 
cycle stages, representing 90-95% of the total popula-
tion in the lungs of hosts with pneumocystosis. These 
vegetative forms appear as mononuclear, 2-8 µm in di-
ameter, mostly haploid eukaryotic cells (Cornillot et al. 
2002, Dei-Cas et al. 2004) presenting a thin cell wall 
consisting of an electron-dense single layer (Table). 
Ameboid in shape, trophic forms display cytoplasmic 
projections known as filopodia, which allow them to 
attach closely to type I pneumocytes (Aliouat-Denis 
et al. 2008). Ultrastructural studies as well as the re-

B: Transmission electron microscopy

Trophic form
Early

sporocyte
Intermediate

sporocyte
Late

sporocyte Cyst Spore

Shape Irregular Ovoid Ovoid Ovoid Ovoid Ovoid,
amoeboid or 

crescent-shaped
Diameter (µm) 2-8 3.5-4.5 4-6 4-6 4-7 1-2
Number of nucleus 1 1 2-8 8 8a 1
Ploidyb n 2nc n n Na n
Synaptonemal 
complexes

No Yes No No No No

NAOd No No Yes Yes No No
Nuclear spindle No Yes Yes No No No
Mitochondrione Elongated,

little ramified
Ramified Dendritic Split Ovoid, dense Ovoid, dense

Cell wall
(diameter in nm)

Electron-dense
layer (20-25 nm)

Electron-dense
layer (35-45 nm)

Electron-dense + 
inner electron-
lucent layers
(80-100 nm)

Electron-dense + 
inner electron-
lucent layers
(80-120 nm)

Electron-dense + 
electron-lucent

layers (80-120 nm)

Electron -
dense layer
(20-23 nm)

Filopodia numerous poorly developed scarce scarce scarce none

a: one nucleus in each one of the eight spores; b: hypothetical ploidy considering the report by Matsumoto & Yoshida (1984) 
and our own observations (modified from Dei-Cas et al. 2004); c: diploid early sporocyte results probably from conjugation of 
haploid trophic forms; d: nuclear-associated organelles; e: these terms refer to detailed computer-aided 3D-ultrastructural recon-
struction of Pneumocystis mitochondrion as described by Palluault et al. (1991a, b).

TABLE
Life cycle parasite stages of Pneumocystis organisms

A: Light microscopy

Trophic form Early sporocyte Intermediate sporocyte Late sporocyte Cyst

TBO - - + + +
Giemsa + + + + +

TBO: Toluidine Blue O; -: unstained; +: stained (modified from Dei-Cas et al. 2004).
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cent discovery of the Ste3 pheromone receptor gene 
and the Ste2-like homologue within the Pneumocystis 
genome suggest the existence of mating types and the 
probable conjugation of Pneumocystis trophic forms 
in vivo (Itatani 1996, Smulian et al. 2001, Cushion 
2004). Following the fusion of mating types, a round, 
thin-walled, mononuclear and probably diploid early 
sporocyte is produced and shortly thereafter enters a 
meiotic division process. Ultrastructural images of a 
synaptonemal complex reported within the nucleus of 
early sporocytes support the occurrence of meiosis in 
Pneumocystis (Matsumoto & Yoshida 1984, Peters et 
al. 2001). Meiosis is followed by an additional mitotic 
replication resulting in eight nuclei in the late sporo-

cyte stage (Table, Fig. 1). While nuclear division and 
organelle segregation proceed, an electron-lucent layer 
appears between the electron-dense layer and the plas-
ma membrane of the intermediate sporocyte. It further 
thickens at the late sporocyte stage to finally produce a 
thick-walled mature cyst that measures 4-7 µm in diam-
eter (Dei-Cas et al. 2004). Its surface is rather smooth, 
with few filopodia. In the mature cyst, eight individual 
spores are clearly delineated and are protected by a 
cell wall that appears as thick as the cell wall of the 
trophic form (Table). Spores consist of a single nucleus 
and a fairly dense cytoplasm with a rounded, well-de-
fined electron-dense mitochondrion, a well-developed 
rough endoplasmic reticulum and numerous ribosomes 

Fig. 1: a hypothetical Pneumocystis life cycle illustrated by transmission electron micrographs and corresponding interpretation drawings of organisms 
developing in mammalian lungs. Mononuclear thin-walled trophic forms (small arrows) are attached to type 1 epithelial alveolar cell that is close to a 
capillary vessel (star). Following conjugation (Itatani 1996), trophic forms would evolve into thin-walled round early sporocyte in which synaptonemal 
complex has been reported (Matsumoto & Yoshida 1984, Peter et al. 2001). While electron-lucent layer (arrowhead) develops in intermediate sporo-
cytes, meiotic nuclear division proceeds. An additional mitotic replication leads to a thick-walled late sporocyte (arrowhead) containing eight nuclei. In 
the mature cyst, the eight spores are fully delineated. These forms are able to leave the cyst and subsequently attach to type I alveolar cells. A: alveolar 
space; CC: condensed chromosomes and spindle microtubules; N: nucleus; Mi: mitochondrion; V: vacuole. Arrowheads indicate thick cell wall.
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(Dei-Cas et al. 2004). Morphologically, spores can be 
spherical, banana-shaped or irregular. Once fully ma-
tured, they leave the cyst, probably through a foramen-
like structure, to give rise to eight free haploid trophic 
forms (Yoshida 1989, Itatani 1994).

Transmission has been shown to occur from indi-
vidual to individual by the airborne route (Walzer et al. 
1977, Hughes 1982), although the infective form has not 
been elucidated. Although Pneumocystis DNA has been 
detected in ambient air, no environmental form has thus 
far been isolated (Wakefield 1996). The thick-walled ma-
ture cyst is certainly best equipped to retain infectivity 
during transient host-to-host air travel. Furthermore, de-
tection of mature cysts in the bronchial lumen by TEM 
suggests that they may reach the external environment 
and be transmitted to other hosts (Dei-Cas 2000).

 

Exploring Pneumocystis growth

The pathogenicity of Pneumocystis appears clearly 
linked to both the proliferation capacity of these fungi 
and the detrimental inflammatory response elicited by 
the host (Lebron et al. 2003, Thomas & Limper 2007). 
However, data about Pneumocystis multiplication mech-
anisms are scarce or controversial. As indicated above, 
in the infected lungs of patients or immunosuppressed 
laboratory animals, trophic forms represent 90-95% of 
the total parasite population. Mainly for this reason, it 
is currently thought that Pneumocystis proliferation re-
sults from active binary fission of trophic forms (Cush-
ion 2004, De Souza & Benchimol 2005). Although few 
ultrastructural micrographs of binary fission have been 
reported (Richardson et al. 1989), 15 years of studying 
Pneumocystis ultrastructure led us to hypothesise that 
nuclear division would only occur within the cystic 
forms (Aliouat et al. 1999, Dei-Cas et al. 2004). In or-
der to test this hypothesis, Aliouat et al. (1999) explored 
Pneumocystis growth in cultures of epithelial alveolar 
cells (Aliouat 1995, European Concerted Action 1996). 
Trophic forms, cystic forms containing developing or 
developed spores (“filled” cysts) and empty cysts were 
carefully quantified on dry smears stained with either 
Toluidine Blue O or RAL555, a Giemsa-like stain. The 
staining features of each parasite stage are detailed in 
Table. Pneumocystis growth kinetics was determined 
by plotting the parasite population’ on a semilogarith-
mic curve, and doubling time (DT) was calculated at 
the exponential phase as follows: DT = ln 2/µ, where 
µ represents the specific growth rate (i.e., slope of the 
curve). An increase in the number of filled or empty 
cysts was observed, showing that cysts contributed to 
fungal growth. Indeed, the increase in the frequency of 
empty cysts indicated that the trophic forms were pro-
duced from filled cysts; reciprocally, the increase in the 
number of filled cysts indicated that the trophic forms 
produced filled cysts. Now, did the trophic forms de-
velop further binary fission? If the trophic forms did 
not divide, each time one filled cyst produced an empty 
cyst, eight trophic forms would be released. Therefore, 
the empty cyst versus trophic form curve should be a 
straight line with a slope equal to eight. Alternatively, 
if the trophic forms did divide, the slope should obvi-

ously be greater than eight. Interestingly, in cultures of 
P. carinii with epithelial alveolar cells, the slope was ac-
tually 8.08, suggesting that one trophic form gives rise 
to only eight trophic forms via cyst production and that 
no other replication mechanism occurred (Aliouat et al. 
1999). This result strengthens the hypothesis proposed 
by Schmatz et al. (1990, 1991) that the cyst stage is re-
quired for proliferation of trophic forms.

Mating

Pneumocystis species as well as biotrophic fungi of 
plants (O’Connell & Panstruga 2006) usually develop 
sexual reproduction within their host (Cushion et al. 
2007). In contrast, most fungi developing in animals do 
not appear to complete a sexual cycle (Sexton & Howlett 
2006). Some exceptions to this rule may nevertheless be 
noted. Aspergillus nidulans is sometimes able to sexually 
reproduce in vivo in human as well as in animal tissues, 
thus producing cleistothecia and Hülle cells (Doby & 
Kombila-Favry 1978, Dei-Cas & Vernes 1986, Mitchell 
et al. 1987). More recently, the existence of an anamorph 
state of Candida lusitaniae was questioned since 100% of 
76 clinical isolates were able to mate and undergo meio-
sis once put in contact with a sexually compatible strain 
(François et al. 2001). This result indicates that C. lusita-
niae still uses meiosis as a source of genetic variability; 
this could explain the higher propensity of C. lusitaniae to 
acquire antifungal resistance (François et al. 2001).

Pneumocystis species also present exceptions to the 
rule. TEM micrographs as well as recently identified 
mating genes located in the Pnemocystis genome (The 
Pneumocystis Genome Project available from http://pgp.
cchmc.org/) provide evidence for the existence of con-
jugation between trophic forms. Itatani (1996) reported 
the occurrence of binucleated trophic forms in the lungs 
of infected rats. The existence of a cytoplasmic isthmus 
and the asymmetrical position of both nuclei on one side 
indicate that both trophic forms probably fused at one 
definitive site and that one nucleus migrated toward the 
other. Moreover, the close apposition and orientation 
of spindle pole bodies associated with each nucleus are 
strongly suggestive of conjugation (Itatani 1996).

More recently, fungal homologues involved in pher-
omone/mating signalling cascades have been identified 
in the Pneumocystis genome, strengthening the hypoth-
esis of the existence of a sexual cycle in Pneumocystis. 
Generally, the mating process is initiated after mutual 
secretion of pheromones by fungal cells of opposite mat-
ing types. Pheromone secretion is also stimulated by 
environmental stress like nutrition deprivation (Li et al. 
2007). Pheromones recognise a heterotrimeric G-cou-
pled transmembrane receptor located at the cell surface 
of the opposite mating type. In turn, the mitogen-acti-
vated protein kinase (MAPK) signal transduction cas-
cade is activated (Li et al. 2007). Once activated, MAPK 
controls many cell effectors that halt the mitotic cell 
cycle, initiate transcription of genes involved in mating 
and eventually allow the fusion of both cells (Harigaya 
& Yamamoto 2007).
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Using degenerate PCR and library screening, Tho-
mas et al. (1998) identified a gene encoding for a MAPK 
in P. carinii that is homologous to other fungal MAPKs 
involved in differentiation and proliferation. A few 
years later, heterologous expression of P. carinii MAPK 
(PCM) was shown to restore pheromone signalling in 
Saccharomyces cerevisiae Fus3/Kss1 double mutants 
(Vohra et al. 2003b). PCM was mainly expressed in P. 
carinii trophic forms (Vohra et al. 2003b). PCM was 
then reported to phosphorylate the P. carinii homologue 
of Schizosaccharomyces pombe Ste11 (Ste12 in S. cere-
visiae), which encodes a transcriptional factor necessary 
for the pheromone-induced expression of genes required 
for mating (Vohra et al. 2003a). Once conjugation has 
occurred, activation of Ste11 indirectly turns on Mei2, 
which plays pivotal roles in both the induction and the 
progression of meiosis (Harigaya & Yamamoto 2007). 
PCMei2, a homologue of S. pombe Mei2, has recently 
been identified using the Pneumocystis Genome Proj-
ect database (Burgess et al. 2008). The same research 
group also identified another kinase, PCRan1, as an S. 
pombe Ran1 (Pat1) homologue. Ran1 is known to direct-
ly phosphorylate and inhibit the activity of Mei2. Indeed, 
Burgess et al. (2008) have shown phosphorylation of Pc-
Mei2 by PCRan1 in vitro as well as higher expression of 
PCRan1 in cystic forms, thus suggesting that meiosis is 
inhibited in this life cycle stage. Moreover, both genes 
exhibited functional activity in meiotic control when ex-
pressed in S. pombe.

P. carinii Ste3, an a-factor pheromone receptor ho-
mologue, was identified from an expressed sequence tag 
(EST) database that was created as part of the Pneumo-
cystis Genome Project (Smulian et al. 2001). It further 
confirms the existence of a sexual replication cycle in 
vivo (Smulian et al. 2001). This G-protein-coupled re-
ceptor was later reported to be exclusively expressed in 
a sub-population of trophic forms (Vohra et al. 2004). 
This finding is consistent with the expression pattern of 
pheromone receptors in other fungi. So far, no ligand 
has been identified for this receptor. Genes encoding 
functional elements of the pheromone response signal 
transduction cascade, like Ste12 and Ste20 orthologues, 
are clustered around the Pneumocystis Ste3 gene (Smu-
lian et al. 2001). P. carinii Ste20 (PCSTE20) was later 
shown to be expressed following adherence of the fun-
gus to extracellular matrix components and lung epithe-
lial cells (Kottom et al. 2003). Heterologous expression 
of PCSTE20 conferred pseudohyphal growth and also 
revealed the gene to be functional in mating signalling 
pathways in S. cerevisae mutant strains (Kottom et al. 
2003). Additional orthologues of fungal genes associ-
ated with either the mating/sexual mode of replication 
or stress/nutritional deprivation were identified in the P. 
carinii EST database, thus pointing to these conditions as 
triggers of Pneumocystis mating (Cushion et al. 2007).

How to investigate the Pneumocystis cell cycle?

Our aim is to dynamically study, both in vitro and in 
vivo, the completion of the Pneumocystis life cycle. To 
reach this aim, several obstacles need to be overcome. 
First of all, no long term culture system of Pneumocys-

tis organisms is available, which prevents any attempt 
to synchronise fungal growth or stage differentiation 
in vitro. It is thus difficult to pinpoint the outcome of 
each life cycle stage. Second, Pneumocystis organisms 
are fairly small in size and have a tendency to form ag-
gregates that render purification from host cell debris 
and stage-to-stage separation difficult. A number of au-
thors have tested several methods such as sucrose den-
sity centrifugation (Lim et al. 1973), gravity sedimenta-
tion (Taylor & Easmon 1990) or dialysis (Read & Burns 
1991) and Percoll gradient (Chin et al. 1996) in order to 
enrich for fungal organisms against host cell debris (De 
Stefano et al. 1994).

Several techniques provide partial stage-to-stage pu-
rification of P. carinii; they include gravitational field-
flow fractionation (Bories et al. 1992), immunomag-
netic sorting (Aliouat-Denis, unpublished observations), 
sequential filtrations (Durkin et al. 1991, Vohra et al. 
2004), elutriation combined with sequential filtrations 

(De Stefano et al. 1994) and flow cytometry (De Stefano 
et al. 1992). The last two procedures only provide good 
enrichment of cystic forms (95-96%) and their infectiv-
ity has not been tested.

High-speed cell sorting was our chosen strategy to 
purify P. carinii organisms from host cell debris and 
to achieve stage-to-stage separation with high purity 
(Martinez et al. 2009). A polyclonal antibody produced 
in our laboratory was used to label the whole P. car-
inii population. A commercially available monoclonal 
antibody (MonofluoTM Kit “Pneumocystis jirovecii (P. 
carinii)”, BioRad) that requires trypsin digestion was 
used to specifically label cystic forms. The epitope rec-
ognised by the monoclonal antibody lies in the elec-
tron-lucent layer of rodent and human Pneumocystis 
sporocytes and mature cysts (Sukura et al. 1994) and 
does not cross-react with host cell debris or yeasts 
(Lautenschlager et al. 1996). The experimental proto-
col was refined in order to avoid P. carinii clumps and 
to reach the best compromise between efficient cyst la-
belling and preservation of fungus integrity. The cyto-
logical and ultrastructural integrity of trypsin-treated 
P. carinii organisms was assessed. Trypsin treatment 
affected the outer electron-dense layer that was thin-
ner in trypsin-treated trophic forms than in controls, 
whereas it completely disappeared in cystic forms, di-
rectly exposing the electron-lucent middle layer to the 
external environment. No other ultrastructural altera-
tions were noted. Separation of cyst forms from trophic 
forms was achieved by flow cytometry with a purity of 
99.6 ± 0.3% in 27 independent cell sorting experiments 
(Figs 2-6) (Martinez et al. 2009).

Dexamethasone-treated Lou nu/nu rats were used 
to monitor the impact of the trypsin treatment, co-im-
munostaining and sorting steps on P. carinii infectivity. 
Following endotracheal inoculation, sorted P. carinii had 
decreased infectivity but remained infectious to the Nude 
rats (Martinez et al. 2009). 

We are currently following stage-to-stage differen-
tiation of P. carinii both in vitro and in vivo. Purified life 
cycle stage populations are endotracheally inoculated to 
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Nude rats and the proportions of trophic and cystic forms 
as well as sporocytes are followed during the course of 
pneumocystosis. The behaviour of the purified life cycle 
stages was also studied in vitro both in axenic culture 
and in co-culture with L2 cells (rat lung epithelial cells, 
ATCC CCL-149). This approach will allow us to pin-
point the blocking step that prevents the completion of 
the P. carinii life cycle in culture. Ideally, stage-specific 
genes or proteins as well as genes/proteins involved in 
stage-to-stage differentiation will be identified by com-
paring gene expression profiles using microarrays and 
the 2D gel electrophoresis patterns of purified P. carinii 
trophic or cystic form populations. These transcriptomic 
and proteomic approaches have already been started as 
part of an international collaboration network (ANR-
ERA-NET “Pneumocystis” PathoGenoMics Program, 
ANR-06-PATHO-009-01).

Estimation of the ploidy level of P. carinii has already 
been reported and haploidy has been predicted for most 
Pneumocytis life cycle forms (Stringer & Cushion 1998). 
Fifteen gene-specific DNA probes were hybridised to 
individual bands on seven karyotype forms produced 
by pulse-field gel electrophoresis (Cushion 1998). Each 

probe hybridised to a single band in all electrophoretic 
karyotypes, suggesting that P. carinii f.sp. carinii is 
mainly haploid. Similarly, quantitative image analysis 
of Pneumocystis nuclei stained with fluorescent dyes re-
vealed that both trophic forms and spores were haploid 
(Wyder et al. 1998). Two-dimensional pulse-field gel 
electrophoresis allowed Cornillot et al. (2002) to identify 
homologues for at least two chromosomes. These results 
raised some questions about the ploidy status of the Pneu-
mocystis nucleus. Our preliminary experiments of DNA 
content measurements in Pneumocystis cystic forms by 
flow cytometry confirm that each spore contains one 
copy of DNA content. In contrast, trophic forms would 
not only be haploid (unpublished observations).
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