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Cryptococcal pathogenic mechanisms: a dangerous  
trip from the environment to the brain
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Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of 
the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It 
could be metaphorically imagined that cryptococcal disease is a “journey” for the microorganism that starts in the 
environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected 
mammalian host in the lungs, a site in which it must choose the right elements from its “virulence suitcase” to sur-
vive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some 
individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must “open” the main barrier 
that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of 
protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. 
neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to 
express virulence factors that contribute to the development of disease.
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Invasive fungal infections are estimated to cause 
over 1.5 million deaths per year worldwide, with the vast 
majority of these infections occurring in immunocom-
promised patients (Brown et al. 2012). Over the last few 
decades, the emergence of HIV infection in particular 
has led to the rise in cases of cryptococcal meningoen-
cephalitis. Caused by the basidiomycete yeast Crypto-
coccus neoformans, cryptococcosis globally results in 
approximately 215,000 infections per year, leading to 
180,000 deaths patients (Rajasingham et al. 2017). C. ne-
oformans can be isolated from the environment in many 
regions of the world, resulting in nearly universal expo-
sure to this fungus among human populations. However, 
symptomatic disease after exposure is relatively rare. De-
fects in cell-mediated immunity, especially as directed 
by CD4+ lymphocytes, are the most common risk factors 
for developing invasive cryptococcal disease. Additional 
predisposing factors include solid organ or bone marrow 
transplantation-associated immunosuppression, treat-
ment with corticosteroids, treatment with tumor necro-
sis factor-a inhibitors, various malignancies, sarcoidosis, 
chronic liver disease, and renal failure (Casadevall and 
Perfect 1998, Baddley et al. 2008, Maziarz and Perfect 
2016). Cryptococcosis is a common AIDS-defining 

illness and a leading cause of mortality among adults 
with HIV in Sub-Saharan Africa (Rajasingham et al. 
2017). Despite the advent of antiretroviral therapy, which 
drastically reduced the number of HIV cases in the devel-
oped world, C. neoformans remains a major problem in 
resource-limited regions. Furthermore, while the number 
of AIDS-associated cases of cryptococcal disease has de-
creased overall, the incidence of disease in solid organ 
transplant patients and other non-AIDS-associated cases 
has increased (Bratton et al. 2012).

Although this fungus is found primarily in the en-
vironment, it possesses features that allow survival and 
proliferation within a human host. Moreover, C. neofor-
mans must be able to move from the lungs, the most com-
mon initial site of infection, to the central nervous system 
(CNS), the most common site of symptomatic disease. To 
accomplish this journey, C. neoformans has developed 
inducible and highly regulated cellular processes that fa-
vor fungal survival despite formidable host defenses.

CRYPTOCOCCUS IN THE ENVIRONMENT AND  
ACQUISITION OF INFECTION: GETTING THE SUITCASE 

READY AND FULL OF VIRULENCE ATTRIBUTES

C. neoformans is frequently found in the environ-
ment in association with pigeon guano, as well as in 
association with a variety of trees and soils (Emmons 
1955, Litvintseva et al. 2011, Chowdhary et al. 2012). 
While C. neoformans does not generally cause sympto-
matic disease in pigeons due to their high body temper-
ature, these birds are thought to be a reservoir contrib-
uting to the global dispersion of this pathogen (Littman 
and Borok 1968, Litvintseva et al. 2011). C. neoformans 
is found throughout the world and can infect a wide va-
riety of hosts, including cats, dogs, koalas, dolphins, 
and even plants (Lester et al. 2004, McGill et al. 2009, 
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Kido et al. 2012, Venn-Watson et al. 2012, Pennisi et al. 
2013, Warpeha et al. 2013). Studies estimate that 50% 
of urban children have been exposed to Cryptococcus 
by age 2 (Goldman et al. 2001). A related Cryptococ-
cus species, Cryptococcus gattii is found in more re-
stricted geographic regions. Unlike C. neoformans, C. 
gattii is found almost exclusively in association with 
certain plant species, including eucalyptus trees (Ellis 
and Pfeiffer 1990). Infections with C. gattii have some 
overlapping features with those due to C. neoformans; 
however, C. gattii tends to cause disease more often in 
people without clear immunodeficiencies. Addition-
ally, C. gattii infections often present with focal brain 
abscesses, instead of more generalised CNS infections 
(Mitchell et al. 1995, Speed and Dunt 1995, Byrnes et al. 
2011). Interestingly, murine inhalation models of C. gat-
tii infections demonstrate that this Cryptococcus species 
tends to more frequently cause focal pulmonary disease 
rather than dissemination to the CNS. These clinical and 
experimental data suggest that C. gattii may possess mi-
crobial features that favor localised and tissue-specific 
infections rather than widespread systemic dissemina-
tion (Ngamskulrungroj et al. 2012).

C. neoformans has several well characterised viru-
lence attributes, including the ability to grow at mam-
malian body temperature and the production of polysac-
charide capsule, melanin, urease, and phospholipases. 
C. neoformans has also developed several strategies to 
survive and replicate within phagocytic cells. However, 
despite these successful virulence strategies, C. neofor-
mans does not require the mammalian host to complete 
its lifecycle, leading to its designation as an “accidental 
pathogen” (Casadevall and Pirofski 2007). Instead, it has 
been hypothesised that these virulence traits were ac-
quired for survival in the environment, and then re-pur-
posed in the setting of mammalian infection. For exam-
ple, the antiphagocytic capsule has been hypothesised to 
protect cells from environmental desiccation. Similarly, 
the antioxidant melanin pigment, which is required for 
survival in vivo, is thought to shield against UV radia-
tion-induced cellular damage (Aksenov et al. 1973, No-
sanchuk and Casadevall 2006).

It has also been suggested that C. neoformans may 
have evolved to survive encounters with free-living soil 
microbes, such as amoebae and nematodes (Steenber-
gen and Casadevall 2003, Casadevall and Pirofski 2007). 
Amoebae including Acanthamoeba castellanii and Dic-
tyostelium discoideum can interact and ingest C. neofor-
mans in a manner similar to mammalian macrophages 
(Steenbergen et al. 2001). C. neoformans is able to kill 
these organisms, and many of the virulence attributes de-
scribed above were also shown to be important for surviv-
al within amoebae (Steenbergen et al. 2001). Similar pro-
tozoa, as well as bacteria and insects, have been isolated 
from pigeon guano and shown to influence C. neoformans 
growth (Ruiz et al. 1982). Interestingly C. neoformans, but 
not related non-pathogenic cryptococcal species, can kill 
the nematode Caenorhabditis elegans (Mylonakis et al. 
2002). Interaction with A. castellanii, as well as the wax 

moth Galleria mellonella, induced C. neoformans capsule 
and the formation of giant/titan cells, similar to what has 
been observed in mammalian models of infection (Chris-
man et al. 2011, García-Rodas et al. 2011).

Role of spores - C. neoformans isolated from the en-
vironment grows almost exclusively as a haploid budding 
yeast. This asexual form replicates by mitosis. C. neofor-
mans also has a defined sexual cycle in which it grows in 
a filamentous form. Mating occurs when partners of op-
posite mating types (MATa and MATa) fuse and form fil-
aments with distinct nuclei and specialised clamp cells. 
The dikaryotic filaments eventually produce a basidium, 
a terminally differentiated structure at the end of a grow-
ing hyphae, in which nuclear fusion and meiosis occur 
to produce chains of haploid a and a basidiospores at the 
basidial head (Kwon-Chung 1976). Strains of the a mat-
ing type can also undergo monokaryotic haploid fruiting 
or same sex mating (Wickes et al. 1996, Lin et al. 2005). 
Interestingly, most clinical and environmental isolates 
are exclusively a mating type, leading to questions about 
the frequency of sexual reproduction in nature (Kwon-
Chung and Bennett 1978). However, Litvintseva et al. 
(2003) identified fungal populations in Botswana in 
which the proportion of MATa and MATa isolates is rela-
tively even. Further analysis revealed evidence of clonal 
expansions and recombination among this population 
(Litvintseva et al. 2003, Chen et al. 2015).

It has long been debated whether desiccated yeasts or 
spores are the predominant infectious particles of C. ne-
oformans. Despite a lack of evidence for frequent sexual 
reproduction as a mechanism to generate infectious basid-
iospores, monokaryotic haploid fruiting can potentially 
result in the production of abundant spores in the absence 
of a mating partner. While a liquid suspension of fungal 
cells is generally used in murine models of cryptococcal 
infection, several studies have demonstrated that spores 
are capable of producing infection (Sukroongreung et al. 
1998, Giles et al. 2009, Velagapudi et al. 2009, Springer 
et al. 2013). Detailed spore analyses have been delayed 
due to difficulties in purifying large numbers of spores 
to homogeneity. However, recent advances in spore isola-
tion have led to the characterisation of spore morphology, 
stress tolerance, and surface/coat composition (Botts et 
al. 2009). These studies revealed that the spore surface 
is composed of specialised polysaccharides, which are 
thought to aid in persistence in the environment (Botts et 
al. 2009). Recent comparative proteomic analyses high-
lighted proteins involved in spore composition as well as 
proteins important for spore germination and initiation of 
vegetative growth (Huang et al. 2015).

The recognition of spores compared to yeast-like 
cells by the immune system has also been investigated, 
revealing important differences in how these two mor-
phological states are sensed (Giles et al. 2009, Walsh et 
al. 2017). Unlike yeast cells, spores are readily phagocy-
tosed by macrophages, inside which they can germinate 
and replicate. One caveat, however, is that activated mac-
rophages can rapidly kill ungerminated spores, which are 
highly susceptible to ROS (Giles et al. 2009). Therefore, 
the ability for spores to produce an active infection is de-
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pendent on their ability to germinate prior to macrophage 
activation and killing. Once germinated, the budding 
yeast cells can grow both intracellularly, and extracellu-
larly in the host, prompting investigators to refer to this 
microbe as a facultative intracellular pathogen.
FIRST STOP OF THE TRIP: ADAPTATION TO THE LUNG 
ENVIRONMENT (CHOOSING THE RIGHT TRAIT FROM 

THE VIRULENCE SUITCASE)

A key step in the trip of the cryptococcal disease is its 
arrival at the lungs. The immune response of this organ is 
complex and specialised because it is frequently exposed 
to a large number of exogenous particles suspended in the 
air, like dust and microorganisms. For this reason, this 
organ has complex and specialised immune responses to 
control the continuous challenge from external threats. 
One of the main mechanisms of defense in the lung de-
pends on tissue-resident macrophages present in the alve-
oli, which phagocytose and remove exogenous particles 
and microorganisms. In addition, the lung contains the 
surfactant system, which is a mixture of phospholipids 
and glycoproteins whose main function is to maintain 
the superficial tension during respiration. Some of these 
surfactant proteins also have antimicrobial properties, as 
they can bind to microbes and induce phagocytosis.

After inhalation, the infectious particles of C. ne-
oformans have to evade this complex immune response 
and replicate. Survival in this environment is not an 
intrinsic property of most microbes. In fact, in animal 
models, most fungi cannot cause lung infection. For 
example, the immune response of the lung typically 
results in complete clearance of most Candida species. 
Even in the case of Aspergillus fumigatus, a filamentous 
fungus that can cause pulmonary infection in immuno-
suppressed individuals, colonisation of the mouse lungs 
only occurs when the animals are immunosuppressed. 
For this reason, C. neoformans is a remarkable fungal 
pathogen due to its effective evasion of the lung immune 
system, and in fact, it behaves like other primary fun-
gal pathogens, such as Histoplasma or Paracoccidioides 
species. In the next sections, we will briefly describe the 
virulence factors and adaptation mechanisms elicited by 
C. neoformans that produce its adaptation to the lung.

Metabolic adaptation to temperature, nutrients and 
metals - While there are over 1.5 million fungi, only a 
handful of these are capable of growing at elevated tem-
peratures, including human body temperature (37ºC). 
Within the basidiomycetes, pathogenic Cryptococcus 
species are the only organisms known to grow well at high 
temperatures (Perfect 2006). It has been demonstrated 
that growth at 37ºC can protect against the accumulation 
of deleterious mutations, suggesting a role for this trait in 
genomic stability beyond contributing to pathogenesis in 
a mammalian host (Xu 2004). Considered one of the main 
virulence attributes of this organism, many investigators 
have worked to characterise the proteins important for 
tolerance to high temperature. Components of the mito-
chondrial antioxidant response, including manganese su-
peroxide dismutase, have been shown to be important for 
high temperature growth, as well as virulence (Giles et al. 
2005). Trehalose, a sugar made by fungi and not by mam-

mals, protects C. neoformans from internal and external 
stresses, including high temperature. Components of the 
trehalose biosynthesis pathway are required for high tem-
perature growth as well as virulence in a variety of infec-
tion models (Petzold et al. 2006). A number of C. neofor-
mans signal transduction pathways also have major roles 
in sensing and responding to high temperature stress. 
These include the calcium/calmodulin/calcineurin path-
way (Odom et al. 1997, Kraus and Heitman 2003), MAP 
kinase pathways including the PKC/cell wall integrity 
pathway (Kraus et al. 2003, Gerik et al. 2005, Gerik et al. 
2008) and the high osmolarity glycerol (HOG) response 
pathway (Bahn and Kojima 2005, Bahn et al. 2007), and 
the Ras signaling pathway (Alspaugh et al. 2000). Aside 
from their roles in thermotolerance, these pathways con-
tribute to the fungal response to other stress responses, 
and each plays a central role in virulence.

In addition to adapting to the high temperature of 
the mammalian host, C. neoformans must also adapt 
to limitations and/or influxes of essential nutrients and 
metals. Analysis of the C. neoformans genes expressed 
in the context of murine infected lungs showed the up-
regulation of many genes involved in carbon metabo-
lism (Hu et al. 2008). Hu and colleagues also found that 
various transporters, including those for monosaccha-
rides, acetate, iron, and copper, were all induced in the 
murine lung (Hu et al. 2008). Similarly, a study of the 
transcriptomes of two clinical isolates from human CSF 
demonstrated that upregulated genes were enriched for 
GO terms associated with cellular metabolism in these 
in vivo clinical samples compared to ex vivo incubated 
samples (Chen et al. 2014).

Iron availability is an important aspect of cryptococ-
cal pathogenesis, and detailed studies have explored the 
role of this metal in various aspects of its physiology. C. 
neoformans and other microbes compete with the host 
for iron, and iron sequestration is a basic component of 
host “nutritional immunity”. This metal is required for 
both capsule and melanin synthesis, and excess iron can 
contribute to exacerbated meningoencephalitis in mouse 
models of infection (Barluzzi et al. 2002). C. neofor-
mans has several enzymes and transporters that aid in 
the acquisition of iron from the host (reviewed in Jung 
and Kronstad 2008). Under the transcriptional control of 
the central iron regulator, Cir1, C. neoformans possesses 
many cell surface proteins that facilitate iron uptake into 
the fungal cell. These surface proteins include iron re-
ductases that reduce extracellular iron to allow transport 
into the cell, iron permeases such as Cft1, and plasma 
membrane ferroxidases such as Cfo1 to convert iron at-
oms to biologically optimised oxidation states.

C. neoformans must also be able to sense and re-
spond to the essential metal copper. Copper is both si-
multaneously required and detrimental for C. neofor-
mans growth in vivo. Copper is an important cofactor 
for a number of enzymatic reactions, in addition to being 
required for the enzymatic activity involved in melanin 
formation. However, there is increasing evidence that 
it is used by the host as a microbicide; innate immune 
cells upregulate copper importers to accumulate copper 
in the phagosome (White et al. 2009). Furthermore, al-
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veolar cells isolated from mice challenged with C. ne-
oformans were shown to have increased expression of 
copper importers and higher levels of intracellular cop-
per (Ding et al. 2013). As with iron, much work has gone 
into defining the proteins and enzymes required for the 
response to and regulation of copper uptake and over-
load. The transcription factor Cuf1 has been shown to 
regulate the response to both high and low copper con-
ditions (Waterman et al. 2007, Ding et al. 2011). In the 
lungs and the phagosomes of innate immune cells, C. ne-
oformans experiences high copper conditions, in which 
Cuf1 directs the upregulation of the copper-detoxifying 
metallothioneins, CMT1 and CMT2, and downregulates 
the expression of copper importers (Ding et al. 2013, Sun 
et al. 2014). In contrast to its mutational state while in the 
lung, C. neoformans experiences low copper conditions 
during brain infection during which Cuf1 directs the 
transcriptional induction of the CTR1 and CTR4 copper 
importers, among other proteins to control copper home-
ostasis (Ding et al. 2013, Sun et al. 2014).

Upon transitioning to the host environment, C. ne-
oformans must also adapt to the relatively alkaline pH of 
the mammalian lung. Changes in ambient pH can induce 
stress on many important cellular processes, including 
nutrient uptake, protein stability and function, and mem-
brane and cell wall stability and maintenance. The Rim 
alkaline response pathway is the main signaling pathway 
responsible for sensing and responding to changes in ex-
ternal pH (reviewed in Selvig and Alspaugh 2011). Acti-
vation of the pathway occurs when alkaline pH is sensed 
at the cell surface by the membrane sensing complex 
composed of the Rra1 membrane protein and members 
of the ESCRT machinery (Hu et al. 2013, Hu et al. 2015, 
Ost et al. 2015). The assembled ESCRT complexes serve 
as a scaffold for the proteolysis complex composed of 
Rim20, Rim23, and the Rim13 protease, which cleaves 
the Rim101 transcription factor so that it can transit to the 
nucleus to regulate gene expression (O’Meara et al. 2010, 
O’Meara et al. 2014, Ost et al. 2015). Rim101 directly reg-
ulates genes required for various stress responses includ-
ing low iron and elevated salt concentrations (O’Meara 
et al. 2014). It is also required for proper formation of 
the polysaccharide capsule and proper cell wall mainte-
nance in response to host conditions (O’Meara et al. 2010, 
O’Meara et al. 2013, O’Meara et al. 2014, Ost et al. 2017).

Adaptation to free radicals: melanin and antioxidant 
mechanisms - Once inside the phagosome, C. neofor-
mans must also adapt to reactive oxygen species (ROS) 
in order to survive within this environment. Melanin is 
perhaps the most well-known factor involved in ROS 
tolerance. In C. neoformans, melanin synthesis depends 
on laccase enzymes, which uses dopaminergic precur-
sors, mainly L-DOPA to produce the pigment. In fact, 
both laccase activity and the accumulation of melanin 
pigments are required for pathogenesis (Kwon-Chung 
and Rhodes 1986, Williamson 1994). Melanin in C. ne-
oformans accumulates at the cell wall and confers re-
sistance to many different types of stresses (Nosanchuk 
and Casadevall 2003). Melanised C. neoformans strains 
were less susceptible than melanin deficient strains to 

nitrosative and oxidative stresses (Wang and Casadevall 
1994). As a free radical scavenger, melanin is capable of 
neutralising ROS (Jacobson and Hong 1997). Addition-
ally, laccases, the enzymes responsible for making mel-
anin, interfere with the oxidative burst of phagocytes in 
part by sequestering and oxidising iron during infection 
(Jacobson and Hong 1997, Liu et al. 1999). Melanin and 
the Lac1 laccase enzyme have also been demonstrated to 
facilitate dissemination of C. neoformans from the lung 
to the CNS (Noverr et al. 2004).

In addition to melanin, combined proteomic and genet-
ic analyses have identified several other cellular processes 
involved in the nitrosative stress response, from canonical 
cellular stress response pathways to cell wall maintenance, 
signal transduction, intracellular transport, transcriptional 
control, respiration, and metabolism (Missall et al. 2006). 
Other classical enzymes, including copper- and zinc-con-
taining superoxide dismutase and components of the thi-
oredoxin and glutathione antioxidant systems, have been 
highlighted in the response to oxidative and nitrosative 
stresses, as well as in promoting fungal virulence (Cox 
et al. 2003, Missall and Lodge 2005a, Missall and Lodge 
2005b, Missall et al. 2005). Surprisingly, catalases, en-
zymes that detoxify hydrogen peroxide, were shown not to 
play a major role in ROS stress tolerance in C. neoformans, 
perhaps due to functional redundancy with other elements 
of ROS defense (Giles et al. 2006).

The polysaccharide capsule - The most character-
istic feature of C. neoformans is its capsule, a complex 
network of polysaccharides present around the cell wall. 
This structure has been extensively studied for decades, 
but there are still key aspects about its biology that remain 
unknown. The capsule is not required for the replication 
of the yeast in regular laboratory conditions, as acapsular 
mutants can divide as well as wild type strains. Howev-
er, the capsule is very important for virulence (Fromtling 
et al. 1982, Chang and Kwon-Chung 1994). Prior studies 
have demonstrated that the polysaccharide capsule con-
tributes to disease in two complementary ways. First, it 
confers a protective shield to the yeast against the mul-
tiple challenges produced by the immune system. Addi-
tionally, its components exert a large number of delete-
rious effects on the host (reviewed in Vecchiarelli 2000, 
Zaragoza et al. 2009, O’Meara and Alspaugh 2012, Vec-
chiarelli and Monari 2012). For this reason, the capsule is 
considered the main virulence factor of this yeast.

Capsular composition and capsule organisation - The 
capsule is mainly composed of two complex polysaccha-
rides: glucuronoxylomannan (GXM) and glucuronoxy-
lomannogalactan (GXMGal) (Bose et al. 2003, Janbon 
2004, Heiss et al. 2009). In turn, GXM is composed of 
a chain of mannose residues with substitutions of xylose 
and glucuronic acid. In the case of GXMGal, the main 
component is a chain of galactose molecules with substi-
tutions of mannose, xylose and glucuronic acid. Many of 
the proteins and enzymes involved in the synthesis of the 
capsule have been defined (reviewed in Doering 2009), 
but there are still important aspects that remain unchar-
acterised. Although it is known that the polysaccharide 
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capsule is organised as interwoven fibres (Pierini and Do-
ering 2001, McFadden et al. 2007, Frases et al. 2009), the 
mechanisms by which these fibres are assembled remain 
to be elucidated. Interestingly, there is strong evidence to 
indicate that the capsule polymers are branched, forming 
micro-gel like structures (Cordero et al. 2011, Araújo et al. 
2016). In addition to being present on the cell surface, cap-
sular polysaccharides can also be found in extracellular 
vesicles (EVs) (Rodrigues et al. 2007). These structures 
have therefore been proposed as a mechanism for the ex-
tracellular export of capsule components, both for target-
ing to the cell surface and for release into the surround-
ing environment. It is still unknown how EVs are formed 
and trafficked to the outer surface of the cell, allowing 
release and attachment of capsule components. There are 
many genes required for capsule polysaccharide synthe-
sis (reviewed in Doering 2000, Bose et al. 2003, O’Meara 
and Alspaugh 2012), however a large proportion of these 
genes still have uncharacterised functions.

The capsule as a protective structure - Before and 
during the interaction with the host, the presence of a 
capsule confers resistance to multiple types of stress. For 
example, it protects the fungal cell against environmen-
tal challenges such as dehydration (Aksenov et al. 1973). 
Furthermore, some of its roles are required during an ac-
tual infection. During infection the capsule contributes 
to evasion of phagocytosis-mediated killing by alveolar 
macrophages through several mechanisms. First, it im-
pairs the recognition of cell wall epitopes by macrophage 
receptors, contributing to phagocyte avoidance (Kozel 
and Gotschlich 1982). In addition, the capsular polysac-
charides have antioxidant properties, protecting the fun-
gal cell from the toxic effects of reactive oxygen species 
produced in the phagolysosome (Zaragoza et al. 2008).

Changes in capsular size and structure as mech-
anisms of immune evasion - The capsule is a dynamic 
structure that changes its composition, structure, and 
size depending on the environmental conditions. Among 
these phenomena, one of the best studied is the change 
in size. The capsule diameter is normally small during 
growth in rich media, however there is a significant in-
crease in its size after interaction with the host (Feld-
messer et al. 2001). This enlargement has been described 
during infection in animal models and phagocytic cells 
(Chrisman et al. 2011), the non-vertebrate host G. mel-
lonella (García-Rodas et al. 2011), and even environmen-
tal predators such as free-living amoebas (Chrisman et 
al. 2011). Furthermore, there are several factors that in-
duce this transition in vitro, such as CO2 (Granger et al. 
1985), iron limitation (Vartivarian et al. 1993), mamma-
lian serum (Zaragoza et al. 2003a) and nutrient limitation 
(Zaragoza and Casadevall 2004). This process seems to 
be important from a clinical point of view, since there 
is a correlation between ex vivo capsule size and the in-
tracranial pressure of patients affected by cryptococcal 
meningoencephalitis (Robertson et al. 2014). Capsule en-
largement poses a significant change for the cells and it is 
believed that it is an energy-costly process that requires 
protein synthesis and the correct functioning of mito-

chondria (Trevijano-Contador et al. 2017). During infec-
tion, capsule enlargement confers resistance to comple-
ment-mediated phagocytosis (Zaragoza et al. 2003b) and 
contributes to killing-avoidance in macrophages (Zara-
goza et al. 2008). Cells with larger capsules are also more 
resistant to oxidative stress, antimicrobial peptides and 
antifungal compounds (i.e., amphotericin B).

The capsule also can undergo other rearrangements 
that have profound consequences for pathogenesis and 
immune evasion. For example, the structure and organ-
isation of the polysaccharide fibres can substantially 
change in the host. There are several monoclonal anti-
bodies (mAbs) to the capsule available, and the binding 
properties of these mAbs to C. neoformans cells ob-
tained from in vivo samples is variable, even changing 
during the course of infection (Garcia-Hermoso et al. 
2004). These dynamic capsular changes result in a very 
heterogeneous population of cryptococcal cells that dif-
fer in their epitope composition, which impairs the ef-
fectiveness of a proper immune response. Furthermore, 
changes in capsule structure have been also related 
dissemination efficiency and to brain invasion (Garcia-
Hermoso et al. 2004). In addition, the structure of the 
capsule can undergo microevolution in vitro, making the 
microbial population phenotypically and antigenically 
variable in laboratory cultures depending on the growth 
conditions (McFadden et al. 2006).

Finally, the density of the polysaccharide fibers also 
increases in vitro (Maxson et al. 2007) and during infec-
tion (Gates et al. 2004). Although the consequences of 
this increase in density are not fully known, it produces 
a capsular structure that is less permeable to elements of 
the immune response, such as antibodies, complement 
or antimicrobial peptides.

Exopolysaccharides as virulence factors - The pol-
ysaccharides of the capsule are not only attached to the 
cell, but they are also released into the medium (exopol-
ysaccharides). During infection, extracellular capsular 
polysaccharides can be found in tissues, CSF, and blood. 
Recent work has demonstrated that the release of exopol-
ysaccharides is a regulated process in C. neoformans that 
depends on environmental cues and distinct genes (Den-
ham et al. 2017). These polysaccharides seem to con-
tribute to the development of disease through multiple 
mechanisms. Among them, both GXM and GXMGal can 
cause apoptosis of several types of immune cells through 
activation of FasL/Fas (Chiapello et al. 2003, Monari et 
al. 2005b, Monari et al. 2006, Monari et al. 2008, Villena 
et al. 2008). Secreted polysaccharides can also impair Ab 
production, induce complement depletion (Macher et al. 
1978), inhibit leukocyte migration (Dong and Murphy 
1995, Dong et al. 1999, Ellerbroek et al. 2002), reduce im-
mune cell infiltration to the brain (Denham et al. 2017), 
and stimulate the production of cytokines and chemok-
ines (Monari et al. 2005a, Vecchiarelli et al. 2011). Fur-
thermore, these polysaccharides are recognised by sever-
al types of immune receptors, such as CD18, CD14 and 
toll-like receptors (TLRs) (Shoham et al. 2001, Taborda 
and Casadevall 2002, Yauch et al. 2004).
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Intracellular survival inside macrophages/recogni-
tion by macrophages - Upon entering the lung, one of the 
first cell types that C. neoformans engages are innate im-
mune phagocytes, in particular alveolar macrophages. C. 
neoformans has a dynamic relationship with macrophag-
es, and there is data to support their role in both clearance 
and persistence of this fungus. For example, depletion of 
macrophages reduces survival in murine models of in-
fection (Monga 1981). On the other hand, while classical 
virulence attributes such as capsule and melanin assist 
the fungus to minimise phagocytosis and killing by mac-
rophages, C. neoformans requires macrophages for effi-
cient dissemination to the CNS (Charlier et al. 2009).

Recognition - The interaction between fungi and host 
begins when fungal factors are recognised by innate im-
mune cell surface receptors, triggering immune cell acti-
vation and inducing phagocytosis of the fungus. A num-
ber of pattern recognition receptors (PRRs) recognise C. 
neoformans, including receptors in the Toll-like (TLR), 
C-type lectin (CLR), and NOD-like families (NLR), as 
well as scavenger receptors. Acapsular strains are read-
ily ingested by phagocytosis through interactions with 
the mannose receptor (MR) and Dectin-1 (Cross and 
Bancroft 1995, Casadevall and Perfect 1998, Heitman et 
al. 2010). Capsule components can also be recognised 
by several receptors, including TLR2, TLR4, and the 
co-receptor CD14 (Shoham et al. 2001, Yauch et al. 2004, 
Yauch et al. 2005). While there is opposing evidence as 
to the importance of TLR2 in the immune response to 
C. neoformans, it is clear that TLR4 is not required for 
protection against C. neoformans in mouse models of in-
fection (Yauch et al. 2004, Biondo et al. 2005, Nakamura 
et al. 2006). A major role for MyD88 (the adaptor protein 
that directs downstream immune signalling from many 
of the TLRs) has been demonstrated by multiple groups; 
mice that are deficient in MyD88 succumb to C. neofor-
mans infection at rates significantly faster than WT mice 
(Yauch et al. 2004, Biondo et al. 2005).

The CLR Dectin-2, which recognises mannan in 
the fungal cell wall, is associated with higher levels of 
non-protective Th2 cytokines during C. neoformans 
infection (Nakamura et al. 2015). While Dectin-1 can 
bind to b-glucan on C. neoformans spores (Giles et al. 
2009), its role in phagocytosis of spores as well as over-
all protection against C. neoformans infection appears 
to be minimal (Nakamura et al. 2007, Walsh et al. 2017). 
Dectin-3 deficiency was also shown not to be a major 
factor in immunity towards C. neoformans (Campu-
zano et al. 2017). However, mice deficient in the CLR 
adaptor protein Card9, were highly susceptible to C. 
neoformans infection due to decreased influx of INF-g 
producing cells, suggesting a role for CLR-mediated sig-
nalling pathways in protection from cryptococcal infec-
tion (Yamamoto et al. 2014). Finally, both the mannose 
receptor (MR) and DC-SIGN recognise mannosylated 
proteins on the C. neoformans cell surface (Mansour et 
al. 2006), and MR-deficient mice are highly susceptible 
to infection with C. neoformans (Dan et al. 2008). To-
gether these data suggest that a combination of immune 
receptors might act in hetero-complexes to recognise the 

dynamic surface of C. neoformans, leading to complex 
downstream immune signalling, similar to what has 
been described for recognition of other fungal species 
(reviewed in Inoue and Shinohara 2014).

While capsule and cell wall components can be 
recognised by several PRRs, encapsulated strains re-
quire opsonisation with antibodies or complement for 
efficient phagocytosis. Anti-capsular antibodies can 
be recognised by CD19 and Fcg receptors (Netski and 
Kozel 2002). The localisation of the antibody binding, 
as well as antibody isotype, impact the efficiency of 
phagocytosis (Nussbaum et al. 1997, Cleare and Casa-
devall 1998). The cryptococcal capsule is also capable 
of inducing complement activation through the alterna-
tive pathway. This activation results in the deposition 
of complement proteins within the capsule structure 
(Kozel 1996), which can be recognised by CD11b/CD18 
and CD11c/CD18 (Taborda and Casadevall 2002). Simi-
lar to antibody-mediated phagocytosis, the efficiency of 
complement-mediated phagocytosis depends on capsule 
size and location of complement protein binding (Kozel 
1996, Zaragoza et al. 2003b, Zaragoza et al. 2009). Im-
portantly, complement-deficient animals were more sus-
ceptible to C. neoformans infection (Rhodes 1985).

Phagocytosis - As a facultative intracellular patho-
gen, C. neoformans has many strategies to regulate its 
phagocytosis by immune cells. Perhaps the best stud-
ied is the polysaccharide capsule, which itself inhibits 
phagocytosis by macrophages (Bolanos and Mitchell 
1989, Levitz and DiBenedetto 1989). The specific cap-
sule components can also influence its interaction with 
host cells through differential binding of opsonins as de-
scribed above (Kozel et al. 1988, Zaragoza et al. 2003b).

In addition to capsule, Luberto and colleagues identi-
fied an antiphagocytic protein, App1, that has an impor-
tant role in phagocytosis and virulence in C. neoformans. 
Importantly, this protein was identified in the serum of 
AIDS patients with disseminated C. neoformans, high-
lighting its physiological importance (Salgado et al. 1994, 
Luberto et al. 2003). In vitro, treatment of cells with App1 
inhibited engulfment in a complement-dependent manner 
(Stano et al. 2009). Conversely, app1∆ cells were more 
readily phagocytosed and displayed attenuated virulence 
in multiple mouse backgrounds (Luberto et al. 2003, Del 
Poeta 2004). Similarly, there is another regulator, Gat201, 
which mediates phagocytosis avoidance through a cap-
sule-independent mechanism (Liu et al. 2008).

Survival and proliferation inside macrophages - 
Despite actively avoiding phagocytosis, C. neoformans 
is quite capable of surviving and proliferating inside 
of phagocytic immune cells. In fact, C. neoformans is 
viable and replicates within the acidic environment of 
the phagolysosome (Levitz et al. 1999, Qin et al. 2011). 
Additionally, phagosomes containing C. neoformans 
experience lysosomal fusion and acquire phagosomal 
markers, indicating that phagosomal maturation is not 
inhibited by this pathogen (Coelho et al. 2014). More re-
cent work has demonstrated that several of these early 
markers are prematurely removed and that C. neofor-
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mans can subtly alter the phagosome maturation process 
in order to create a more permissive environment for its 
survival (Smith et al. 2015). Through a screen to identify 
host factors that influence intracellular survival, it was 
shown that C. neoformans hijacks many aspects of mac-
rophage biology, including cytoskeletal elements, cell sur-
face signaling molecules, and vesicle mediated transport 
systems, to favor its own survival (Qin et al. 2011). This 
study also showed that autophagy proteins are recruited to 
pathogen-containing vacuoles, supporting C. neoformans 
infection (Qin et al. 2011). Once ingested, C. neoformans 
induces phagolysosomal damage (Feldmesser et al. 2000, 
Tucker and Casadevall 2002, Davis et al. 2015), perhaps 
as a result of the combination of increased cell/capsule 
growth and secreted C. neoformans proteins, such as phos-
pholipase B (Feldmesser et al. 2000, Cox et al. 2001). The 
damaged phagolysosomes display increased membrane 
permeability which enhances C. neoformans growth by 
allowing nutrient influx, pH homeostasis, and eventually 
escape from the macrophage (Davis et al. 2015).

Macrophage exit - Once inside of a macrophage, C. 
neoformans has several potential fates. The first is being 
inhibited or killed by the phagocyte. Other options, all of 
which ultimately lead to fungal escape, include lysis of the 
macrophage, cell-to-cell transfer to a neighbouring mac-
rophage, and non-lytic exocytosis or “vomocytosis” in 
which both fungal cell and macrophage survive the interac-
tion (Johnston and May 2013, Coelho et al. 2014, DeLeón-
Rodríguez and Casadevall 2016). Lateral transfer of C. 
neoformans from one macrophage to another, while a rare 
event, allows for fungal cells to disseminate while avoiding 
immune detection. Alvarez and Casadevall (2007) demon-
strated that this occurs in an actin-dependent manner, 
leaving lasting effects on the inhabited macrophage in the 
form of a large residual vacuole. This process can occur 
regardless of serotype or opsonisation type, and in multiple 
mammalian cell lines (Ma et al. 2007).

Non-lytic exocytosis, or vomocytosis, is similar 
to cell-to-cell spread in that both the fungal and mac-
rophage cells are viable after fungal escape. This pro-
cess has been shown to occur in vivo and is dependent 
on several host factors (Nicola et al. 2011). It appears to 
occur after phagosome maturation and is influenced by 
phagosomal pH. For example, when the pH of the phago-
some was raised artificially with weak bases, rates of vo-
mocytosis increased (Ma et al. 2006, Nicola et al. 2011). 
Concordantly, when acidification of the phagosome was 
blocked altogether using vacuolar ATPase inhibitors, the 
rate of vomocytosis decreased (Ma et al. 2006, Nicola 
et al. 2011). Phagosomal membrane permeabilisation 
occurs rapidly after uptake of C. neoformans cells and 
is thought to be another contributing factor to rates of 
non-lytic exocytosis (Tucker and Casadevall 2002, Coel-
ho et al. 2014, Davis et al. 2015). Actin flashes around 
the phagosome occur soon after membrane permeabi-
lisation and contribute to blocking non-lytic exocytosis 
(Johnston and May 2010). It has also been demonstrated 
that cytokine signalling has an impact on this process, 
with Th2-stimulated macrophages having lower rates of 
non-lytic exocytosis (Voelz et al. 2009). In addition to 

host factors, C. neoformans proteins are also required 
for non-lytic exocytosis, including phospholipase B1 
(Plb1) and the Sec14 protein required for phospholipase 
secretion (Chayakulkeeree et al. 2011).

Morphological changes in C. neoformans and  
their role during adaptation to the host

Hyphal formation - Many fungi undergo morpholog-
ical changes during various stages of an infection, such as 
the transition among Candida species from a yeast-like 
form to hyphae and pseudohyphae. These filamentous 
structures are more adherent than blastoconidia, so they 
are involved in attachment, invasion and dissemination 
(reviewed in Trevijano-Contador et al. 2016). In the case 
of C. neoformans, this yeast can only form hyphae dur-
ing sexual reproduction (Casadevall and Perfect 1998), 
and true hyphae are not believed to significantly contrib-
ute to the development of the disease. In contrast, there 
are other types of morphological changes that can occur 
in the host that are more relevant to our understanding of 
the pathogenesis of this microorganism. For example, C. 
neoformans can form pseudohyphae and they can be oc-
casionally observed in vivo (Lee et al. 2012, Magditch et 
al. 2012), although their exact function in the adaptation 
of this yeast to the host remains unknown.

Titan cells - Although filamentous forms can be 
found in the host, the most well characterised mecha-
nism developed by C. neoformans to adapt to the lung 
environment is its ability to increase its cells size. In 
fact, a significant feature of the cryptococcal population 
in vivo is its size heterogeneity, finding cells in vivo of 
very different diameters. Cellular enlargement can be 
achieved not only by capsule growth (which has been 
described above), but also by a significant increase in 
the size of the cell body, which leads to the appearance 
of rounded yeast cells of an abnormal size that can reach 
up to 100 microns (Okagaki et al. 2010, Zaragoza et al. 
2010). These forms have been termed titan cells due to 
their huge size (Zaragoza and Nielsen 2013). The signals 
that induce the massive cellular enlargement are un-
known. The main intracellular pathway involved in this 
process depends on cAMP and PKA signaling (Zara-
goza et al. 2010), and several effectors upstream (such 
as pheromone receptors and Gpr5) and downstream 
(Rim101) are required for cell growth (Okagaki et al. 
2011). As a consequence, there are alterations in cell cy-
cle regulation that result in genome endoduplication and 
polyploidy (Okagaki et al. 2010, Zaragoza et al. 2010). In 
addition, the capsule of these cells is also very large and 
composed of a net of polysaccharide fibres that form a 
structure that is denser then that observed with cells of 
normal size (Zaragoza et al. 2010).

The role of titan cells in cryptococcal disease re-
mains to be fully elucidated, however, their involvement 
in several processes that contribute to immune evasion 
and long-term persistence has been demonstrated. Titan 
cells cannot be phagocytosed presumably due to their 
size, as it was demonstrated that similarly sized syn-
thetic particles could not be readily engulfed by lung 
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phagocytes (Okagaki and Nielsen 2012). Interestingly, 
titan cells are also able to confer this phagocytosis re-
sistance to neighbouring, smaller yeast cells (Okagaki 
and Nielsen 2012). The exact mechanism by which titan 
cells are able to provide collateral protection to neigh-
bouring cells has not been precisely defined. However, it 
has been demonstrated that polyploid cells can produce a 
variety of haploid and aneuploid daughter cells, promot-
ing rapid adaptations to stress conditions (Gerstein et al. 
2015). Given the extensive surface capsule of titan cells, 
it is also plausible that secreted exopolysaccharide may 
influence the surrounding environment.

The signals that trigger titan cell production are un-
known. It was first described that co-infection of mice 
with opposing mating type cells resulted in a significant 
increase in the proportion of titan cells (Okagaki et al. 
2010), suggesting that the pheromone signalling path-
way is required for this transition. Furthermore, titan 
cell production is strongly dependent on the host envi-
ronment, and the percentage of these cells observed in 
vivo varies in different mouse strains. In particular, in 
mice that develop a Th1 type response (dependent on 
interferon-γ and TNF-α), the proportion of titan cells is 
low (around 15%). In contrast, in mice that induce Th2 
type responses, the proportion of titan cells is very high, 
even above 50% of the total population of cryptococcal 
cells (García-Barbazán et al. 2016). At the moment, the 
exact correlation between the host immune response and 
cryptococcal morphology is unknown, but it is hypothe-
sised that Th2 type responses result in a less aggressive 
environment that facilitates cellular enlargement.

Cell wall rearrangements during infection - In addi-
tion to these well-characterised morphological changes, 
there is increasing evidence that C. neoformans cell wall 
maintenance plays an important role in its interaction 
with the host immune system. C. neoformans dramati-
cally alters its cell wall, both in size and composition in 
response to the host environment (Feldmesser et al. 2001, 
O’Meara et al. 2013, O’Meara et al. 2014, Ost et al. 2017). 
Feldmesser et al (2001) demonstrated that the cell wall 
thickens over time in the setting of murine pulmonary 
infection. Additionally, both capsule and titan cell forma-
tion involve significant cell wall remodelling; polysac-
charide capsule attaches to the cell surface through an in-
teraction with a-(1,3)-glucan (Reese and Doering 2003), 
and titan cells have thicker, more chitin-rich cell walls 
(Wiesner et al. 2015). Studies investigating the Rim101 
transcriptome during murine infection indicated that this 
pH responsive transcription factor directly regulates cell 
wall biosynthesis genes in this context (O’Meara et al. 
2013, O’Meara et al. 2014). Coordinately, in the absence 
of Rim101, C. neoformans cells expose immunogen-
ic epitopes that ultimately lead to detrimental immune 
responses (Feldmesser et al. 2001, O’Meara et al. 2013, 
O’Meara et al. 2014). These studies highlight how C. ne-
oformans actively remodels its cell surface in response to 
the host environment in order to avoid immune detection.

THE TRIP CONTINUES: DISSEMINATION THROUGH 
THE ORGANISM AND ARRIVAL TO THE BRAIN.  

DIVING OR SAILING? 

Although cryptococcal cells are mainly acquired 
by inhalation, a key step in disease is the dissemination 
from the lung to the brain, where it causes the most char-
acteristic clinical manifestation of cryptococcal disease, 
meningoencephalitis. For this reason, the mechanisms 
of migration of C. neoformans to the brain have been 
extensively studied (see seminal review in Griffiths et 
al. 2012). This dissemination occurs through the blood 
vessels, so cryptococcal cells must cross both epithelial 
and endothelial barriers to transit from the lung alveoli 
to the bloodstream, and ultimately the CNS.

The first barrier that C. neoformans faces during 
dissemination is composed of the epithelial cells from 
the lung, although this interaction has not been char-
acterised in detail. It has been described that both en-
capsulated and acapsular cells can interact with human 
lung epithelial cells, with acapsular mutants being able 
to recognise and attach to this epithelial layer with great-
er affinity (Merkel and Scofield 1997). As a result, C. 
neoformans cells can be internalised by epithelial cells, 
leading to the death of the host cell. In the case of regular 
encapsulated cells, the capsular polysaccharide, GXM, 
plays a major role in the recognition by epithelial cells, 
and this binding seems to depend on the CD14 recep-
tor. In addition, other cryptococcal proteins, such as the 
mannoprotein MP84 or phospholipase B, also seem to 
contribute to epithelial cell binding (Ganendren et al. 
2006, Teixeira et al. 2014).

Of particular interest is the interaction of C. neofor-
mans with endothelial cells, particularly those comprising 
the blood-brain barrier (BBB). Although the BBB selec-
tively protects the brain from extracellular particles, C. 
neoformans has developed ways to cross this restrictive 
barrier, both as free-living fungal cells and intracellular-
ly inside macrophages. Elegant real-time in vivo imaging 
experiments have demonstrated that isolated fungal cells 
can directly attach to the endothelial surface of the brain 
microvasculature as the initial step in breaching the BBB 
(Shi et al. 2010). Cryptococcal cells can subsequently be 
internalised by the endothelial cells at the apical side and 
then released at the basolateral side (Chen et al. 2003). In 
this process, it has been shown that hyaluronic acid (HA) 
present in C. neoformans can be recognised by the CD44 
receptor from endothelial cells, suggesting a process of 
endothelial cell interaction that his conserved among sev-
eral microbial neuropathogens (Jong et al. 2008). Inter-
estingly, inositol produced by the host cells is recognised 
by C. neoformans, a process that results in an increased 
production of HA by the fungus (Liu et al. 2013). Oth-
er cryptococcal elements, such as urease (Olszewski et 
al. 2004), phospholipase B (Santangelo et al. 2004), and 
the extracellular protease Mpr1 (Na Pombejra et al. 2017) 
have been shown to be involved in the process of binding 
to endothelial cells. In this last case, the Mpr1 protease 
induces cytoskeleton rearrangements in the endotheli-
al cells and promotes recognition of C. neoformans by 
Annexin A2. Internalisation of cryptococcal cells by the 
BBB is also associated with multiple changes in the en-
dothelial cells including rearrangements of the cytoskel-
eton and changes in the morphology of nuclei, endoplas-
mic reticulum and mitochondria (Vu et al. 2013).
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C. neoformans can also alter the structure of the tight 
junctions that attach the cells of the BBB (Olszewski 
et al. 2004, Charlier et al. 2005, Vu et al. 2013), so it 
has been suggested that C. neoformans can also trans-
verse the BBB through a paracellular mechanism. In 
this sense, some addictive drugs (such as methampheta-
mine) that alter the structure of the BBB tight junctions 
increase the dissemination of cryptococcal cells to the 
brain (Eugenin et al. 2013).

There is also strong evidence that C. neoformans can 
cross the BBB inside phagocytic cells, through a process 
that is widely known as the “Trojan-horse” dissemination 
mechanism. This idea was first suggested when it was 
found that C. neoformans can survive inside phagocyt-
ic cells. In the last few years there has been increasing 
evidence that this dissemination mechanism occurs in 
vivo. Several elegant studies have demonstrated that mac-
rophages have a paradoxical role during infection because 
their depletion has a protective role during cryptococcosis 
and results in reduced fungal burden in brain, lung and 
spleen (Kechichian et al. 2007, Charlier et al. 2009), sug-
gesting that in fact these phagocytic cells offer a “safe” 
niche for this fungus and contribute to dissemination. In 
agreement, when mice are injected with bone marrow-de-
rived monocytes infected with C. neoformans, the fungal 
burden in target organs is higher compared to infection 
with the equivalent dose of free living yeasts (Santangelo 
et al. 2004, Charlier et al. 2009). Further evidence has 
been provided in vitro using models of reconstituted BBB. 
In these experiments, C. neoformans can transmigrate 
across an in vitro-generated BBB via transcellular pores 
when transported inside macrophages (Sorrell et al. 2016, 
Santiago-Tirado et al. 2017). Santiago-Tirado et al. (2017) 
further demonstrated that, during this process, several 
outcomes of the interaction of C. neoformans and mac-
rophages occur, such as fungal replication, non-lytic exo-
cytosis and cell-to-cell transmission of fungal cells. In ad-
dition, these authors also observed direct transmission of 
cryptococcal cells from macrophages to endothelial cells, 
which suggests that the same fungal cell can transmigrate 
the BBB through several mechanisms (“Trojan horse” ap-
proach for dissemination through the blood stream, and 
paracellularly through endothelial cells as free cells).

In summary, there is strong evidence that C. neofor-
mans can disseminate and colonise the brain through dif-
ferent mechanisms, although at the moment it is not known 
the relative contribution of each mechanism (as free yeasts 
or inside phagocytic cells). Due to the importance of this 
process for cryptococcal disease, further work is required 
to characterise this process and envision therapeutic strate-
gies to control brain invasion by this fungus.
FINAL STOP OF THE TRIP: SURVIVAL WITHIN THE CNS

Although survival in the lung and dissemination 
are key aspects to understand cryptococcal disease, the 
mechanisms that allow survival in the brain are also 
very important to define since the most common clinical 
manifestation of cryptococcal disease is brain infection 
(Colombo and Rodrigues 2015). Once C. neoformans has 
invaded the CNS, the clinical manifestations of the re-
sulting infection are due to inflammation of the meninge-

al tissue (meningitis) as well as from involvement of the 
brain tissue itself (encephalitis). Therefore, the symptoms 
of cryptococcal meningoencephalitis can range from a 
progressive headache to serious neurological symptoms, 
including coma and death. Moreover, the viscous cap-
sular polysaccharide of this microorganism can trigger 
increased intracranial pressure, a major source of mor-
bidity in this infection that must be treated aggressively.

Several investigators have explored how this organ-
ism is able to survive in the nutrient-poor environment 
of the cerebrospinal fluid, as well as in the specialised 
neural tissue. C. neoformans is able to grow in vitro on 
a very minimal medium composed primarily of cerebro-
spinal fluid (Chen et al. 2014). This fluid has a low car-
bohydrate and nitrogen content, suggesting that this fun-
gus effectively scavenges essential nutrients and their 
precursors from nutrient-poor environments.

Transcription patterns of C. neoformans isolated di-
rectly from the CNS of infected patients were compared 
with samples incubated ex vivo on CSF media (Chen et 
al. 2014). Carbohydrate importers and the sodium trans-
porter Ena1 are highly induced in both conditions. In-
terestingly, the inositol transporter gene family is spe-
cifically required for C. neoformans penetration of the 
blood brain barrier (Liu et al. 2013). Inositol is present in 
high concentration in the brain, suggesting an interest-
ing potential targeting mechanisms for this neuropath-
ogen to the CNS (Liu et al. 2013). Additionally, the al-
kaline-responsive Rim101 transcription factor was also 
highly induced during CNS infection. Together, these 
results suggest that C. neoformans must actively adapt 
to host-specific signals while growing in the CNS, in-
cluding nutrient deprivation and host pH.

Several lines of evidence implicate a role for laccase 
activity during CNS infections. First, laccase mutants 
are highly attenuated for virulence in animal models of 
cryptococcal infection (Noverr et al. 2004). Also, mela-
nised forms of C. neoformans can be isolated from CNS 
tissue during infection (Nosanchuk et al. 2000). The 
transcript levels of cryptococcal laccases are specifically 
induced by glucose deprivation, a condition known to be 
present in the CNS (Williamson 1994). Additionally, the 
substrates for cryptococcal melanin formation include 
diphenolic compounds such as epinephrine, DOPA, and 
norepinephrine (Williamson et al. 1998). The enhanced 
availability of these diphenolic neurotransmitter mole-
cules in neural tissue has been postulated to be one rea-
son for the neurotropism of this microorganism.

SUMMARY

Cryptococcus neoformans continues to be a signifi-
cant pathogen among immunocompromised individuals, 
especially those with advanced HIV infection. As an 
environmental fungus, this organism has adapted many 
strategies to survive its trip to disease in the mammalian 
host. Suggested to have acquired many of its virulence 
traits from environmental encounters, C. neoformans has 
been referred to as an “accidental pathogen”.

Beginning its journey in the environment, this fun-
gus can interact and infect many soil microbes, and dur-
ing its interaction with these microbes, C. neoformans 
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utilises many of its classical virulence attributes. This 
fungus is introduced into the mammalian host through 
the inhalation of spores or desiccated yeast. With ad-
vanced methods of spore isolation recently described, 
the role of spores at this initial step has been able to be 
elucidated more clearly. However, future work will be 
required to characterise the innate immune responses to 
these infectious propagules, and how these responses di-
rect the development of disease.

As C. neoformans is inhaled into the mammalian 
lung, it must adapt to a number of additional stresses 
including high temperature, increased pH, and changes 
in essential nutrients and metal concentrations. Ongoing 
work continues to identify novel upstream and down-
stream components of the conserved signalling pathways 
controlling responses to these stresses. This fungus has 
a dynamic relationship with host phagocytes, in which it 
actively avoids detection and killing by these cells, but 
it also requires them for effective CNS dissemination. 
Inside the host, C. neoformans has also developed ways 
to alter its morphology in order to facilitate survival, in-
cluding the production of polysaccharide capsule, titan 
cell formation, and cell wall rearrangement. Continued 
efforts to understand this delicate host-pathogen inter-
face will be needed to drive the development of novel 
methods to direct this response in favour of the host.

Finally, in order to effectively finish its journey to 
the CNS, this fungus has the ability to traverse the BBB 
through various means. These include direct traversal 
through endothelial cells, manipulation of the tight junc-
tions of the BBB, and the “Trojan-horse” mechanism. A 
greater understanding of how C. neoformans utilises these 
different means in vivo will provide a path forward for de-
veloping new therapeutic targets to control brain invasion.
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