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It has long been assumed that the newly penetrated schistosomulum is the likely target of both
innate and acquired resistance to schistosomiasis; this notion gained popularity principally
because schistosomula rather than older worms are readily killad by a variety of humoral and
cellular effector machanisms in vitro, but also from in_vivo experiments in which larvae were
quantified after being recovered from various organs by tissue mincing and incubation. More
sophisticated exper iments using anima) models of the disease have recently indicated however , that
the assumption is invalid; there seems instead to be a much broader window of schistosome
susceptibility than was previously appreciated. Once accepted, this concept has the added
attraction of resolving discordant results published by different groups of workers on the sites and
mechanisms of parasite elimination, despite use of apparently identical experimental techniques.

INNATE RESISTANCE

With the advent of the squashed organ autoradiographic tracking technigue it bscame clear that
very few if any primary infection schistesomes were lost in the skins of rodent hosts. (nstead,
there seems to be a uniform consensus amongst workers in the field that the major phase of
parasite l0ss in naive animals occurs during and/or immediately after the lung phass of worm
migration; this is true of mice, rats and guinea pigs (reviewed in Dean, 1983: MclLaren &
Smithers, 1987). The discord between data obtained from autoradiography and those obtained
from tissue mincing and worm recovery techniques have besn ascribed to the im proved efficisncy
of the tracking protocol (Mangold & Dean, 1983 ).

The 129 strain of mouse is of particular interest in the context of innate resistance to
schistosomiasis, since around 70% of any given population of WEHI/Z 129J mice or 129/0}a mice
\s non-permissive to a primery infection with S. mansoni (reviewed by Mitchell, 1989:
Elsaghier, Knopf, Mitchell & McLaren, 1989); the remaining 30% of 129 individuals exhibit
igentical susceptibility to other permisstve mouse strains. It has been suggested that elucidation
of the basis of this phenomenon might indicate new strategies for the design of anti-schistosome
vaccings (Mitchell, 1989). We have now demonstrated that segregation of 129/01a cohorts into
permissive and non-permissive individuals can first be detected on day 21 post infection and
becomes more obvious thereafter (Elsaghier et al., 1989). Non-permissive mice harbour adult
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parasites in their lungs and these worms eventually succumb to the action of locally recruited
inflammatory cells, particulerly eosinophils, Parasite demage is characterised by intestinal
nerntation, which leads to rupture of the gut through the tegument; sosinophils ultimately invade
worm lesions (Eisaghier et al., 1389). it has been shown elsewhere, that non-permissive
WEHI/ 129 indlviduais are high responders to an adult worm antigen, identified as glutanthione S
transferase, which is thought to function in detoxifying insoluble haematin pigment that
accumulates in the parasite gut; antibodies directed against this antigen are presumed to inhibit
enzyme function and result in gut obstruction. The morphological evidence of gut trauma in lung
located schistosomes would be consistent with this notion. By using the technique of vasculature
casting we have shown that there is a marked reduction in the number and extent of peripheral
blood vessels in both the liver and the lungs of non-permissive 129/01a mice (Elsaghier &
Mctaren, 1989a). Further, we have demonstrated, by surgically implanting lung stage
schistosomes into the liver vasculature, that thess changes facilitate worm relocation from the
hver back to the lungs in the non-permissive sub set of individuals ( Elsaghier et al., 1989).

There is thus persuasive evidence that the lungs constitute & major barrier to primary infection
worms in both permissive and non-permissive strains of mice and a possibility that the parasite
gut and its associated enzymes might represent potential targets of future control strategtes,

ACQUIRED RESISTANCE

Experiments designed to investigate acquired resistance to schistosomiasis centre upon rodents
immunised by exposure to normal cerceriae ( the infection mode!), radiation-attenuated cercariae
(the irradiated vaccine model), or defined antigens. The present article discusses current views
on the basis of vaccine immunity and attempts to reconcils apparently conflicting data.

There is clear evidence from a variety of {echniques that in some irradiated vaccine mouse models,
challenge attrition occurs predominantly in the skin, with only @ minor phase of worm lass being
accomplished in the Jungs (reviewed in McLaren & Smithers, 1987). Skin phase immunity is
characterised by subdermal focal inflammatory reactions comprising roughly equal numbers of
eosinophils and macrophages, that trap and eliminate challenge larvae amongst the adipose cells
(Ward & MclLaren, 1988). Vaccine resistance in this mouse model can be ablated significantly by
an ant1-Jeucocyte monoclonal antibody (McLaren, Strath & Smithers, 1987), as well as by sub
lethal doses of whole body irradiation (Delgado & Mclaren, 1989a), protocols which both
significantly ablate eosinophils from the skin reactions; radio-sensitive cells, perhaps
eosinophils, are thus implicated as crucial effectors of cutaneous atirition in the murine host. It
may also be pertinent in this context that specific depletion of CD4+ cells during the skin phase of
challenge migration has been reported by others to ablate vaccine immunity (Kelly & Colley,
1988). Although serum from once vaccinated mice fails to confer protection upon naive
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recipients, sarum harvested from polyvaccinated donors does confer protection passively
(McLaren & Smithers 1988); recipients exhibit about 708 of donor immunity and develop
identical subdermal focal reactions 1o those seen in vaccinated/challenged individuals (Mciaren &
Smithers, 1988). Serum transferred immunity is also abolished by prior exposure of the
recipients to whole body irradiation (Delgado & McLaren, 1989b). Polyvaccine serum thus seems
to act through the recruitment of radio-sensitive effector cells. Intersstingly, tgG1 antibogies are
stimulated preferentially in the serum donor mice by multiple exposure {0 radiation-stienuated
cercariae and the protective capacity of whole serum resides in this isotype ( Delgado & MclLaren,
1989b). Silica, an agent which is known to subvert macrophage activity to phagocytosis and is
ultimately lethal for these calls, has no effect on the expression of vaccine resistance in this
mouse model ( Delgado & McLaren, 1989a); such dats accord with those obtained from whole body
irradiation experiments, thereby confirming that radio-resistant cells probably have no
important role.  An interesting and unexpected feature of skin phase immunity is that those
challenge parasites which become trapped within subdermal focal reactions of either vaccinated or
serum protected mice exhibit the morphology of lung stage rather than skin stage larves (Ward &
McLaren, 1988; MclLaren & Smithers, 1988), This leads us to believe that vaccing immunity
involves immobilisation and trapping of the challenge parasites, such that they are unable to
complete normal migration from the skin to the lungs, yet are able to transform from the skin
stage to the lung stage of development (Ward & McLaren, 1988). Parasite demage is associated
with the subtegumental musculature (Ward, 1988), a feature noted elsewhere from in vitro
studies and ascribed either to the action of eosinophil cationic protein (McLaren, Peterson &
Yenge, 1984), or to activated macrophages (McLaren & James, 1985). It is presently unclear
whether the trapped parasites are killed as consequence of csllular cylotoxicity, or if they die
through failure of some vita) metabolic process (Ward & MclLaren, 1988).  The concept of
parasite immobilisation and trapping has the added attraction of perhaps resolving the discrepancy
between jp vilrg and 1n viyQ data with respect to the identity of the target of immunity; it may be
that a two step process of this kind, particularly the trapping of larvas confined within blood
vessels, is impossible 1o mimic in the test tube.

Luna phase immunity

Other mouse models of vaccine resistance to S. mansoni show only a minor phasse of immune
dependent challenge slimination in the skin, the major loss of parasites bsing effected in the 1ungs
(Dean, Mangold, Georgi & Jacobson, 1984; Wilson, Coutson & Dixon, 1986). In this case,
resistance is not ablated by whole body irradiation (Aitken, Coulson, Dixon & Wilson, 1987,
Vignali, Bickie & Taylor, 1988) and the inflammatory reactions that develop around challenge
parasites in the lungs are dominated by mononuciear ceils (Yignali et al., 1988). The finding that
P strain mice, which have a defect in {he processes leading to macrophage activation, do not
develop veccine immunity (reviewed by Sher & James, 1989) may be especially pertinent in this
regard. Trapping of challenge larvas has also been proposed {6 occur in mouse models
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characterised by pulmonary attrition (Wilson, 1987). Lung phase immunity can again be
transferred by polyvaccine but not once vaccine mousse serum, and the protective activity of whole
serum resides in the g6 fraction (Mangold & Dean, 1986).

Clearly then, a major phasse of vaccing immunity can be expressed in either the skin or the lungs
of mice and resistance is certainly not confined to only one of these sites. Parasite trapping within
focal inflammatory reactions is apparently common to both organs, but the effector mechanisms
which accomphish this process differ: radio-sensitive cells predominate in the skin and radio-
resistant cells in the lungs. Once this concept is accepted, discordant results obtained by different
groups of workers from essentially identical protocols are resoived. We have suggested four
possible reasons to explain the anomaly of skin phass versus lung phase attrition in vaccinated
mice (Elsaghier & McLaren, 1989b). a) variations in the fina} site of death of the vaccinating
population of worms, b) variations in the skin sites chosen for presentation of the immunising or
challenge parasites, c) varistions in the immune responses of different mouse strains, and d)
variations in behaviour of different parasite isolates. The first three of these suggestions have
now been explored and eliminated { Elsaghier & Mctaren, 1989b) and we have demonstrated,
through exchange of schistosome infected snails with colleagues, that the parasite isolate is indeed
responsible for determining where the major phase of immunity is expressed. We are presently
investigating whether this phenomenon reflects genetic changes in the isolates, or the introduction
of foreign schistosome material into the original culture.

There is clear evidence and indeed no debate, over the major site of challenge attrition in
vaccinated rats; parasite loss occurs principally in the lungs (reviewed in McLaren & Smithers,
1987). There may be a minor phase of attrition in the skin, but vaccinated rats fail to kill
chalienge larvee implanted surgically into the liver vasculature (Mclaren, Pearce & Smithers,
1985). Protection can be conferred upon naive recipients with vaccine serum (Ford, Bickle,
Taylor & Andrews, 1984 McLaren & Smithers, 1985) and 1gG2a is the important isotype (Ford,
Dissous, Pierce, Taylor, Bickle & Capron, 1987). That macrophages rather than thymus derived
effector ceils are crucial to lung phase immunity in rats (s demonstrated by the fact that vaccine
serum is effective in Nu/Nu and Nu/+ recipients, as well 8s in individuals subjected to whole body
irradiation (Fordet al., 1987). Challenge parasites have been identified within pulmonary focal
reactions dominated by mononucleer cells, but also containing some eosinophils (Ward &
McLaren, 1989; Vignali, Klaus, Bickle & Taylor, t1989); trapped parasites again exhibit
traumatised subtegumental muscle cells ( Ward & Mclaren, 1989). The basic features of lung
phase immunity thus sesm common to vaccinsted mice and rats.

Liver phase immunity
Yaccinated guinea pigs differ from both mice and rats in that vaccine immunity is expressed
predominantly in the liver; a minor loss of challenge parasites can be detected in the lungs, but
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not the skin (McLarenet al., 1985).  Liver phase resistance is stage restricted however, being
directed against parasites younger than three wesks of age; older worms are totally refractory
(McLaren & Rogers, 1986). Whole body irradiation has no effect on the expression of liver
phase immunity, but protection is significantly abrogated by agents such as silica that block
macrophage function (Delgado & McLaren, 1989d); radio-resistant cells, perhaps macrophages,
are thus implicated in this rodent model. Naive quinea pigs can be protected with serum harvested
from polyvaccinated donors ( McLaren, Delgado, Gordon & Rogers, 1989) and as with mice, 161 is
the important isotype ( Delgado & McLaren, 1989¢).

FACETS OF YACCINE tMMUNITY IN HETEROLOGOUS RODENT SYSTEMS

Although polyvaccine serum harvested from each of the rodent hosts discussed here is able {o
protect homologous naive recipients, comparable success has not been achieved in heterologous
transfer systems (McLaren et al., 1989), even though the time of serum administration has been
optimised for either the donor or the recipient species; this phenomenon sesms lkely 1o reflect

incompatibtlity of the humoral and cetiutar arms of the immune response betwesn heterologous
rodent species.

Since mice and quinea pigs are at opposite ends of the spectrum in terms of the sites at which
vaccine immunity is mediated (skin versus liver), we have recently devised experiments to ask
whether Tiver stage mouse worms that are essentially refractory in vaccinated mice are
susceptible to the liver phase immunity which characterises vaccinated guinea pigs. Surgical
transfer experiments showed that this was indeed the case. Moreover, mouss-derived parasites,
like age matched quinea pig worms, were susceptible only until 3 weeks of age (Delgado &
McLaren, 1989d), thereby revealing a common end point to the window of suscaptibility.

THE SYNERGISTIC INTERACTION BETWEEN VACCINE IMMUNITY AND PRAZIQUANTFL

A number of workers have recently shown that the schistosomicidal compound Praziquantel seems
to depend for its efficacy upon the immune status of the host. Such studies have centred upon
chronically infected mice depleted of T or B cells and then treated with drug (Sabah, Fletcher,
Webbe & Doenhoff, 1986; Brindley & Sher, 1988), or on naive mice treated concomitantly with
Praziquantel and immune serum (Doenhoff, Sabah, Fletcher, Webbe & Bain, 1987). We have
taken a different approach and looked for synergy between Praziquantel and vaccine resistance in
mice (Flisser, Delgado & McLaren, 1389); the features of skin phase challenge attrition in our
mouse mode] are now well documented (see above), so that drug induced changes in this pattern
may be readily detected. In essence, only a marginally significant synergy is recorded when
Praziguantel 1s administered to coincide with skin phass resistance, but a highly significant
synergy 15 seen when drug treatment is tailored to coincide with worm migration through the
lungs ( Flisser et al., 1989). We have shown in addition that Praziquante) unmasks disquised
parasite antigens on the surfaces of lung stage larvee(Flisser & McLaren, 1989) and that in
consequence, the worms become trapped and eliminated within macrophage-rich focal
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inflammatory reactions in the pulmonary vesculature (Piper & MclLaren, unpublished data).
Drug treatment therefore facilitates the expression of an additional phase of lung immunity in a
mouse modal normally characterised by a predominance of cutaneous attrition.

SUMMARY AND CONCLUSIONS

Contrary to previous expectations, innate resistance to a primary schistosome infection is
mediated predominantly in the lungs of many laboratory rodents. In addition, the phenomenon of
non-permissiveness seen in a sub population of 129 strain mice, is associated with worm
relocation from the liver to the lungs and is facilitated by dramatic alterations to the lung and
liver vasculature; lung located adult worms exhibit gut damage and are ultimately destroyed
within eosinophil-rich inflammatory focal reactions. !t is now clear that the immunity induced
by exposur-e to radiation-attenuated cercariae can be effected in the skin (mice), the lungs (mice
and rats) or the liver (guinea pigs) of laboratory rodents. Moreover, the fact that skin phase
resistance involves radio-sensitive cells, while lung ang liver phase immunity centres on radio-
resistant leucocytes, resolves current discord in the literaturse. Immobilisation and trapping of
challenge larvae within focal inflammatory infiltrates is nevertheless common to both skin and
lung phase attrition. Hyperimmunisation of rodents with irradisted cercariae {5 associated with a
switch in immunoglobulin isotype and serum harvested from such donors is able to protect naive
recipients passively; transferred serum recruits effector cells. Challenge parasites exhibit a
broader window of sensitivity to vaccine immunity than was originally envisaged: stages
ranging from the 3 to 4 day old skin/lung stage larva to the 3 week old juvenile liver worm
constitute targets of protective resistance jn vivo. This is at variance with the fact that newly
transformed schistosomula constituting the primary targets of in vitro sffector mechanisms, a
feature perhaps related to our inability to mimic the process of intravascular parasite
immobilisation and trapping in the test tube. Finally, schistosomicidal drugs such as Praziguantel
can, by re-exposing disguised parasite antigens, facilitate the expression of vaccine tmmunity in
sites additional to those at which resistance 1s nor matly mediated.

Animal models have thus yielded much new information over the last two years about mechanisms
of vaccine immunity to schistosomiasis and although we do not know which of the available
Jaboratory systems represents the best correlate of human immune responsivensss, it would
appear that a putative vaccine for human use must bracket a broader range of parasite stages than
was originally envisaged.
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