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The Triatominae represent a subfamily of the
Reduviidae defined on the basis of their blood-
sucking habit and associated characteristics.  At
present, 128 species are formally recognised,
grouped into 17 genera in 5 tribes.  The majority
are silvatic, associated with a wide variety of ver-
tebrate hosts – particularly nest-building mammals
and birds.  Others occupy silvatic and peridomestic
habitats such as chicken coops and goat corrals,
and a few have completed the transition to domes-
tic habitats where they may become important as
domestic vectors of human Chagas disease.

The most highly domesticated species, such as
Triatoma infestans in Southern Cone countries, and
Rhodnius prolixus in parts of the Andean Pact and
Central America, are now being progressively con-
trolled through regional and national initiatives
designed to eliminate domestic populations by re-
sidual insecticide spraying.   In recent years how-
ever, there have been increasing reports of other
species establishing domestic colonies, and some,
such as T. dimidiata, have even invaded urban and
periurban residences.  In many cases, the new in-
festations involve little-known species previously
considered to be exclusively silvatic in habit, such
as Panstrongylus rufotuberculatus, Rhodnius stali,
and Eratyrus mucronatus in Bolivia (Noireau et
al. 1995, Dujardin et al. 1998a), and P.geniculatus
in the Amazon region (Valente et al. 1998).  It
seems clear therefore, that the process of domesti-
cation in Triatominae is not only a historical event,
but may be a generalised current trend within the
subfamily (cf. Diotaiuti 1997).   Here we present a
general description of the evolutionary process, as
a basis for discussion of the possible mechanisms
involved and their likely consequences.

EVOLUTION OF HAEMATOPHAGY

The Triatominae are believed to have evolved
from various reduviid lineages, adapting first as
nest-dwelling predators, through phases of facul-
tative blood-sucking towards obligate haema-
tophagy in association with a range of vertebrate
hosts and their habitats.  This evolutionary route
appears to have been followed several times in the
Americas to give rise to the polyphyletic genus
Triatoma and several smaller genera, and also to
have proceeded at least once in the Indian subcon-
tinent to give the genus Linshcosteus (Gorla et al.
1997).  Anthocorid predators seem to have fol-
lowed a similar evolutionary route in Africa and
parts of Asia to give rise to the Cimicidae and
Polyctenidae, and may have inhibited this evolu-
tionary step in African reduviids by being earlier
to occupy the available nidiferous ecotopes.

Evolution from predaceous to blood-sucking
habits is associated with a series of morphologi-
cal, behavioural and demographic changes associ-
ated with three key factors: (1) exploitation of
verteberate blood as a food source, (2) adaptation
to the host environment, and (3) progressive reli-
ance on the host as a means for dispersal by pas-
sive carriage (Schofield & Dolling 1993).  Inevi-
tably this can lead to convergence in relevant char-
acters, so that the form of the evolved blood-sucker
will include both its evolutionary background to-
gether with specific convergences associated with
exploitation of the vertebrate hosts.  The process
involves specialisation and simplification reflected
in genetic as well as phenotypic characteristics, and
can be envisaged as a typical evolution of demo-
graphic strategy (sensu Rabinovich 1974) from r-
strategists (‘free-living’ predators adapted to rela-
tively unpredictable conditions of habitat and food
supply) to K-strategists (‘nest-dwelling’ species
exploiting a more stable habitat and food supply).
In fact, this demographic transition seems to be
one of the key factors driving the genetic changes
seen in Triatominae (Schofield 1996).

The demographic consequence of habitat sta-
bility – especially stability of food supply and pro-
tection from climatic extremes – is that reproduc-

This work has benefited from international collabora-
tion through the ECLAT network.
+Corresponding author. Fax: +33-4-50-20.6377. E-mail:
cj.schofield@wanadoo.fr
Received 9 June 1999
Accepted 9 August 1999



376376376376376 Process of Domestication in Triatominae � CJ Schofield et al.

tion becomes less impeded by food shortages and
seasonal climatic changes.  Reproduction proceeds
through a greater part of the year, and populations
can increase up to the limits imposed by available
nutrition.  At the limit however, when population
density approaches the carrying capacity of the
habitat, the nett rate of population increase declines
inevitably towards unity (Ro => 1).  At this point,
the population neither increases nor decreases,
meaning that each reproducing female is giving
rise, on average, to just one reproducing daughter.
But even at this point, the reproductive capacity of
each female remains high, with each female ca-
pable of producing some 200 eggs.  In other words,
around 99% of offspring become unlikely to reach
reproductive age.  The genetic consequences in-
volve constant selection for optimum genotype
within that population, where ‘optimum’ can be
envisaged as ‘most efficient’ in utilisation of the
available resources.  ‘Most efficient’, in turn, can
be envisaged as ‘not wasting energetic resources
to produce genes or gene products that may not be
used’, so that both genetic and phenetic simplifi-
cation can be predicted.

Evidence to support this idea comes from sev-
eral sources.  The sensory system of Triatominae,
for example, in terms of the density of antennal
sensilla, becomes progressively simplified in ac-
cordance with increasing habitat stability (Catalá
1997); bilateral symmetry becomes relaxed
(Dujardin et al. unpublished), as does sexual di-
morphism (Dujardin et al. 1999a,b), and a general
reduction in body size may also be seen (Dujardin
et al. 1997a,b, 1998b).  At the chromosome level
there is evidence for a decrease in total DNA per
cell (Panzera et al. 1999), and expressed isoen-
zymes show a remarkable reduction in variability
and polymorphism (Garcia et al. 1995, Frias &
Dujardin 1996, Dujardin et al. 1998a).  Prelimi-
nary studies also indicate a progressive reduction
in gene sequence variability (Garcia & Powell,
1998, Garcia et al. 1998, Stothard et al. 1998,
Lyman et al. 1999).

THE PROCESS OF DOMESTICATION

Domestication of Triatominae can be envisaged
as an extension of the evolutionary route from
predator to nest-dwelling bloodsucker, where the
domestic habitat simply represents a particular type
of  vertebrate ‘nest’.  The process is one of
specialisation and, since it seems to involve sim-
plification of genetic as well as phenetic charac-
ters, we can assume the process to be irreversible.
Generalist silvatic species may specialise to do-
mestic habitats, but in so doing they would prob-
ably loose (by genetic simplification) the capacity
to readapt to the less predictable silvatic habitats.

Genetic simplification during domestication
occurs through two main processes – founder ef-
fects, followed by intraspecific competition as de-
scribed above.  Since only part of any silvatic geno-
types may be successful in establishing durable
domestic populations, it is inevitable that some
genetic restriction will occur, since the founder of
any new population can carry only a limited frac-
tion of the available gene pool.  In addition, if the
newly founded population becomes isolated from
its original silvatic foci (as can be expected if it is
dispersed by the host over distances beyond its
normal range), then a further loss of genetic vari-
ability can be expected (Figure) (Dujardin 1998).
Genetic differences between silvatic and domestic
populations seem to be good markers for incipient
speciation, as has been demonstrated for T.
infestans in Bolivia (Dujardin et al. 1997a,b,
1998a).

But although we are developing a reasonable
description of the process, we are far from under-
standing the driving mechanism.  In some cases
there may be none, in the sense that domestic
colonisation may simply be a chance occurrence.
We can envisage that some individual bugs may
be passively carried by an adventitious host to a
new habitat, there to be accidentally dislodged to
initiate a new colony.  Indeed, passive carriage by
the vertebrate host seems to explain most of the
spread of domestic species such as T. infestans and
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Schematic representation of the processes of genetic simplifi-
cation in Triatominae during adaptation from silvatic to domes-
tic habitats.
A subset of the silvatic gene pool forms the initial domestic
colony, with consequent simplification by a founder effect.  The
domestic colony becomes progressively isolated from its silvatic
origins, so that no further variability is introduced into the new
population (except perhaps by occasional mutations).  As the
new domestic colony increases, there is intraspecific selection
for optimum genotypes as the population density nears its car-
rying capacity.  These processes may then be repeated as indi-
viduals are dispersed to neighbouring houses.
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R. prolixus (Dujardin et al. 1998a,b).  It has also
been invoked to explain the spread of wingless T.
spinolai along the coast of Chile (Schofield et al.
1998) and may also explain the highly consistent
associations with specific hosts seen in species such
as T. delpontei, Cavernicola pilosa, and species of
Psammolestes.

The alternative to passive dispersal by the ver-
tebrate hosts involves active dispersal by flying
adult bugs.  All species of Triatominae – except
for some T. spinolai – have wings in the adult stage.
Some are known to be good fliers (eg. Schofield et
al. 1992, Coura et al. 1994) although some mem-
bers of the phyllosoma complex have such trun-
cated wings that their capacity for active flight must
be in some doubt.  Laboratory studies and field
observations of various triatomine species show
that active flight is invariably associated with low
nutritional status.  Flying bugs are hungry, and this
may indicate a key factor in the colonisation of
new habitats.  Ecological events such as defores-
tation may provoke mortality amongst the silvatic
vertebrate hosts, leading to poor nutritional status
for their associated triatomine bugs and prompt-
ing the adults to fly away in search of new habitats
– such as houses – where new populations may be
founded.

But this general idea leaves many questions
unanswered.  What, for example, are the main ori-
entation signals for dispersing bugs?  We know
from numerous field observations that many
triatomine species can be attracted at night to vis-
ible and UV light sources, but this does not apply
to all species and cannot be the primitive mecha-
nism leading to colonisation of new silvatic habi-
tats.  Are dispersing bugs attracted to general host
odours, such as ammonia as has been proposed by
Taneja and Guerin (1997).  If so, why do we not
see a greater miscellany of bug species attracted to
particular habitats?  In one study of the dispersive
flight of T. infestans carried out on the salt flats of
Argentina, the dispersal of bugs seemed to follow
a random pattern – i.e. with no discernible orienta-
tion to a particular direction, except for a slight
preponderance of bugs apparently attracted to a
radiant heat source (Schofield et al. 1992).  So is
heat or other radiation an important signal for dis-
persing bugs?

Even the gender of dispersing bugs raises dif-
ficult questions.  Clearly a mated female might ini-
tiate a colony in some new habitat, but dispersing
males can colonise nothing.  So what is the pur-
pose of male dispersal?  Is it a means to leave re-
sources for their offspring – a sort of ‘pseudo-
apoptosis’ – sacrificing the individual male so that
his offspring can have greater access to the limited
blood supply in the original habitat.  If so, why are

not all male bugs able to do this, given recent evi-
dence that only a small proportion of individuals
have the active form of the enzyme alpha-GPD
crucial to flight initiation (Soares 1997).

We regret that this review perhaps raises more
questions than answers, but understanding the
mechanisms of domestication by Triatominae
seems of crucial importance.  It is now clear from
experience in many countries that domestic popu-
lations of Triatominae can be eliminated by avail-
able methods, but the next phase in Chagas dis-
ease control must involve surveillance and moni-
toring of ‘unusual’ species that may – or may not
– have the capacity to reinvade rural dwellings.
We see this as one of the greatest research chal-
lenges in studies of Triatominae over the next de-
cade.
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