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Intergenic and External Transcribed Spacers of Ribosomal RNA
Genes in Lizard-infecting Leishmania: Molecular Structure and
Phylogenetic Relationship to Mammal-infecting Leishmania in the
Subgenus Leishmania (Leishmania)
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To establish the relationships of the lizard- and mammal-infet#&ighmania we characterized the intergenic
spacer region of ribosomal RNA genes frlontarentolaeandL. hoogstraali. The organization of these regions is
similar to those of other eukaryotes. The intergenic spacer region was approximatelyl4 tdrémtolaeand 5.5
kb inL. hoogstraali The size difference was due to a greater number of 63-bp repetitive elements in the latter species.
This region also contained another element, repeated twice, that had an inverted octanucleotide with the potential
to form a stem-loop structure that could be involved in transcription termination or processing events. The riboso-
mal RNA gene localization showed a distinct pattern with one chromosomal band (2.2 Mhiafentolaeand two
(1.5 and 1.3 Mb) foL. hoogstraali The study also showed sequence differences in the external transcribed region
that could be used to distinguish lizdtdishmaniagrom the mammaliaheishmania The intergenic spacer region
structure features found amohgishmaniaspecies indicated that lizard and mammalian Leishmania are closely
related and support the inclusion of lizard-infecting species into the sub8anudeishmaniproposed by Saf’janova
in 1982.
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Leishmania tarentolaandL. hoogstraaliare blood- days after infection with.. adleri promastigotes. Sero-
stream kinetoplastids of lizards. Their geographical di¢agical studies also showed common antigens arhong
tribution is restricted to the Old World. Lizard-infectingadleri andL. hoogstraaliand some mammalidreishma-
Leishmaniaare closely related to mammalian-infectingnia species. This observation has an implication in the
Leishmaniaput their exact taxonomic position and phykala-azar epidemiology since false positives could be
logenetic relationship remains uncertain. Recently, bigenerated due to naturally-transmittecadleri (see re-
chemical and biological data have been used in compavésion in Wilson & Southgate 1979, Telford 1995). In addi-
tive studies of lizard and mammaliaeishmanisspecies tion, amastigote forms have been detected in phagocytic
(Simpson & Holz 1988, Briones et al. 1992, Fu &cells of naturally and experimentally infected lizards
Kolesnikov 1994, Croan & Ellis 1996, Previato et al. 1991Dollahon & Janovy 1974, Elwasila 1988).

Noyes et al. 1997, Croan et al. 1997, Shaw 1997, Noyes etEarlier studies using the small subunit ribosomal RNA
al. 1998) indicating a close relationship. (rRNA) molecule helped to establish the lizaeglshma-

Lizard-infectingLeishmaniglay an important role in nia proximity to mammaliareishmania(Briones et al.
epidemiological studies of leishmaniasis. Amastigot2992) relative to other trypanosomatid genera. However,
forms of L. adleri (another lizard_eishmaniaspecies) the small subunit sequences are not suitable for resolu-
were detected in volunteers at the site of inoculation fiv@n of species within the same genera. On the other hand,
the rRNA gene intergenic spacer region (IGS) and the
external transcribed spacer (ETS) are under less selective
pressure and thus provide a means to distinguish evolu-
tionary relationships among more closely-related species.
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*Corresponding author. Fax: +55-11-3091.7329. E-mailt€s.

Imfwinte@icb.usp.br In the present work, the molecular structure of the IGS
Received 13 September 2001 region from two lizard-infecting.eishmaniaspecies is

Accepted 6 February 2002 described and compared to the corresponding sequences



696  Lizard Leishmania rDNA Spacers ¢ Tereza C Orlando et al.

from the mammal-infectingeishmaniaThese data refine Chromosomal analysis Chromosome bands were
the phylogenetic positioning of the lizdrdishmaniaand separated by pulsed-field gel electrophoresis (Schwartz
support their status as a subgenut@shmania & Cantor 1984) in 1.2% agarose gels and 0.5x TBE buffer.
The running conditions were: three phases pulses of 180,
MATERIALS AND METHODS 240 and 300 s at 6 V/cm for 18 h each pulse at 10°C. Blots
Organisms- Promastigotes df. tarentolae(ATCC  were probed with thacd fragment (Fig. 1C) and with the
30267) and.. hoogstraaliRHEM/SD/1963/NG26) from small subunit rRNA front. tarentolae.
the Trypanosomatid Bank at Universidade de S&o Paulo Sequence and phylogenetic analysidie sequences
were cultivated at 25°C in LIT medium (Camargo 1964). were aligned with CLUSTALW 1.6 (Thompson et al. 1994)
DNA and RNA extractions, isolation of the IGS/ET&nd the matrix obtained contained 1119 characters and 6
region and sequencingsenomic DNA fronLeishmania taxa.Crithidia fasciculatawas used as the outgroup.
species was purified as previously described (Uliana et Phylogenetic trees were constructed using PAUP ver-
al. 1991). Total RNA was extracted as describesion 4.03b (Swofford 1999) for distance and parsimony
(Chomczynski & Sacchi 1987). methods. Maximum likelihood trees were obtained with
A genomicApd-Bglll fragment encompassing ~3 kb BASEML program from the PAML 2.0 package (Yang 1999)
of the IGS/ETS region of.. tarentolaevas isolated from using the K80 model of DNA substitution with gamma
a cosmid library (Fig. 1C, clone pAB 2.8). Clone pLt1.3listribution €= 0.85). Bootstrap values were calculated
(Fig. 1C) was obtained by the isolation ofAlnl frag- ~ for 100 replicates.
ment from pAB 2.8. Fdr. hoogstraalja 9-kbBglll frag- RESULTS
ment was isolated from a partial genomic library, con-
structed using inserts of 7 to 10 kB produced by a CO'BTO
plete digestion of genomic DNA witgll. This fragment
contains ~2 kb from the large subunit rRNAs subuni

IGS/ETS sequence comparisd®dased in a Northern
t experiment the approximate size of the ETS region of
L. hoogstraaliandL. tarentolaewas determined (data

. ) ot shown) and used to positioned the data to align and
and the whole IGS/ETS region. Fig. 1B shows clones p mpare this region with the corresponding sequences

6500, pLh 3400 and pLh 8A, containing small fragmentsyc) “ y amazonensjs. (L.) chagasiL. (L.) donovani
used in this work. These clones were mapped with seyzq c. fasciculata(Fig. 2, Table ). The comparison
ergl restriction enzymes, subcloned into puC 18/19 serigfowed blocks of sequence similarity amongLlibish-
(Fig. 1) and sequenced by the dideoxynucleotide methgehniaspecies an€rithidia. Motifs were identified cor-
(Sanger etal. 1977). The sequences were determined B¥&ronding to those described previouslyLin(L.)
combination of manual and automated sequencing usigghazonensi@Jliana et al. 19963nd two regions (Fig. 2)

an ABI 377 or 310 sequencer (Perkin Elmer). of absolute identity to the proposed base-pairing sites of
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Fig. 1: scheme of the general ribosomal RNA gene arrangement (A) with the respective intergenic spacer/external trarsaribegiospa
of Leishmania hoogstraaliB) andL. tarentolae(C). The blank box in B represents the 3’ end of the rRNA gen@.24SApal; B, BanHl;

C, Hincll; D, Hindlll; G, Bglll; J, Acd; P, Pst; S, Smd; U, Alul; V, Pvdl; X, Xhd; Y, Ddd. The 63 bp repetitive elements are represented
in stippled and white rectangles, the flag maps the estimated transcription start point, the black rectangles indicaenthepefaiming
the inverted octanucleotides. The thick line corresponds to the sequenced region.
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the U3 small nucleolar RNA (snoRNA) 6f fasciculata ments generated by complete digestion was less than the
(Schnare et al. 2000) ahdtarentolagShietal. 1994). A size of the original fragment (data not shown).
Hindlll site in the estimated ETS regionloftarentolae Determining the nucleotide sequence of the IGS frag-
andL. hoogstraali(Fig. 1) could be used to discriminatements allowed us to fully characterize the repetitive ele-
lizard isolates from the mammalian isolates. ments. For both species, the first 63-bp repeat is located
L. tarentolae and L. hoogstraali IGS/ETS structure ~200 bp upstream of the estimated transcription start point
The IGS/ETS structure was determined by sequenggig. 1B, C, hatched rectangles). By sequence analysis
analysis of the corresponding genomic segments frowe detected approximately 12 repeatslfotarentolae
each species (Fig. 1): ~4 kb tartarentolaeand 5.5 kb for and 40 foiL. hoogstraali
L. hoogstraali. These repetitive elements showed approximately 90%
The relevant IGS/ETS fragments were digested witbequence identity between lizaréishmaniaspecies
restriction enzymes that had 4-bp recognition sites. TH{gable I, upper section). In contrast, comparison with the
patterns obtained for both species vibitkel revealed the same repetitive elements in the IGS of mammaliish-
presence of repetitive element in both regions. A nomaniashowed a very low degree of similarity (Table I,
stoichiometric quantity of a ~70-bp fragment accumulategpper section). Fig. 3 shows a sequence comparison of
with partial-restriction kinetics, and the sum of all fragthe repetitive elements found in each species.

+584
AMA AGCTACACA--TGTGTAGAGAGCNCTGCGCCGAACTAGTCGTGCNTNCTGAACATGTTTT
CHA AGC... TATATG...AG..A.GCTGC..C.AA.AGT.AG.G.GA...........
DON AGC...TATATG...AG..A.GCTGC..C.AA.AGT.AG.G.GA...........
TAR AGC...TGTATG...AG..A.GTGNN..C.AA.AGT.G.G.G.G.T...........
HOO AGC...TGTATG...AG..A.GCTGC..C.AA.AGT.G.G.G.G.T..........
CRIT ---....TAT-CC...C-.T..GCTGC..T.GG..TAC.G.AG.G.C...........

|
AMA GTGTGTGCTGCCGTGTCTACACGT-TTGCAGCGGAAACTCGGTT&AACCAGAAACAGAAC

CHA GTC.AC..G.-....... [CTRN A.CCA.AAAA.
DON ... GTC.AC..G.--....... CTI A.CCA.AAAA.
TAR GTC.AC..---....... CT A.CCA.AAAA.

HOO ... GTC.AC..G.--....... CTI A.CCA.AAAA.
CRIT TCT.TT..G.G....... Ao G.ATG..GT.G.C..

Il
AMA TTGATTGTTGCTGCATTTCGAGGAATTTCAGCCAAACAAGAGGTCAACAACCAAGCCGCG

CHA ... T....... T A C.G.G

DON ... T....... T, A G..G.G

TAR ... T....... T e ———— -..G.-

HOO ... T....... T A G..G.G

CRIT ... A.... Coe A G..AG
+759

Fig. 2: sequence comparison of a segment of the external transcribed spacer. AMA correspeistetania(L.) amazonensijsCHA
corresponds td.. (L.) chagasj DON correspondes th. (L.) donovanj TAR corresponds td. tarentolag HOO corresponds ta.
hoogstraaliand CRIT corresponds @rithidia fasciculata GeneBank accession numbefsr L. (L.) amazonensijsL. (L.) chagasj L. (L.)
donovaniand C. fasciculataare U21687, U42465, L38572 and Y00055, respectively. Regions | and Il correspond to the proposed site of
base pairing with the U3 snoRNA i@. fasciculata(Schnare et al. 2000) and tarentolae(Shi et al. 1994). Numbering is in relation to

the transcription start point df. amazonensigUliana et al. 1996). Dots (.) represent nucleotide identity, dashes (-) represent gaps
introduced to improve the alignment obtained with Clustalw (1.60) program.

TABLE

Percentage of similarity among the six external transcribed spacer sequences (lowadpatt)e 63bp repetitive elements
(upper part)

L. tarentolae L. hoogstraali L. (L.) amazonensis L. (L.) chagasi L. (L.) donovani
Leishmania tarentolae - 90 36 34 36
L . hoogstraali 93 - 35 34 36
L. (L.) amazonensis 85 87 - 68 68
L. (L) chagasi 85 86 88 - 96
L. (L.) donovani 86 88 90 97 -

Crithidia fasciculata 60 62 59 58 59
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HOO TGTGCAGCTACGCGGGCAGGICAGGAGGCATTGTCTGGCGTCGCAGCAGTGCAGTATTGGC-
TAR T..G.AGCCATGCAGG.ACG C..AG TGA.GCATT.T.TGG..CNGCAGT.G.G.GGTATTGGC-

AMA A.ATTGGACATTCC.--TT..GCCAC.CCAGA.-.CGT..-GAGGCC.C.C.TTCGCGTCCC

CHA A.ATGGAGCATTCC.GTTT..GCTGC.AGGAA.A.CCT..CGGGAGC.T.G.TTCGCGCCCC

DON A.ATGGAGCATTCG.GTTT..GCTGC.AGGGA.A.CCT..CGGGAGC.T.G.TTCGCGCCCC

Fig. 3: repetitive elements found in the intergenic spacer region of the rRNA gebeistohaniaspecies. Species identification as in Fig.
2. Bold type is theDdd site. Dots (.) represent nucleotide identity, dashes (-) represent gaps introduced to improve the alignment obtained
with Clustalw (1.60) program.

The results of the probed pulsed-field gel electraure as identified in thé. (L.) infantumsequence was
phoresis blots (Fig. 4) indicated that the repetitive eledso found for the two blocks df. tarentolae L.
ments co-localized to the same chromosomal bandshasogstraaliandC. fasciculata(Fig. 5B).
the rRNA of both species and were not dispersed through- Phylogeny Trees derived from distance, parsimony
out the genome. The pulse-field pattern also revealadd maximum likelihood (Fig. 6) methods exhibited identi-
that the rRNA gene maps to chromosomal bands of difal topologies and showed that tteeshmaniaof lizards
ferent size (Fig. 4) irL. tarentolae(2.2 Mb) andL. studied are very close to each other. The lizaishma-
hoogstraali(1.5 and 1.3 Mb). Hybridization experimentsnia form a sister group to the mammaliagishmanieof
using high stringency conditions indicated the presentke subgenud. (Leishmanid analyzed withC.
of these elements In adleriandL. gymnodactyl{other fasciculataused as the outgroup. The bootstrap values
lizard Leishmaniaspecies). The 63-bp repetitive elementsbtained for each method (Fig. 6, nodes) support the hy-
from lizard Leishmaniadid not hybridize withL. (L.) pothesis that lizardeishmanisand mammaliaheishma-
amazonensisior L. (L.) mexicanachromosomal bands nia species of the subgenus (Leishmania are sister
(data not shown). groups.

Upstream from the 63-bp repetitive elements, an in-
verted octanucleotide motif repeated twice was found in ) DISCUSSION_
both species (Fig. 1B, C, black rectangles). A similar se- In this study we have determined the sequence of the
quence was described in the same IGS positian in.) IGS/ETS upstream from the small subunit rRNA of two
infantum(Requefia et al. 1997) and recently, it was aldézard-infectingLeishmaniaspecies for comparison with
found in the IGS region df. fasciculataSchnare et al. their mammal-infecting relatives. The size of the IGS re-
2000). A comparison among these sequences showed @ign determined for both species is approximately the same
the repeats i€. fasciculataandLeishmaniaspecies are as the size found fdr. (L.) infantum(5 kb, Requefia et al.
not as conserved as among theshmaniaspecies re- 1997) and.. (L.) donovan({4 kb, Lodes et al. 1995), indi-
peats (Fig. 5A). The potential to form a stem-loop stru€ating that the size of this region is conserved between

Fig. 4: chromosomal pattern ékishmania tarentolag¢l and 3) and.. hoogstraali(2 and 4)\RNA gene localization. A: chromosomal
bands after ethidium bromide staining. M corresponds to Megabase IV (Invitrogen); B: autoradiogram of the chromosomanieloAin p

In panel | the fragmenAcd/Acd from L. tarentolae(Fig. 1A) was used as the probe and in panel Il the 18S subunit DNA was used as the
probe. Washing conditions: 2x SSC/0.1% SDS at 45°C. Exposure time: 5 days at -20°C for panel | and 4 days at -20 °Ql.for panel
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A1NF1 CAACGGACCCGA CAACCAGUGTGTGCGCGTATATATTTACTATA------ CGTCTGCATACACGECTCGTTBCGGGTCCTTGCCCTTTT

INF2 CACCCGACCCGG CAACCAGG CGCCCAAACGCGCG-- GCTCGTTBCGGGTCCTTGCCTTTTT
INF3 CACCCGACCCGG CAACCAGIG CGCCCAAACGCGCG-- GCTCGTTBGCGGGTCCTTGCCTTTTT
TAR1 CCCCCGACCCGGCAACCAGETG CGACCACAACGGCGCA GCTCGTTBCGGGTCCTTGCCCTTTT
TAR2 CCCCCGACCCGGCAACCAGTG CGACCACAACGGCGCA GCTCGTTBCGGGTCTTTGCCCTTTC
HOO1 CAAAGGACCCGACAACCAGUGTGTGTTGTGCGTGCGTATAGGTTTATACGTGCACACATGGANGGATBCGGGTCCTTGCCCTTTN
HOO2 CACCCGACCCGGCAACCAGG CGACCACAACGGCGCA GCTCGTTBCGGGTCCTTGCCCTTTC
CRIT --CATCCCCCGA CAACCAGCA GCTCACATG GCTCGTTBCGGGG--TTTGCCTTTC
*kkk kkkkkkkk Kkkkkkkkkkkkk *k Kk kkk
CA CA
B I aA A A A A 1] VI
CA cC C CcC C
c C CG CcCG C
CG A G A G TA
GC GC GC CcC C
CG CcG CG G A
GC GC GC AT
T G TA TA CG
CG CcG CG CG
GC GC GC GC
AT AT AT AT
cC C c C ccC c C
CG CcG CG CG
AT AT AT AT
AT AT AT AT
CG CcG CG CG
G T G T G T AT
GC GC GC GC
CG CcG CG CG
CG CcG CG CG
AT CG CG CG
CG AT AT CcG
GC GC GC

Fig. 5: analysis of the three repetitive elements found downstream froiretblemania(L.) infantumlarge subunit rRNA (INF 1, 2 and
3), L. tarentolae(TAR 4 and 5).L. hoogstraali(HOO 6 and 7) an€rithidia fasciculata(CRIT). A: alignment of the elements. Bold letters
correspond to the inverted octanucleotides. Asterisks (*) below the alignment indicate base identity in each position aeigig the
sequences; dashes (-) represent gaps introduced to maximize the alignment; B: sequences shown in A can form similatrettardeop s
I. L. (L.) infantum (Requefia et al. 1997); IL. tarentolae.lll. L. hoogstraali.lV. C. fasciculata(from R3 sequence described in Schnare et
al. 2000).

Crithidia lizard and mammaliaheishmaniaspecies; the size ob-

fasciculata  geryed in other eukaryotes is variable. The differences in
length can be attributed to a variable number of 63-bp
repetitive-element found in each lizard species.

The estimated ETS region of each species (~1000 bp)
was shown to be very similar in size.tqL.) amazonensis
(1050 bp, Uliana et al. 1994), (L.) chagas{1060 bp, Gay
etal. 1996)l.. (L.) donovan{1020 bp, Yan et al. 1999],
fasciculata(1050 bp, Grondal et al. 1990) anadongolense
(961 bp, Downey & Donelson 1999%or T. cruziandT.
bruceithe ETS size is significantly larger [1550 bp, Dietrich
etal. (1993) and 1200 bp, White et al. (1986), respectively].
The comparison of ETS regions showed conserved

motifs between lizard and mammaliagishmanisspecies
andC. fasciculata(data not shown), including the pro-

L. tarentola€™y 5 posed sites of base-pairing with the U3 snoRNACof

fasciculata(Schnare et al. 2000) ahdtarentolag(Shi et

L. (L.) donovan al. 1994) (Fig. 2). The presence of similar motifs suggests

a common processing mechanism of the pre-rRNA mol-

ecule.

Fig. 6: topology obtained with the maximum likelihood method for ~ AS in many other eukaryotes, conserved, repeated el-

the external transcribed spacer sequence alignment. Distance metesrients upstream of the predicted transcription start point

(performed with the neighbor-joining algorithm) and parsimonyyere detected in both species. However, when compared

method gave similar topologies, although the bootstrap values ops ; ; ; ; smilar.
tained differed: numbers at the left of each node represent me(:).f(lb mammaliari.eishmaniaspecies, the degree of similar

mum likelihood values, numbers at the right represent neighboty dropped th_ree f0|0! (Tabl(_a)- The repeat m_lmber varied
joining values and numbers under each node represent parsima@inong theleishmaniaspecies: two populations of 35
values. The bar indicates distance for maximum likelihood. and 70 copies ih. (L.) amazonensi@Jliana et al. 1996)

0.1
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and 39 copies ih. (L.) donovaniYan et al. 1999), while Both the molecular data presented and the inferred
for lizardLeishmaniaapproximately 12 copies of the 63-phylogenetic relationships are in agreement with the in-
bp repeat in thé. tarentolaelGS and approximately 40 clusion of the lizardLeishmaniain the subgenus
copies inL. hoogstraaliwere found. The size of the re- Sauroleishmaniaas proposed by Saf’janova, using bio-
peated elements was conservetdaeishmania~ 60 bp), logical criteria (Saf’janova 1982).

while 28 copies of a 19-bp element were found located
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