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Cellular automata simulation of recrystallization in two dimensions is carried out. The simulated microstrutural 
evolution is compared in detail with the predictions from mathematically exact analytical theories considering both 
kinetic and geometrical aspects. Very good agreement is observed between the cellular automata simulation and 
the theoretical results. Moreover, the simulated data is used to test new expressions recently derived to describe 
the evolution of the interfaces between recrystallized grains. This work focuses on recrystallization but its results 
are applicable to any nucleation and growth transformation.
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1. Introduction

Recent years have witnessed a large increase in computer simula-
tion of microstructural evolution. For example, there are many papers 
on computer simulation of grain growth evolution using a wide range 
of simulation techniques. Not so much attention has been given to 
recrystallization. One promising technique is that of cellular automata. 
Hesselbarth and Göbel1 applied it for recrystallization in an early 
work. Other papers have also applied this technique2-8. 

An important issue that arises when a computer model is chosen 
is whether it is able to forecast the process results. In other words, 
to what extent one can trust that it actually simulates the intended 
process or phenomenon. Although the ultimate test of any model is 
to accurately represent reality, its first test is to determine its ability 
to describe the phenomenon in simple cases for which there are math-
ematically exact analytical solutions. A “good” model should be able 
to agree closely with the mathematically exact analytical solutions. 
Moreover, if valid, the simulation can assist the development of the 
analytical theory itself. The simulation can provide accurate data for 
situations in which there are no analytical results.

The basis of analytical modeling of recrystallization are the 
mathematically exact results of Johnson and Mehl9, Avrami10-12 and 
Kolmogorov13, the JMAK theory, extended by DeHoff’s14 concept of 
microstructural path. Vandermeer and coworkers have successfully 
used this approach and developed it in recent years15-17. Detailed de-
scription of this theory has been recently given by Rios and Padilha18. 
In this theory, nucleation is assumed to take place in sites randomly 
located in the strained matrix. The simplest assumption is that all 
nucleation occurs at the beginning of recrystallization. This is nor-
mally called site-saturation and has been experimentally found to be 
a reasonable assumption for recrystallization19. When, in addition to 
that, a constant interface velocity is also assumed, a number of exact 
theoretical expressions are obtained. However, even for the simplest 
assumptions there are gaps in the theory. For instance, only recently 
analytical expression were developed20 to quantitatively describe the 
time evolution of the interface area between recrystallized grains. 

In this work, a cellular automata(CA) simulation of recrystalliza-
tion is carried out. The simulated microstrutural evolution is compared 

in detail with the predictions from mathematically exact analytical 
theories considering both kinetic and geometrical aspects. Moreover, 
the simulated data is used to test new expressions derived to describe 
the evolution of the interfaces between recrystallized grains. It is 
worthy of note that although this work focuses on recrystallization its 
results are applicable to any nucleation and growth transformation.

2. Cellular Automata Simulation

2.1. Description of the simulation

Cellular automata methodology was used to simulate recrystalli-
zation. The implementation followed that of Hesselbarth and Göbel1,7,8 
using the von Neumann neighborhood criterion. The matrix consisted 
of a square lattice with 812 x 812 cells and 784 nuclei. One cell was 
considered to have a unit area and consequently the side of a single 
cell had unit length. The units of all quantities reported here follow 
from this. The number of nuclei per unit of area, N

A
, was equal to 

1/841. The matrix size and number of nuclei were chosen for reasons 
described in a previous work7,8. The nuclei were randomly dispersed 
on the matrix. The nucleation was site-saturated: all nuclei appeared 
at t = 0. The simulation produced a sequence of matrices as a function 
of time. Time is discrete in CA, it takes integer values starting from 
t = 0. One time unit corresponds to the interval between two consecu-
tive matrix updates1,8. From the simulated matrices, all the desired 
quantities could be extracted. Hesselbarth and Göbel give a more 
detailed account of two-dimensional cellular automata in general. 
Oliveira8 gives further details of the present simulation.

2.2. Geometry and kinetics of the evolution of a single grain 
in CA

When a single grain grows in isolation, alone in a strained ma-
trix, it is possible to find analytical expressions for its geometric and 
kinetic evolution. The following expressions are specific for the von 
Neumann neighborhood criterion adopted in this simulation. The time 
origin, t = 0, corresponds to an area fraction equal to zero, A

A
 = 0. 
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All nucleation takes place at t = 0 but at that instant the sizes of all 
nuclei are equal to zero. Therefore, the area of a single grain, a, and 
its perimeter, l, at t = 0 are equal to:

a(0) = 0	 (1a)

l(0) = 0	 (1b)

For t > 1 the area of a single grain as a function of time is8: 

a(t) = 2t2 – 2t + 1	 (2)

This equation is not valid for t = 0. Neglecting the lower order 
powers of time:

a(t) @ 2t2 area units	 (3)

Equation 3 is in error at the very beginning but will be used in 
what follows. Equation 3 suggests that for better results with CA it 
is better to use a large matrix with a small number of nuclei.

The perimeter of a single grain, l, for t > 1 is8:

 l(t) = 8t – 4	 (4)

Again, neglecting early time behavior:

l(t) @ 8t length units	 (5)

The interface velocity, v, can be calculated with the help of Cahn-
Hagel21 equation for 2d:

v
ldt
da= 	 (6)

Inserting Equations 3 and 5 gives:

v = 0.5 units of length/unit of time	 (7)

The units will be omitted from now on. 
The interface velocity is a constant. Therefore, for a single grain 

the simulation was able to produce constant growth rate.
The integral of the curvature of any closed figure along its pe-

rimeter is 2π, so the average interface curvature of a single grain is, 
for t > 1:

( )
k

l t
2r= 	 (8)

or

( / )
k

t t4 1 2 4
r r,=
-

	 (9)

If one considers the set of all grains growing as if they were 
isolated, it is common to refer to this set as the “extended space” and 
to the geometric properties of this set as “extended quantities”. For 
example, the sum of the area of all grains growing as if they were 
isolated divided by the total volume is normally called “extended area 
fraction”. This terminology will be used in what follows.

3. Results and Discussion

Figures 1-7 show the results obtained from the simulation com-
pared with the theoretical expressions.

In this section, the expressions derived in the previous section 
for single grain evolution are used to obtain expressions containing 
“global” measurements, that is, average measurements such as area 
fraction and interface length per unit of area. The calculated expres-
sions are compared with the results from the simulation. Section 3.1 
mainly deals with quantities related to the mobile interface: the 
interface between recrystallized and nonrecrystallized regions. Sec-
tion 3.2 compares simulations results with new expressions derived 
for the evolution of the interfaces between recrystallized and non-
recrystallized regions. 

3.1. Area fraction, interface length per unit of area, 
microstructural path, grain boundary velocity and grain 
boundary curvature

The extended area fraction, A
AE

, is the sum of the area of all 
individual grains supposing that they grow without impingement. 
The subscript “E” is reserved for “extended quantities” defined in a 
manner similar to the extended area fraction.

A
AE

 = N
A
a = 2N

A
t2	 (10)

For randomly located nuclei, extended area fraction, A
AE

, and real 
area fraction, A

A
, are related by the JMAK9-13 expression:

A
A
 = 1 – exp(– 2N

A
t2)	 (11)

Figure 1 shows a comparison between A
A
 calculated from the 

analytical solution and obtained from the CA simulation. The agree-
ment is very good. 

The extended interface length between transformed and untrans-
formed regions, L

AE
 is the sum of the interface length of all individual 

grains supposing that they grow without impingement:

L
AE

 = N
A
l = 8N

A
t	 (12)

For randomly located nuclei, extended interface length and real 
interface length, L

A
, are related by the DeHoff’s14 expression:

L
A
 = L

AE
(1 – A

A
) = 8N

A
texp(– 2N

A
t2)	 (13)

Figure 2 shows a comparison between the L
A
 calculated from 

the analytical solution and obtained from the CA simulation. The 
agreement is very good.

In two dimensions the microstructural path can be seen as a curve 
on the (A

A
,L

A
) plane. From Equations 3 and 5:

l a4 2= 	 (14)

Multiplying both sides by N
A
 and using the above:

( ) lnL N A
A

32 1
1

1
A A A

A

= -
-

c m 	 (15)

Figure 3 shows a comparison between the values calculated us-
ing the theoretical expression for the microstructural path obtained 
above and those obtained from the simulation. The agreement is 
very good.
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Figure 1. Area fraction, A
A
, against time. Simulation results are in agreement 

with those calculated from the kinetics of a single grain, Equation 11.
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The grain boundary velocity is given by21:

.v
ldt
da

L dt
dA

L dt
dA1 1 0 5

AE

AE

A

A= = = = 	 (16)

The grain boundary velocity calculated from the simulated values 
was 0.51 + 0.01, very close to the theoretical prediction. This means 
that the interface velocity in real space is the same as that in extended 
space, as expected.

The average curvature of the interface between transformed 
and untransformed region can be measured by DeHoff’s22 sweeping 
tangent method:

k
L
T

A

Ar
= 	 (17)

T
A
 is the number of points of tangency between a sweeping test 

line and a grain boundary per unit test area. Also by multiplying and 
dividing Equation 8 by N

A
 and using Equation 13:

( )
k

t L
N A

4
2 1

A

A Ar r
= =

-
	 (18)

JMAK assumes that the interface shape remains unchanged after 
impingement. For example, the interface between transformed and 
untransformed region of a circular grain after impingement remains 
the arc of a circle of the same radius of the radius of the circle that 
it would have if it were growing as an isolated grain. This implies 
that the average curvature of the interface between transformed and 
untransformed region, Equation 17, is equal to the average curvature 
of a single grain, Equation 18.

Figure 4 shows a comparison between the values calculated using 
the theoretical expression, Equations 9 or 18, obtained from a single 
grain, for the average curvature of the interface between transformed 
and untransformed region per unit of area, k, and the values obtained 
from the simulation, by means of the sweeping tangent method, Equa-
tion 17. The agreement is very good. This means that the moving 
interface shape remains the same after impingement, as supposed 
in the JMAK theory.

It is important to stress that the calculated curves in Figures 1-4 
were not fitted but obtained from the kinetics of a single grain using 
nothing but the JMAK correction for impingement.

3.2. New expressions for the impinged interface length per 
unit of area, total interface length per unit of area and the 
contiguity

There are two kinds of interface during recrystallization: mobile 
and immobile. The mobile interface is the interface between the re-
crystallized region and the deformed matrix. This interface migrates 
and its migration determines the recrystallization progress. The immo-
bile interface is a consequence of impingement of recrystallized grains. 
The recrystallized grain size is a function of the interface area between 
recrystallized grains when the recrystallization reaches 100%.

Traditionally, recrystallization studies focus on the mobile inter-
face. This could be seen in the previous section. All equations involve 
only L

A
. However, the amount of interface between recrystallized 

grains is an important quantity and contains valuable information 
about the evolution of recrystallization. The CA simulation is able 
to provide accurate data on these interfaces and so gives a good basis 
for comparison with analytical models. In what follows, recently 
obtained20 analytical expressions are shown for the interface length 
of the interface between recrystallized regions per unit of area, L

R
, 

and for the total interface area per unit of area, L
T
, defined as:
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Figure 2. Length of the interface between transformed and untransformed 
region per unit of area, L

A
, against time. Simulation results are in agreement 

with those calculated from the kinetics of a single grain, Equation 13.

Figure 3. Microstructural path: length of the interface between transformed 
and untransformed region per unit of area, L

A
, against Area fraction, A

A
. 

Simulation results are in agreement with those calculated from the kinetics 
of a single grain, Equation 15.

0.4

0.3

0.2

0.1

0.0
0 10 20 30 40 50

Time

k

Simulated

Calculated

Figure 4. Average curvature of the interface between transformed and 
untransformed region, mobile interfaces, per unit of area, k, against time. 
Simulation results are in agreement with those calculated from the kinetics 
of a single grain, Equation 9.
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L
T
 = L

A
 + 2L

R
	 (19)

Another important quantity, derived from those is the contiguity 
parameter, C

R
. The contiguity is the ratio of immobile interface length 

to the total interface length and is quite sensitive to deviations of 
nuclei location from randomness, as recently shown by Vandermeer 
and Jensen23. It can be defined as23:

C
L L

L
2

2
R

A R

R=
+

	 (20)

The expressions for the interface length of the interface between 
recrystallized regions per unit of area, L

R
, as a function of time is 

given by20:

( ) ( ) ( )expL t L
N

t N t erf N t4
2

2 2R RF
A

A A

2

r= - - +d n	 (21)

The total interface length per unit of area is:

( ) ( ) ( ) ( )exp expL t N t N t L
N

t N t erf N t8 2 2 4
2

2 2T A A RF
A

A A

2 2

r= - + - - +d n	 (22)

( ) ( ) ( ) ( )exp expL t N t N t L
N
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2

2 2T A A RF
A

A A

2 2
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The contiguity, C
R
, then becomes:
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It is more common to plot C
R
 as a function of area fraction than 

of time. Combining Equation 11 and Equation 23 gives:
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Notice that the above expressions are specific for the CA simu-
lation carried out here. More detailed discussion and derivations of 
Equations 21-24 are the subject of a paper now in preparation20.

Figures 5-7 show the comparison of the values calculated by 
means of Equations 21-24 and those obtained from the simulation. 
The agreement is very good. For L

R
 and L

T
, Figures 5 and 6, the 

normalized quantities L
R
/L

RF
 and L

T
/2L

RF
 were plotted. 

The agreement between the new expressions and the simulation 
was very good.

It is important to mention that no adjustable parameters were used 
in this work. Only exact analytical solutions were compared with the 
simulations. The good agreement between theory and simulation 
shows that CA is a good model for recrystallization. It is able to repro-
duce exactly the situations for which there are mathematically exact 
solutions. This good agreement suggests that CA can be confidently 
applied to situations in which there are no analytical solutions. This 
will be done in future papers. 

4. Summary and Conclusions

The very good agreement between the cellular automata(CA) 
simulation and the theoretical expressions shows that CA is a good 
model for recrystallization. CA is able to reproduce exactly the 
site-saturated, constant velocity situation for which there are exact 
solutions. 

Moreover, the simulation results were useful to test new expres-
sions recently developed20 for the evolution of length per unit of area 

Figure 7. Contiguity, C
R
, against area fraction. Simulation results are in 

agreement with those calculated from the kinetics of a single grain, Equa-
tion 24. The contiguity is the ratio of immobile interface length to the total 
interface length.
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Figure 5. Length of the interface between transformed and transformed region 
per unit of area, L

R
/L

RF
, against time. Simulation results are in agreement with 

those calculated from the kinetics of a single grain, Equation 21.

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50

Time

L
T
/(

2L
R

F
)

Simulated

Calculated

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

AA

C
R

Simulated

Calculated

Figure 6. Total interface length per unit of area, L
T
/(2L

RF
) against time. 

Simulation results are in agreement with those calculated from the kinetics 
of a single grain, Equation 22.
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of the interface between the recrystallized regions. The new expres-
sions showed very good agreement with the simulated results. It is 
worth pointing out that no adjustable parameters were used throughout 
this work. The present work has emphasized recrystallization but its 
results are general and may be applied to any nucleation and growth 
transformation.
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