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Single-walled carbon nanotubes, with stiffness of 1.0 TPa and strength of 60 GPa, are a natural choice for 
high strength materials. A problem, however, arises when experimental data are compiled. The large variability of 
experimental data leads to the development of numerical models denominated molecular mechanics, which is a 
“symbiotic” association of molecular dynamics and solid mechanics. This paper deals with molecular mechanics 
simulations of single-walled carbon nanotubes. To be able to evaluate the molecular mechanics model, the three 
major carbon nanotube configurations (armchair, zigzag and chiral) were simulated. It was proven that the carbon 
nanotube configuration has influence on stiffness. By varying the radius, hence the curvature, the Young’s modulus 
changed from 0.95 TPa to 5.5 TPa, and the Poisson’s ratio ranged from 0.15 to 0.29. The numerical simulations 
were in good agreement with those presented in the literature. 
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1. Introduction

Carbon nanotubes1, since their discovery in 1991, have attracted 
much interest due to their ability of sustaining large deformations, 
their elevated stiffness and possible high strength. Their capabili-
ties have been observed experimentally and verified by numerical 
simulations, i.e. molecular dynamics2-4, atomistic simulations5-6 
and nano-mechanics modeling7-9. Although carbon nanotubes have 
tremendous potential applications in a large variety of usages, e.g. 
aerospace industry, medical and electronic devices, there is no con-
sensus about their exact mechanical properties. The experiments 
performed up to now have presented large variability due to the 
inherent complexity of manipulating these materials. Furthermore, 
the traditional molecular dynamics (MD) simulations are limited and 
computationally expensive.

In this paper, the concept of molecular structural mechanics9,10 
is associated to the three-dimensional finite element model and 
later on employed to predict the Single-Walled Carbon Nanotubes 
(SWNTs) stiffness. Numerical simulations considering the three 
main configurations (armchair, zigzag and chiral) are performed. A 
parametric study on wall thickness, diameter and chirality effects on 
stiffness is also performed.

2. Literature Review

According to Saito et al.11, carbon nanotube is a honeycomb 
lattice rolled into a cylinder. Carbon nanotubes have been the center 
of many researches due to their dimensions and remarkable electro-
mechanical properties. In general, a carbon nanotube diameter is of 
nanometer size and its length can be more than 1 μm. As mentioned 
by Saito and his colleagues, nanotube diameter is much smaller than 
most advanced semiconductors devices developed so far. Moreover, 
consistent with Kalamkarov et al.12, SWNT has predicted specific 
strength around 600 times larger than steel. 

Another important issue of carbon nanotubes is their remarkable 
thermal and electrical properties. Carbon Nanotubes (CNTs) are ther-

mally stable up to 2800 °C (in vacuum), reveal a thermal conductivity 
about twice as high as diamond, and may exhibit a capacity to carry 
electric current a thousand times better than copper wires. With such 
promising properties, CNTs are natural candidates for reinforcement 
of advanced composites. Nevertheless, variability from experimental 
data obtained from CNTs is a problem.

As stated by Natsuki et al.13, experimental methods for measuring 
the mechanical properties of CNTs are mainly based on transmission 
electron microscopy (TEM) and atomic force microscopy (AFM). Ac-
cording to Natsuki et al.13, by measuring thermal vibration using TEM, 
Treacy et al obtained a Young modulus of 1.8 ± 0.9 TPa. A different 
result, also reported by Natsuki et al.13, was obtained by Wong and 
his colleagues. The much lower Young’s modulus (1.28 ± 0.59 TPa) 
value reported by Wong can be attributed to the measuring technique. 
Wong’s research group employed the AFM tip to bend anchored multi-
walled nanotubes (MWNTs). After measuring the MWNT deflection, 
Wang calculated the Young’s modulus using the continuum mechanics 
approach. However, by applying this technique, Wong was not able 
to identify the nanotube diameter influence on stiffness. Furthermore, 
the MWNTs anchored/clamping condition was also a problem, as 
the researchers were not able to constrain all degrees-of-freedom as 
required. Another set of experiments in MWNT was performed by 
Yu et al.14. Yu’s experiments lead to Young’s modulus ranging from 
0.27 to 0.95 TPa. They also reported tensile strength values from 11 to 
63 GPa. Notice that Yu’s stiffness peak value was half of Treacy’s 
results, and it was still considerably lower than Wong’s data. As it can 
be observed, there is a large discrepancy among the results reported. 
This phenomenon can be explained by the differences on measuring 
techniques employed.

The results obtained for single-walled carbon nanotubes follow 
the same pattern, in other words, a large variability among different 
sets of experimental data. Krishnan et al.15 developed a study on 
SWNT using the TEM technique. The SWNT had a diameter range 
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of 1.0-1.5 nm, and the elastic modulus measured was 1.30 ± 0.4 TPa. 
Yu et al.14 also obtained the mechanical responses of SWNT bundles 
under tensile loading. The values of elastic moduli ranged from 
0.32 to 1.47 TPa, while Yu’s tensile strength measured was between 
13 and 53 GPa. It is important to mention that the experimental data 
discussed up to now were obtained at room temperature. Lourie and 
Wagner16 obtained the axial Young’s modulus for a wide range of 
temperatures by employing micro-Raman spectroscopy to nanotubes 
embedded in the epoxy matrix. To do so, they had to induce a com-
pressive deformation by cooling the nanotubes-epoxy samples. At low 
temperature, ≈ 80 K, Lourie and Wagner16 obtained a 3.0 TPa axial 
Young’s modulus for SWNT with an average radius of 0.7 nm, and 
2.4 TPa for MWNTs with an average radius of 5-10 nm. Xiao et al.17, 
however, reported for SWNT a tensile Young’s modulus ranging from 
0.27 to 3.6 TPa, while the ultimate strength varied from 11 to 200 GPa. 
Given the variability of results, Xiao et al.17 concluded that CNTs 
elastic properties are highly dependent on its structure. 

Due to the complexity in experimental characterization of nano-
tubes, computer simulation has been looked upon as a powerful tool 
for modeling nanotubes properties. The fundamental relations gov-
erning the geometry of CNTs were described by Dresselhaus et al.18. 
They developed mathematical expressions linking the graphene sheet 
geometry and the honeycomb-like design to the carbon nanotubes 
three main configurations (chiral, zigzag and armchair). By doing this, 
they opened the possibility to computer simulations of CNTs. 

For Xiao et al.17, the large majority of numerical and analytical 
approaches can be classified into two categories: the “bottom up” ap-
proach based on quantum/molecular mechanics including the classical 
molecular dynamics (MD), and the “top down” based on continuum 
mechanics. A third category, however, can be established; it is called 
multi-scale methods, where the continuum mechanics models are 
coupled to MD expressions. 

Wang et al.19 reported that MD formulations were probably the 
most popular methods currently employed for nano-scale analysis, 
due to their accuracy and the large number of interatomic potential 
functions for a large variety of materials. However, a critical issue on 
MD simulations remains, i.e. temperature. The temperature induces a 
high frequency molecular thermal vibration (on scale of 1015 Hz) and 
this vibration makes difficult to estimate strains, even worst, it limits 
the deformation calculations to pico- or nano-seconds. 

Liu et al.20 mentioned that nanoscale materials are, in general, 
used in association to other components that are much larger, and 
have different response times, thus operating at different time and 
length scales. Due to these limitations, Liu et al.20 suggested that 
hybrid models must be design in a micron scale. Micron size mod-
els, however, are composed of billions of atoms, which is still too 
large for MD simulations, even for large computers. Hence, there is 
a need to develop multi-scale approaches for this class of problems. 
Li and Chou21 defined the multi-scale modeling technique as a com-
bination of the atomistic molecular structural mechanics approach 
and the continuum finite element method22. This approach was also 
implemented by Meo and Rossi23, where the elements selected were 
non-linear elastic and linear elastic torsional springs. As mentioned 
by them, the non-linear elastic spring element was applied due to the 
lack of information about the sectional properties of carbon-carbon 
bond. Furthermore, the torsional spring element was used to overcome 
problems with bond angles bending. They were able to simulate the 
three main single-walled carbon nanotubes configurations (armchair, 
zigzag and chiral) and graphene sheets with accuracy. The SWNTs 
geometric description of Meo and Rossi’s model was based on the 
equations proposed by Koloczek et al.24. This approach saved con-
siderable computational efforts during the mesh generation. Their 
predictions for the graphene sheets Young’s modulus were in good 

agreement with the ones published in literature, i.e. ≈1.03 TPa. The 
drawback of Meo and Rossi’s model is that they were limited to 
uniaxial tensile problems. 

To overcome this problem, Sun and Zhao25 applied two differ-
ent element types. The first one was a chemical bond element that 
represented the intra-molecular potential energy of stretching, bend-
ing and torsional conditions. This element was based on a two-node 
elastic rod element with an elastic joint in each end. The second 
element was a Lennard-Jones non-linear spring element that took in 
consideration the inter-molecular potential energy. By modifying the 
Morse potential function, they were able to model the C-C chemical 
bond breakage. In sum, they were able to model stiffness and strength 
simultaneously. However, the data obtained, 0.4 TPa for stiffness 
and between 77-101 GPa for strength, were below the usual results 
published in literature. A possible explanation for such behavior can 
be the excess of compliance introduced during the stiffness matrix 
derivation. This hypothesis is corroborated by Pantano et al.26, who 
related the bending stiffness to the carbon nanotube mean radius 
and its total wall thickness. Note that for Sun and Zhao25, the tensile 
stiffness was practically constant with the increase of the nanotube 
diameter. 

The work developed by Huang et al.27 gave a step forward by de-
fining the system total energy based on the atomic nucleons locations. 
However, by considering only stretching and bending, their results 
were similar to the ones reported by Sun and Zhao25. Tserpes and 
Papanikos10, however, went further as they employed beam elements 
in a three-dimensional (3D) space where stretching, bending, out-of-
plane torsion, dihedral angle torsion and Van der Waals interactions 
were considered. This model brought about results with good agree-
ment with the literature and with minimal computational efforts.

The numerical simulations presented are encouraging. Re-
searches, however, are still seeking a more efficient computational 
modeling for predicting nano-materials properties. 

3. Molecular Mechanics Modeling

Dresselhaus et al.18 described SWNTs in terms of the tube diam-
eter (d) and its chiral angle (θ). The chiral vector (C

h
) was defined in 

terms of the graphene sheet lattice translation integer indices (n,m) 
and the unit vectors (a

1
,a

2
) represented in Figure 1, and it is defined 

as follows:
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Figure 1. Chiral angle and vector representation adapted from reference 10.
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where the unit vectors in (x,y) coordinates are defined as:
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the length of the unit vector a is defined as 2.46 angstroms, or 
1.73 times the carbon-carbon distance (1.421 angstroms). The na-
notube circumference (p) was defined by:

2 2
hp a n m nmc= = + + 	 (3)

from simple geometry, it is possible to obtain the nanotube diameter 
(d) as:

d
p n m nm

a
2 2

	 (4)

and the chiral angle (θ), between 0 and π/6 rad, was described by 
Dresselhaus et al.18 
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The three main SWNTs configurations described by Kalamkarov 
et al.12 are represented in Figure 2. Notice that each configuration has 
its own cap distinct formation. However, as the aspect ratio (length/
diameter) is in general large, it is possible to discard the cap effect 
without loss of generality. 

In the molecular structural mechanics approach, a single-walled 
carbon nanotube is simulated as a space frame structure, with the 
covalent bonds and the carbon atoms as connecting beams and joint 
nodes, respectively. If the beam elements simulating the covalent 
bonds are assumed to be of round section, then only three stiffness 
parameters are required to be defined for deformation analysis. These 
parameters are: the tensile resistance (EA), the flexural rigidity (EI), 
and the torsional stiffness (GJ).

Li and Chou21 based their model on the energy equivalence 
between local potential energies in computational chemistry and 
elemental strain energies in structural mechanics. By applying this 
approach, they established a direct relationship between the structural 
mechanics parameters and the molecular mechanics force field con-
stants. These parameters are mathematically represented by:

r
EA EI GJ

k k k
L L Lθ τ= = = 	 (6)

where L denotes the bond length, and k
r
, kθ and kτ are the force field 

constants in molecular mechanics. By assuming a circular beam 

cross section with diameter d, and setting the area, moment of inertia 
and polar moment of inertia as A = πd2/4, I = πd4/64 and J = πd4/32, 
Tserpes and Papanikos10 obtained the following expressions:
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As an illustrative example, Figure 3 shows the equivalence of 
molecular mechanics and sructural mechanics for covalent and non-
covalent interactions between carbon atoms. Notice that covalent 
interactions can be “translated” into molecular mechanics either 
as tension, bending or torsion. It all depends on atoms positions. 
The non-covalent interactions, i.e. Van der Wall’s interactions, are 
equivalent to a non-linear spring condition.

According to Ávila and Lacerda28, the carbon nanotubes stiff-
ness can be predicted following the molecular mechanics approach 
associated to the concept of representative volume element (RVE). 
Tamma and Ávila29 defined the RVE as the material smallest part 
which retains the overall material properties. When carbon nanotubes 
are examined, the concept of RVE has to be rearranged so that inter-
actions between the carbon-carbon bonds and the exterior are taken 
into consideration. Ávila and Lacerda30 successfully rearranged the 
RVE concept by applying boundary conditions constraints at atomic 
level. A similar investigation was applied by Odegard et al.31 for 
carbon nanotubes dispersed into a polymeric matrix. In their case, 
the atomic interactions polymer-carbon nanotubes were modeled by 
the equivalent truss model, which is similar to the model presented 
by Ávila and Lacerda30. 

3. Numerical Simulations and Data Analysis
The carbon-carbon bonds are simulated by a beam element with 

six degrees-of-freedom at each node: translations in nodal x, y, z and 
rotations about the nodal x, y, z. The beam length was assumed to be 
equal to 0.1421 nm as suggested by Tserpes and Papanikos10. This 
type of element is capable of uniaxial tension or compression along 
with torsional and bending deformations. To be able to generate each 
group of SWNTs (armchair, zigzag and chiral), a macro subroutine 
was developed and implemented into ANSYS V.10, a commercial 
finite element code. In the present model, the kr, kθ and kτ constants 
are from Li and Chou21, and their values are 6.52 x 10–7 N nm rad–1, 
8.76 x 10–10 N nm rad–2 and 2.78 x 10–10 N nm rad–2, respectively. 
Figure 4 shows the model mesh for each SWNTs group, and it also 
indicates the boundary conditions applied. As described by Ávila 
and Lacerda30, the representative volume element (RVE) assumes 
different formats due to the SWNTs configurations. To be more 
specific: the (4,2) chiral configuration was represented by 112 atoms 
and 162 C-C bonds, while for the (17,9) chiral format the number of 
atoms and C-C bonds were 623 and 908, respectively. These changes 
are the main reason for differences on the RVE total length. Table 1 
summarizes the size of the molecular mechanics models for each 
nanotube simulated. 

The research community agrees that nanotube wall thickness 
has direct effect on stiffness of SWNTs. Thus, to be able to exam the 
molecular mechanics model accuracy, a series of numerical simula-
tions were performed. For validation purposes, different data from 
three distinct approaches (MD, continuum and molecular mechan-
ics) were selected. The molecular dynamic (MD) model applied 
by Yakobson et al.32 was one of them. Another molecular dynamic 
approach called tight binding MD described by Hernandez et al.33 
was also selected as benchmark. The continuum shell modeling26 and 
the equivalent continuum modeling31 were chosen as the third and 
fourth benchmark models, respectively. The fifth benchmark model34 
was based on strain energy theory, which brings some similarities 
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Figure 2. SWNT configurations and their respective caps adapted from 
reference 12.
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Figure 4. SWNT mesh and imposed boundary conditions. a) (8,8) Armchair, b) (14,0) zigzag, and c) (11,5) Chiral.
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to Pantano’s26 and Odergard’s31 models. Li and Chou21, Tserpes and 
Papanikos10 and Ávila and Lacerda30 with slight differences, mostly 
on boundary conditions, applied the molecular mechanics approach 
to SWNTs and/or MWNTs modeling. Therefore, they were also 
selected as benchmarks. Three groups of SWNTs were investigated, 
i.e. armchair (8,8), zigzag (14,0) and chiral (11,5). Table 2 reviews 
all data obtained and the ones from the benchmark researches. 

There is no doubt that carbon nanotube wall thickness has influ-
ence on the overall stiffness. When the present model is compared 
against the three major groups of mathematical modeling (molecular 
dynamics, continuum mechanics and molecular mechanics) some 
conclusions can be drawn. The lower and upper bounds of the mo-
lecular dynamics predictions are obtained with chiral configuration. 
The upper bound difference (28.76%) can be explained when the tight 
binding model is analyzed. Hernandez et al.33 did not consider the 
“atoms rotations”, in other words, for them stiffness was calculated 
taking the nanotube strain energy regardless of the chiral angle. The 
molecular dynamics simulations performed by Yakobson et al.32 lead 
to the lower bound difference (10.84%). Note that Yakobson and his 
collaborators considered the nanotube behavior beyond the nonlinear 
instability, in other words, they included in their MD simulation the 
buckling effect. As a consequence, their model was capable to identify 
with more accuracy the shell energy strain. It is important to recall 
that carbon nanotubes are essentially long shell columns. 

The continuum mechanics based models appear to be more ac-
curate, as the lower and upper bounds range from 1.14 to 10.84%. 

The models presented by Pantano et al.26, Odergard et al.31 and Lu34 

share some similar conditions and dissimilarities. To be more specific, 
in all three models the stiffness was using the traditional second de-
rivative of the strain energy density with respect to the axial strain. 
Lu’s model, however, has a weakness; the empirical force-constant 
model employed is insensible to the chiral angle atoms rotation. 
When complex geometries and deformations are analyzed, the model 
developed by Odergard and his colleagues requires numerical tools 
to calculate the continuum parameters. Once the properties of the 
equivalent-continuum model have been established, the mechanical 
behavior can be predicted by traditional continuum mechanics. The 
model created by Pantano et al.26 uses shell elements associated to the 
continuum mechanics approach. Shell elements, however, can suffer 
from interlocking shear problems. To avoid this problem, Odergard 
et al.31 employed trust elements in their model. By employing this 
approach, they were able to reduce the number of degrees-of-freedom 
and consequently increase the number of atoms in their model. In 
both cases, the models are in good agreement with experimental and 
molecular mechanics simulations. The models based on molecular 
mechanics approach provided the smallest differences between pro-
posed model and the three benchmark models (Li and Chou21, Ávila 
and Lacerda30, Tserpes and Papanikos10). Again the largest difference 
was noticed on chiral condition. This can be due to boundary condi-
tions imposition. 

Another important conclusion is that thicker walls guided to 
smaller Young’s modulus. Such hypothesis can be corroborated by 

Table 1. Characteristics of molecular mechanics models.

Chirality (n,m) Total length (nm) Number of atoms Number of elements
Armchair (3,3) 2.3382 120 174

(5,5) 2.3382 200 290
(8,8) 2.3382 320 464

(11,11) 2.3382 440 638
(13,13) 2.3382 520 754

Zigzag (5,0) 2.4157 120 175
(9,0) 2.4157 216 315

(14,0) 2.4157 336 490
(19,0) 2.4157 456 665
(23,0) 2.4157 552 805

Chiral (4,2) 2.1854 112 162
(6,4) 1.8130 152 218

(11,5) 2.0123 268 386
(14,8) 2.7255 496 722
(17,9) 2.8986 623 908

Table 2. Comparative study on wall thickness effect on stiffness (Young’s modulus – E).

Reference Wall thickness 
(nm)

E (TPa) Present model

(8,8) (14,0) (11,5)

Yakobson et al.32 0.066 5.5 5.282 5.298 4.962

Hernandez et al.33 0.34 1.24 1.025 1.028 0.963

Pantano et al.26 0.075 4.84 4.648 4.662 4.367

Lu34 0.34 0.974 1.025 1.028 0.963

Odegard et al.31 0.69 0.496 0.505 0.507 0.475

Li and Chou† 0.34 1.01 1.025 1.028 0.963

Tserpes and Papanikos10† 0.147 2.395 2.377 2.385 2.423

Ávila and Lacerda28† 0.34 1.005 1.025 1.028 0.963
†young’s modulus (E) is the mean value of these author’s predictions.
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Odergard et al.31 that, based on equivalent-continuum model, stated 
that Young’s modulus is inversely proportional to SWNTs cross sec-
tional area. Additionally, Li and Chou21 attributed the variation among 
the three configurations to small differences on radii. Tserpes and 
Papanikos10, however, also called the attention to the chirality effect. 
According to them, the diameter effect is more evident on armchair 
and zigzag configurations, while the chiral form is less affected. 
Notice that as the nanotube diameter becomes smaller than 1 nm the 
curvature effect is more evident. Furthermore, as demonstrated by 
Figure 5, as the nanotube diameter increases, the Young’s modulus 
has an asymptotic behavior which leads to stiffness values close to the 
graphene sheet. A small nanotube diameter leads to large curvature 
and distortion of the carbon–carbon (C-C) bonds. This phenomenon 
brings as a consequence a large elongation (Δh) of the nanotube. 
As the diameter increases, the curvature effect diminishes and the 
SWNTs Young’s moduli approach the one from the graphene sheet 

(1.1 TPa) where no curvature effect is present. This is particularly 
true when the SWNT wall thickness reaches 0.34 nm. As the SWNT 
is modeled as a three-dimensional tubular structure, the Poisson effect 
is an important issue. 

The classical theory of elasticity36 defines the Poisson ratio as 

0

0

/

/
radial

CNT
acial

R R

H H

e Δ
ν = − = −

e Δ 	 (8)

where  e
radial

 is the radial strain,  e
axial

 represents the axial strain,  DH 
defines the axial displacement imposed to the nanotube, and  DR is 
the radial displacement measured. Finally, R

0
 and H

0
  are the nanotube 

radius and length, respectively. Figure 6 represents the Poisson’s ratio 
as a function of the nanotube radius. As it can be observed, in all 
configurations (armchair, zigzag and chiral), the Poisson ratio seems 
to seek a asymptotic value as the radius gets larger. 

The Poisson ratio values obtained vary between 0.28 and 0.36 
for armchair, 0.15 and 0.31 for zigzag, while for the chiral configura-
tion the values are between 0.22 and 0.66. The results reported by 
Salvetat-Delmont and Rubio37 for nanotubes with diameter larger 
than 1 nm are between 0.16, 0.19 and 0.18, for armchair, zigzag and 
chiral, respectively. The difference between the present model and the 
results supplied by Salvetat-Delmont and Rubio37 can be attributed to 
their model uncertainties and the boundary conditions applied. They 
also mentioned that their results can have an off-set of at least ±10%. 
When the results are compared against the MD simulations performed 
by Xiao et al.17, all three configurations are in good agreement for 
larger radii. Lu34 reported Poisson values between 0.26 and 0.32 for 
diameters larger than 1 nm. Sun and Zhao25, however, applying the 
finite element approach in a armchair configuration for 0.8 nm di-
ameter, obtained a 0.35 Poisson ratio, while a nanotube with 2.8 nm 
diameter lead to a 0.31 Poisson ratio. Notice that for this case, the 
present model is in good agreement with those results reported by 
Sun and Zhao. 

Natsuki et al.13 also calculated the Poisson ratio of single-walled 
carbon nanotubes. Their model was based on analytical model using 
a three-dimensional grid associated to springs. They reported, for the 
armchair configuration, values between 0.27-0.29 when the nanotube 
diameter varied between 0.5-2.5 nm. For the zigzag configuration, 
the Natsuki’s results varied from 0.27 to 0.33 for the same range of 
diameter. No values for the chiral configuration were reported. A 
comparison between the present model and the Natsuki’s lead to the 
same conclusion, the results seems to be in good agreement. 
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Fixed wall thickness.
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Figure 6. Poisson’s ratio variation as a function of nanotube diameter.
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From the Poisson ratio variability listed in literature, it is possible 
to infer that Poisson’s ratio can be represented between 0.15 and 0.29. 
These values are dependent on the nanotube diameter. The results 
presented by Popov and Van Doren38 also corroborate the present 
model findings. Their model based on analytical expression for the 
velocity of the longitudinal and torsional sound waves in SWNTs 
leads to an asymptotic value of Poisson’s ratio of 0.21. However, 
one final result has to be analyzed, the Poisson’s ratio of 0.64. One 
possible explanation for such result is the CNTs geometry. This data 
corresponds to the chiral (4,2) configuration. From Figure 7, it is pos-
sible to observe that for this configuration, the transverse section is 
not hexagonal but pentagonal. This geometry leads to a much larger 
axial strain which has direct influence into Poisson’s ratio.

A final issue that must be analyzed is the RVE selection criterion 
and its boundary conditions imposition. For a carbon nanotube, the 
RVE or unit cell is represented by a group of C-C bonds rings. For 
each carbon nanotube configuration, one unique C-C bond ring is 
defined. The largest normal stress for the armchair configuration, 
showed in Figure 8a, is located into the bond angle variation region. 
Meanwhile, the zigzag format, showed in Figure 8b, has the largest 
normal stress distribution on dihedral angle torsion region (pointed 
by the arrows). These finds agree with analytical predictions made 
by Lu and Zhang35 who pointed these locations as the ones with 
highest probability of failure. The stress distribution for the chiral 
configuration, represented in Figure 8c, is much more complex, 
where large normal stresses are found in different points along the 
SWNT length.

When the failure mechanism is analyzed, the normal stress dis-
tribution directs us to locus of higher probability of failure. Those 
regions are the bond angle variation for the armchair configuration, 
the dihedral angle torsion region for the zigzag case, while the chiral 
configuration showed different regions of failure probability. Fig-
ures 9a-c show the deformed shapes. Notice that for chiral case, the 
final deformed shape is totally distinct from the two others. The carbon 
atoms rotation due to chiral angle could be the cause of this complex 
deformed shape. Still, the imposition of boundary conditions is also 
affected by this “atom rotation”. Note that boundary conditions are 
affected, and the RVE geometry is also “changed” when the chiral 
configuration is analyzed, as it can be seen in Figure 9c. A similar 

Figure 7. Representative volume element for a chiral (4,2) configuration.
Figure 8. Normal stress distribution on SWNT configurations, a) armchair; 
b) zigzag; and c) chiral.

behavior during molecular mechanics simulation was also observed 
by Tserpes and Papanikos10. They also pointed out that chirality’s was 
the major issue during SWNT’s simulation. Still, chiral configurations 
can always be reduced to armchair and zigzag formats. 
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4. Conclusion

A molecular mechanics model for armchair, zigzag and chiral 
single-walled carbon nanotubes has been implemented. One advan-
tage of such approach is that it’s easy implementation and consid-
erably lowers computational efforts when compared against other 
numerical techniques. The molecular structural mechanics approach 
was employed to exam the effect of wall thickness, diameter and 
chirality’s effect on SWNT stiffness. 

The results suggested that stiffness (Young’s modulus) is inversely 
proportional to wall thickness. Moreover, the curvature effect due to 
SWNT radius has also an effect on stiffness. Smaller radius conducts 
to larger curvatures and elongations. Meanwhile, on SWNT with 
large radius, the curvature effect is negligible and Young’s modulus 
approaches the graphene sheet modulus (≈1.0 TPa). 

The SWNT configuration less affected by the radius/curvature 
variations seems to be the chiral one due to its complex geometry. 
The SWNT unit cell stress distributions also revealed critical regions 
where the failure is most likely to occur. For armchair case, it seems 
to be the bond angle variation region, while for the zigzag case the 
dihedral angle torsion region is the critical one. The chiral case guide 
to different locations of high stresses concentration as a function of 
the atoms location. 

The molecular structural mechanics approach is an effective 
atomistic modeling technique for simulating carbon nanotubes. The 
Poisson’s ratio of SWNT was also simulated and the results were 
between 0.15-0.29. Notice that nanotube radius variations also affect 
the Poisson’s ratio. Again the chiral configuration seems to be the 
most sensible to radius variations.

Given this data, this approach seems to be a powerful tool for 
modeling nanocomposites with accuracy.
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