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One-Step Synthesis of ZnO Films by Chemical Bath Deposition Not Using Thermal 
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The novelty of the present study lies in synthesized ZnO film in a single step by chemical bath 
deposition. The typical conversion of zinc hydroxide (Zn(OH)2) into ZnO material through thermal 
annealing is not required. A direct synthesis has achieved using four different zinc salt sources, yielding 
equivalent results. All the synthesized ZnO films were non-specular and adhered well to the glass 
slide substrates. We present the results of the structural, optical, and morphological characterization 
techniques. These revealed a hexagonal structure, a band-gap energy of around 3.2 eV, and a hexagonal 
nanorod shape for all the synthesized ZnO films.
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1. Introduction
The attribute extensive use of silicon as a semiconductor 

it is because of its properties and abundance. It is compatible 
with manufacturing processes: lithography, etching, 
doping, oxidation, deposition, and bonding. In recent years, 
development alternative semiconductor materials have been 
attention from research groups. Which allows for fulfilling 
the features or needs that silicon lacks and is compatible 
with manufacturing processes. Zinc selenide (ZnSe), 
gallium arsenide (GaAs), cadmium sulfide (CdS), and zinc 
oxide (ZnO) are some of the most studied and reported as 
alternative semiconductors. Researchers have studied ZnO 
for its photocatalytic, piezoelectric, and biocompatibility 
properties1-4. It is a semiconductor material with a direct 
band gap of about 3.3 eV1,2,5,6. It has a reported wurtzite-like 
structure7, with an exciton binding energy of 60 meV8, and 
a whole effective mass of 59 meV8. Because of this, there 
are studies of ZnO for application in medicine, electronics, 
among other fields9-13. Its high conductivity and optical 
transmittance identify it as promising for active layers in 
thin film transistors14. The piezoelectric properties of ZnO 
have made it an object of study for micro-electromechanical 
systems research (MEMS)15. Another example is the study 
of Schottky diodes fabricated from ZnO for use as highly 
effective ultraviolet photodetectors16. There is the use of 
nanostructured films based on ZnO as n-type semiconductor 
in solar cells to increase the effective absorption area17.

The broad areas of ZnO application have made it 
important to find simple ways to synthesize ZnO as a film. 
Therefore, there are different techniques employed for 
ZnO film synthesis. These methods are spray pyrolysis18,19, 
chemical bath deposition (CBD)20, chemical vapor deposition21, 
sputtering22, among others.

Because of its simplicity and low-cost, chemical solution 
deposition is a helpful technique for the synthesis of ZnO 
films. However, the metal oxides deposited using this 
technique contain a main phase of hydroxide of the metal 
or a proportion of it23,24.

For this reason, the synthesis of ZnO films implies 
annealing process to the as-deposited films to achieve 
material. This is for as-deposited films, usually made up of 
zinc hydroxide (Zn(OH)2), into the oxide phase23,25.

Using the method that we present in this work, a direct 
deposition of ZnO films in just one step without an annealing 
process is possible. It can become a viable option for the 
manufacturing process of semiconductor devices based on 
ZnO films. Here, we study the synthesis of four ZnO samples, 
each from different zinc sources. Synthesis directly of ZnO 
film is independent of the compound used as the zinc source. 
All ZnO samples present a morphology of nanorods.

2. Experimental
For this research, we used chemical bath deposition 

technique to synthesis of ZnO films. For this, we used 
aqueous reaction solutions with four different zinc salts *e-mail: temistocles.mendivil@unison.mx
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at 70 °C for 2 hours with no stirring. The used substrates 
are corning microscope slides made from soda lime glass. 
Those do not require of exhausting clean process, just are 
clean by using the deionized water and drying. We prepare 
the chemical reaction by mixing the stock reagent volumes 
specified in Table 1. According to a prescribed sequence, 
prepare the chemical reaction at the final volume of 50 ml. 
After we have immersed the substrate in the reaction for 
5 minutes, briefly extract it from the solution and then 
reinsert it. Wait until you reach the two-hour deposit time.

The initial composition of the resulting reaction solutions 
was 0.120 M zinc salt, 0.060 M ammonium hydroxide 
(NH4OH), and 0.010 M sodium sulfite (Na2SO3). The four 
zinc salts were: (1) zinc chloride (ZnCl2), (2) zinc nitrate 
(Zn(NO3)2), (3) zinc sulfate (ZnSO4), and (4) zinc acetate 
(Zn(CH3COO)2). We emphasize that the solvent used in all 
the reaction solutions was tri-distilled water. Consider that 
following all these specifications allows the direct synthesis 
of ZnO. Without requiring an annealing process, as shown 
in the Results and Discussion section.

After the synthesis of the films, a D2 Phaser Bruker was 
used for the X-ray diffraction (XRD) analysis from 20 to 70°. 
Diffuse reflectance measurement used a Cary 5000 UV-Vis-NIR 
spectrophotometer with superb photometric performance in 
the 175–3300 nm. An InVia™ confocal Raman microscope 
was used from 50 to 1200 cm–1; the exciting wavelengths 
used were 488 and 785 nm. The micrographs of the deposited 
samples were obtained using an JSM-7800F Schottky field 
emission scanning electron microscope (FE-SEM). All the 
characterizations were at room temperature.

2.1. Generic reaction mechanism
The next paragraph contains a proposal for intermediate 

chemical compounds to achieve Zinc Oxide from our 
reagents. All precursor reagents are in aqueous solutions, 
as the following form:
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Also, two of those reagents can reversibly convert into 
sodium sulfite plus an acid with the corresponding used anion.
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3. Results and Discussion
Figure 1 presents the characterization of X-ray diffraction. 

It shows the diffractograms of the synthesized samples from 
2θ=20° to 70°. By Matching experimental patterns, part a), 
with a database of powder diffraction patterns (PDF), part 
b). Crystallographic directions shown: (100), (002), (101), 
(102), (110), (103), (200), (112), and (201). It corresponds to 
a structure according to the PDF #36–1451 pattern of zincite 
ZnO26. In ascending order regarding preferred orientation, 
are accommodate the diffraction patterns. The first one is 
acetate, which corresponds to the zinc acetate synthesized 
sample. Followed by the samples listed sulfate, chloride, and 
nitrate, which are associated with the zinc salt corresponding. 
The crystalline plane (002) at 34.4° is the most intense in all 
the studied samples; this implies a preference for orientation 
along the c axis perpendicular to the substrate surface in 
all the deposited ZnO samples. The (103) plane at 62.7° 
is the second most intense peak for samples labeled with 
acetate, chloride, and nitrate. The exception was for the 
sulfate sample, which showed a peak (101) at 36.27° as its 
second most intense peak. When matching patterns of the 

Table 1. Chemical recipe for synthesis of ZnO films at 70°C. It 
shows the order of mixing of reagents.

Stock reagent solution or diluent Volume (ml)

1 0.50 M zinc salt (ZnCl2, Zn(NO3)2, 
ZnSO4 or Zn(CH3COO)2)

12

2 1.00 M NH4OH 3

3 0.10 M Na2SO4 5

4 Tri-distilled water 30

Figure 1. XRD patterns of ZnO synthesized by different salts. By 
Matching experimental patterns, part a), with a database of powder 
diffraction patterns (PDF), part b).
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main peak (002) of the samples with a database, they do not 
present a shift of two theta lower values (strain). The effect 
of strain on the pattern for ZnSO4 is not present. While for 
zinc chloride, all the secondary peaks present a slight shift 
to the left (strain). Also, there are some displacements in 
other peaks. We consider that the anion (SO4) 

2+ it is better 
displaced than the other anions considered in our generic 
reaction mechanism. Then there could be more crystal 
density, leading to higher intensities.

We prepare samples using the identical process, resulting 
in affecting the growth orientation of the films via the 
precursor Zinc Salt. Crystals that are cross-linked grow and 
show X-ray diffraction patterns. Certain directions have 
favoring for the intensities of these patterns. This occurs 
both for direct and recombined X-ray diffraction. Preferred 
orientation or texture denotes the anisotropic dispersion of 
grain orientations within a material. Thin films with diverse 
texture properties impact the properties of applications will 
cause differential properties27-34 .

It is important to note that neither XRD peaks corresponding 
to Zn(OH)2 nor ZnS. So, an annealing process to transform 
this usually presented secondary phase is not required. 
Thus, the as-deposited material corresponds to the ZnO, 
independently of the used zinc salt. It with a well-defined 
crystalline nature associated with the hexagonal structure.

The diffraction pattern in light gray color, however, 
corresponds to a synthesized composite material of both 
ZnO and ZnOH2. Using deionized water was the only 
modification made in the synthesis process, in contrast to 
the other approaches.

In addition, we calculate the average value of the 
crystallite size from the (002) plane peak with the Scherrer 
equation33-35. Crystallite sizes, resulting between 16 and 
26 nm, show the nanocrystalline nature of the deposited 
ZnO material, see Table 2. It matches the full width at half 
maximum trend shown in Figure 1.

We processed the diffuse reflectance spectra of the four 
ZnO samples with the Kubelka-Munk equation36. The results 
are presented in Figure  2. Here, the deposited material 
is transparent to wavelengths higher than about 400 nm. 
The material is completely opaque at wavelengths below 
370 nm, in the ultraviolet region.

In the inset of Figure 2, is the energy band gap (Eg) using 
the Tauc approximation method37. This made by plotting 
the square of the product of the Kubelka-Munk function 
(instead of optical density) and photon energy against 
(E ‧ F(R))2 versus E.

According to this method, the calculated Eg values were 
3.24, 3.22, 3.25, and 3.27 eV for the zinc salts of Zn(NO3)2, 

ZnSO4, Zn(CH3COO)2, and ZnCl2, respectively. These results, 
ranging from 3.22 to 3.27, agree with the general value of 
3.3 eV reported in the literature1,2,5,6.

Figure 3 presents the four Raman spectra for ZnO rods 
films synthesized with different zinc salts sources in the region 
between 50 and 1200 cm−1. From top to bottom, labeled 
as ZnO from the different sources: ZnCl2, Zn(CH3COO)2, 
ZnSO4 and Zn(NO3)2, respectively. For comparison, the typical 
Raman spectra of ZnO (488 nm laser) presents phonons 
or vibrations corresponding to the first and second order 
modes38-41. The studies attribute the normal vibrational modes 
at 97 cm−1, 393 cm−1, 410 cm−1, 436 cm−1, 576 cm−1 to the 
E2(Low), A1(TO), E1(TO), E2(high), respectively. Vibrations 
between the broad region of 583-591 cm−1 to A1(LO) and 
E1(LO) modes, respectively42-45. Therefore, the preponderant 
peaks are E2(high) and E2(low) which are associated with 
the Zn vibrational modes for the ZnO bonds46. Among the 
wide region from 188 to194 cm-1, present the vibration 
2E2 (Low)46. E2(high)-E2(Low) corresponds to the vibration 
at 330 cm−1, that involves two phonons and simultaneous 
absorption in E2(low) and emission in E2(high)47.

The other intensities, around 145 cm-1, 648 cm-1 and 
974 cm-1, are commonly associated with defects or multi-
phononic processes42. Raman peak around 660 cm-1 is an 
intrinsic defect of ZnO48.

In Figure  3, the gray lines denote the experimental 
measurements. While the color lines represent the fitting of 
the experimental spectra, based into FFT filter method cutoff 
frequency at 0.20762. Fitting provides more details for the 
analysis of the active modes and their variations. Also, the 
Raman spectra are without baselines. The spectra observed 
two peaks at 397 and 414 cm-1, they could be A1(TO) or 
E1(TO) modes, respectively48,49. It is worth mentioning that 
for define these last two Raman shift; we rely on both the 
experimental and theoretical part of the reference49.

In addition, there are weak signals in the ranges 90-
104 cm-1 and 434-449 cm-1 corresponding to vibrational 
modes, as well as the signals at 608 cm-1 and 636 cm-1. 
These modes correspond to the first-order phonon modes, 
assigned to the E2(low), E2(high), A1(low) and E1(low), 
respectively38,48-50. The outcome confirms there are no 

Table 2. Mean crystallite size calculated from the Scherrer equation, 
according to the zinc salt used in the chemical formulation.

Used Zinc Salt Mean crystallite size (nm)

ZnCl2 26.1

Zn(CH3COO)2 18.8

Zn(NO3)2 18.1

ZnSO4 16.0
Figure 2. Diffuse reflectance, Kubelka-Munk function, and band 
gap of ZnO synthesized by different salts.
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significant changes in the location of the modes. Therefore, 
the change in the light wavelength makes it easier to visualize 
the multi-phonon modes and the second harmonics. Similarly, 
these samples contain weak signals peaks at 154 cm-1, 
487 cm-1,670, 730 cm-1 and 1137 cm-1 among others, which 
some of them could be associated with noise level or another 
effects. Finally, the vibrational modes observed between 
region 337-351 cm-1 and 1101 cm-1 correspond to E2(high)-
E2(Low) and 2(E2(High) +E2(Low)), respectively38,48-50. 
Regarding vibration modes in the region, 843.8 cm-1 and 
866.6cm-1 should be multi-phonon process or presence 
of defects. At about 259.5 cm-1 is associated with silent 
mode B151.

In Table  3, there are some of the vibrational modes 
for ZnO commonly used in the literature, which are also 
presented in this Raman analysis.

Figure 4 shows FE-SEM micrographs of four ZnO films 
at different magnifications with an accelerating voltage of 
5 kV. The films contain nanorods of hexagonal shapes. 
It appreciated that the size of the nanorods is homogenous, 
with diameters of around 500 nm (except for Zn(NO3)2 which 
is around 250 nm). An interesting case is the ZnO synthesized 
from ZnCl2, where the terminal section of the rods seems 
to be tubular.

As an interpretation, we want to note that the nucleation 
(seed formation) is different for the different Zinc precursor 
salts. This will imply a different orientation of the growth 
directions of the rods. For example, when using zinc 
chloride, the morphology of the rods shows us a growth 
that is more perpendicular to the substrate. From the 
SEM images, the inclinations relative to the preferential 
growth of the crystals (002), (100), (101), (102) and (103) 
are validating. We relate the comparison of intensities of 
various peaks in the samples to the deformation effects on 
the crystalline lattice.

Then, singular characteristics are present to describe 
the surface morphology achieved for each of the zinc 
salts used. With zinc acetate, is detecting a growth of 
hexagonal rods from the center to the outside. Also, 
defining a well-defined stacking shape along the C axis, 
see Figure 4a) x40000. With zinc nitrate as a precursor, 

we observe a growth of stacking hexagonal blocks with 
a defined diameter in the rod’s formation, see Figure 4b) 
x40000. Using zinc sulfate as a precursor, we can note the 
formation of a very well-defined hexagonal rod with very 
smooth and homogeneous faces, see Figure 4c) x40000. 
Finally, when use zinc chloride, growth is stack, hollow 
hexagonal blocks, which are progressively filled. It grows 
perimeter from the outside in. They show a cavity at the 
growth end, which is filled, see Figure 4d), x40000, we 
mean the samples are not completely hollow.

Figure  5a and Figure  5b depict a selected region of 
the ZnO film synthesized from ZnCl2. Here, it is possible 
to appreciate a single hexagonal rod arranged crosswise 
regarding the top view. These images are with magnifications 
x14000, Figure 5a), and x40000, Figure 5b), presenting two 
characteristic lengths. Also, can be seen in the figure that 
the prism reaches length slightly above 2 µm.

Figure 3. Plot of Raman spectra of ZnO nanorods films. Experimental 
(gray lines) and fit model, FFT Filter method (solid black lines) 
with a cutoff Frequency of 0.20762.

Table 3. Raman Shifts of the vibration modes in literature, compared with the Raman spectra of the ZnO films deposited.

vibration mode
Raman shift position (cm–1)

This work Damen et al.42 Callender et al.43 Bairamov et al.44 Ashkenov et al.39 Chandekar et al.45,46

E2 (L) 97 ~ 101 – ~ 98 ~ 102 99–97

2E2 (L) 188-194 – – – – 203–197

E2(H)-E2(L) 330 – – – – 331–323

A1 (TO) 384 ~ 380 ~ 381 ~ 378 ~ 380 ~ 375

E1 (TO) 411 ~ 407 ~ 407 ~ 409.5 ~ 409 ~ 410

E2 (H) 436 ~ 437 ~ 441 ~ 437.5 ~ 438 ~ 437

A1 (LO) 576 ~ 574 – ~ 576 – 574–567

E1 (LO) 582-590 ~ 583 ~ 583 ~ 588 ~ 587 ~ 584
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Figure 4. SEM images of ZnO films.

Figure 5. SEM images of ZnO from ZnCl2.
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4. Conclusions
Chemical bath deposition is a practical method for the 

direct synthesis of ZnO films. These have a well-defined 
hexagonal crystalline structure and high orientation. We would 
like to remark that sodium sulfite and tri-distilled water are 
imperative to get the ZnO formation. It is essential to note 
that sodium sulfite and tri-distilled water are crucial in the 
formation of ZnO in One-step synthesis. Brief removal of the 
substrate from the reaction after 5 min promotes the growth 
of the material. The ZnO material synthesized following 
the chemical formulation reported here presents a band gap 
of 3.28 eV and grows with the shape of hexagonal rods. 
The SEM images give us an idea of distinctive differences in 
the growths of the hexagonal rods depending on the precursor 
salt used. All these results are reproducible regardless of 
the zinc salt used as the zinc source. ZnO nanorods films 
can be deposited with no further thermal annealing, using 
this formulation.
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