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Microstructural evolution in three dimensions of nucleation and growth transformations is simulated by means 
of cellular automata. Two types of nucleation are considered: site-saturated nucleation and constant nucleation 
rate. The simulated microstrutural evolution agrees very well with exact analytical expressions. The simulated 
data also gives very good agreement with expressions derived to describe the evolution of the interfaces between 
transformed grains. 
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1. Introduction

Formal kinetics is a powerful technique to model nucleation and 
growth solid state transformations. In these transformations, a parent 
phase, α, also called “matrix” or untransformed region”, transforms 
into a product phase, β, also called “transformed region”. In this 
approach, nucleation and growth are regarded as purely “opera-
tional” concepts meaning that no assumption is made regarding their 
mechanism but only their geometrical and kinematical characteristics. 
Recrystallization kinetics in particular has been mainly analyzed with 
the help of formal kinetics methodology1-4.

This approach has two facets: one experimental another theoreti-
cal. The experimental facet specifies the microstrutural descriptors5 
that may be experimentally obtained, preferentially from planar 
sections, such as: volume fraction transformed, V

V
; interface area be-

tween transformed and untransformed regions, S
V
, and interface area 

between transformed regions, S
Vβ. The theoretical facet aims at devel-

oping expressions that involve these measurable quantities. Today, 
one attempts not to rely on three-dimensional quantities that cannot 
be measured by standard stereological methods but require tedious 
and time consuming serial sectioning. With the advent of 3DXRD 
techniques6 experimental determination of three-dimensional quanti-
ties like the number of nuclei per unit of volume, N

V
, or even nuclei 

location in space might well become viable on a routine basis.
The basis of formal kinetic modeling is the early work of Johnson-

Mehl7, Avrami8-10 and Kolmogorov11 (JMAK), which used only a single 
microstructural descriptor, V

V
. JMAK’s work was subsequently extended 

by DeHoff12, who proposed the use of an additional microstructural de-
scriptor, S

V
, and the associated concept of microstructural path. Vander-

meer and coworkers13 extended DeHoff’s microstructural path concept 
and crystallized it in an all round theoretical treatment covering variable 
nucleation and growth rates as well as non-spherical regions.

Nevertheless, even general analytical treatments have significant 
limitations owing to unavoidable simplifying assumptions. For in-
stance, Vandermeer et al.13 assume that nuclei are randomly located 
in space. However, when one considers, for example, austenite 
to ferrite transformation, ferrite nucleates at grain boundaries14,15. 
Another example is recrystallization, where the deformed state is, 

as a rule, highly heterogeneous16 casting some doubt on the assump-
tion that nuclei are randomly located in space. Relaxing this and 
other assumptions may lead to situations too complex for analytical 
methods. In this regard, computer simulation of microstructural 
evolution can be an invaluable tool since it can simulate situations 
beyond analytical treatment. Compared to other simulation methods, 
cellular automata17‑30 is a convenient choice for phase transformations 
in general and recrystallization in particular23.

Computer simulation aims at describing transformation in complex 
situations for which there is no analytical theory. In order to accomplish 
this, one must first make sure that the simulation is able to describe 
accurately the simplest cases for which there are exact mathematical 
descriptions. Interestingly, this basic or minimum validation of the 
simulation has been rarely reported in published papers23.

In previous papers28,29, present authors carried out cellular autom-
ata (CA) simulation of phase transformation/recrystallization in two 
dimensions (2D). Earliest computer simulations of microstructural 
evolution were usually performed in two dimensions. Even in recent 
papers some authors have chosen to work in two dimensions probably 
because the computer cost of three-dimensional (3D) simulations is 
significantly higher than that of 2D simulations. Although there is a 
certain interest in the study of two‑dimensional transformations, for 
example, transformations taking place in thin films or thin sheets, the 
greatest interest lye in three dimensional transformations. 

The purpose of this paper is to simulate phase transformations/
recrystallization in 3D by cellular automata (CA). Two basic nuclea-
tion types were assumed:

a)  site-saturation: all nucleation occurs at the beginning of the 
transformation; and

b)  constant nucleation rate: the number of new nuclei per unit of 
time per unit of volume is constant.

Simulated microstrutural evolution was compared in detail with 
predictions of mathematically exact analytical theories28. Moreover, 
simulated data was used to test new expressions recently derived by 
Rios et al.31 to describe the evolution of the interfaces between trans-
formed grains as a function of time or volume fraction transformed. 
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2. Description of the Cellular Automata Simulation

Cellular automata simulation used a 3D von Neumann neigh-
borhood17. The matrix consisted of a cubic lattice with 304 x 
304 x 304 cells. One cell edge was considered to have a unit length 
and consequently of a single cell had unit volume. Units of all 
quantities reported here follow from this. The nuclei were randomly 
dispersed on the matrix. For site-saturated nucleation, the number of 
nuclei per unit of volume, N

V
, was equal to 125/3043. For constant 

nucleation rate, the nucleation rate per unit of time per unit of volume, 
I, was equal to 2/3043. This nucleation rate resulted in 141 nuclei per 
unit of volume when the transformation reached V

V 
= 1.

The simulation produced a sequence of matrices as a function 
of time. Time is discrete in CA, it takes integer values starting from 
t = 0. One time unit corresponds to the interval between two consecu-
tive matrix updates17. From the simulated matrices, all the desired 
quantities could be extracted. Oliveira30 gives further details of the 
present simulation.

3. Growth of a Single Grain 

When a single grain grows in isolation, it is possible to find 
analytical expressions for its growth. The following expressions 
are specific for the 3D von Neumann neighborhood adopted in this 
simulation. The time origin, t = 0, corresponds to a volume fraction 
equal to zero, V

V 
= 0. Therefore, the volume of a single grain, v, and 

its area, s, at t = 0 are equal to:

v(0) = 0	 (1a)

s(0) = 0	 (1b)

For t ≥ 1 the volume of a single grain as a function of time is: 

	 (2)

This equation is not valid for t = 0. Neglecting the lower order 
powers of time:

	 (3)

The area of a single grain, s, for t ≥ 1 is:

s(t) = 12t2 – 12t + 6	 (4)

Again, neglecting early time behavior:

s(t) ≅ 12t2 area units	 (5)

Equations 3 and 5 will be used below in section 4 to represent 
the growth of a single grain.

The average interface velocity, < G >, can be calculated with the 
help of Cahn-Hagel32 equation:

	 (6)

Inserting Equations 3 and 5 gives:

	 (7)

The units will be omitted from now on. 
The average interface velocity is constant. Therefore, for a single 

grain the simulation was able to produce constant growth rate. 
It is worthy mentioning that the volume and the area of a single 

grain showed time dependencies different from what would be ex-
pected from constant velocity growth. In this case it was possible to 
use only the leading term, with the highest power of time. A similar 
situation was found in a previous work28 on 2D cellular automata 

simulation. It is not easy to say what effect a different choice of 
neighborhood or a different transition criterion would have on this 
time dependence. So, CA simulations should check this. This is rarely 
reported in published papers on this subject17-30.

4. Microstructural Evolution: Volume Fraction, 
Interface Area Per Unit of Volume and 
Microstructural Path 

In this section, the expressions derived in the previous section 
for single grain evolution were used to obtain expressions contain-
ing “global” measurements, that is, average measurements such as 
volume fraction and interface area per unit of volume. The calculated 
expressions were compared with the results from the simulation. This 
section mainly deals with quantities related to the mobile interface: 
the interface between transformed and untransformed regions. In 
each case, an analytical expression was derived for site-saturation 
nucleation and constant nucleation rate. Section 5 will compare 
simulations results with new expressions derived for the evolution 
of the interfaces between transformed regions.

Figures 1-3 show the results obtained from the simulation com-
pared with the theoretical expressions obtained in this section. One 
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Figure 1. Volume fraction, V
V
, against time. There is good agreement between 

theory and simulation: a) site-saturated; and b) constant nucleation rate.
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cannot directly compare Figures 1a-3a with Figures 1b-3b because 
the number of nuclei per unit of volume is different in each case. 
In order to avoid overloading the figures not all simulation points 
were plotted.

4.1. Volume fraction as a function of time

The extended volume fraction, V
VE

, is the sum of the volume of 
all individual grains supposing that they grow without impingement. 
The subscript “E” is reserved for “extended quantities” defined in a 
manner similar to the extended volume fraction. Using Equation 3 
one obtains:

	 (8a)

	 (8b)

where N
V
 is the number of nuclei per unit of volume and I is the nu-

cleation rate per unit of volume; Equations 8a and 8b correspond to 
site-saturated nucleation and constant nucleation rate, respectively.

For randomly located nuclei, the extended volume fraction, V
VE

, and 
the real volume fraction, V

V
, are related by the JMAK expression:
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Figure 2. Interface area between transformed and untransformed region per unit of volume, S
V
, against time. There is good agreement between theory and 

simulation: a) site-saturated; and b) constant nucleation rate.

V
V
 = 1 – exp (– V

VE
)	 (9)

As a result:

	 (10a)

	 (10b)

where Equations 10a and 10b correspond to site-saturated nucleation 
and constant nucleation rate, respectively.

Figures 1a and 1b show a comparison between V
V
 calculated 

from the analytical solution and obtained from the CA simulation. 
The agreement is very good. 

4.2. Interface area between transformed and untransformed 
regions as a function of time and volume fraction

The extended interface area per unit of volume between trans-
formed grains and untransformed regions, S

VE
, is the sum of the in-

terface area of all individual grains supposing that they grow without 
impingement. Using Equation 5 it can beshown that:

S
VE

 = 12N
V 

t2	 (11a)

0.0 0.2 0.4 0.6 0.8 1.0

S V

V
V

Site-saturated
 Simulated
 Calculated

0.06

0.05

0.04

0.03

0.02

0.01

0.00
0.0 0.2 0.4 0.6 0.8 1.0

S V

V
V

Constant nucleation rate
 Simulated
 Calculatad

0.06

0.05

0.04

0.03

0.02

0.01

0.00

(a) (b)

Figure 3. Microstructural path: area of the interface between transformed and untransformed region per unit of volume, S
V
, against volume fraction, V

V
. There 

is good agreement between theory and simulation: a) site-saturated; and b) constant nucleation rate.
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S
VE

 = 4It3	 (11b)

where Equations 11a and 11b correspond to site-saturated nucleation 
and constant nucleation rate, respectively.

The extended interface area and real interface area, S
V
, are related 

by the DeHoff’s12 expression:

S
V
 = (1 – V

V
) S

VE
	 (12)

Equation 12 together with Equations 1a and 1b give:

	 (13a)

	 (13b)

where Equation 13a and 13b correspond to site-saturated nucleation 
and constant nucleation rate, respectively.

Figures 2a and 2b show a comparison between the S
V
, calculated 

from the analytical solution, Equations 13a-b, and obtained from the 
CA simulation. The agreement is very good.

In three dimensions the microstructural path can be seen as a 
curve on the (V

V
, S

V
) plane. From Equations 8a,b and 11a,b one can 

find a relationship between S
VE

 and V
VE

:

	 (14a)

	 (14b)

where Equation 14a and 14b correspond to site-saturated nucleation 
and constant nucleation rate, respectively. From Equations 9, 12 
and Equations 14 one can obtain S

V
 as a function of volume fraction 

transformed:

	 (15a)

	 (15b)

where Equation 15a and 15b correspond to site-saturated nucleation 
and constant nucleation rate, respectively.

Figures 3a and 3b show a comparison between the values cal-
culated using the theoretical expression for the microstructural path 
obtained above and those obtained from the simulation. The agree-
ment is very good.

The average grain boundary velocity is given by32:

	 (16)

The grain boundary velocity calculated from the simulated values 
was 0.34 + 0.01, very close to the theoretical prediction for both site-
saturated nucleation and constant nucleation rate. This means that 
the interface velocity in real space is the same as that in extended 
space, as expected.

In summary CA simulation showed very good agreement with 
exact mathematical expressions.

5. Comparison of the Simulation with New 
Analytical Expressions for the Impinged Interface 
Area Per Unit of Volume, Total Interface Area Per 
Unit of Volume and the Contiguity

There are two kinds of interface during an heterogeneous phase 
transformation: mobile and immobile. The mobile interface is the 
interface between the transformed region and the untransformed 
matrix. This interface migrates and its migration determines the 

transformation progress. The immobile interface is a consequence 
of impingement of transformed grains. The transformed grain size 
is a function of the interface area between transformed grains when 
the transformation reaches V

V
 = 1.

Traditionally, experimental and theoretical studies focus on the 
mobile interface. This could be seen in the previous section where 
all equations involved only S

V
. However, the amount of interface be-

tween transformed grains, S
Vβ, is an important quantity and contains 

valuable information on transformation evolution. CA simulation is 
able to provide accurate data on these interfaces and so gives a good 
basis for comparison with analytical models. Combining S

Vβ with S
V
 

two useful quantities may be defined. One is the total interface area 
per unit of volume, S

VT
:

S
VT

 = S
V
 + 2S

Vβ	 (17)

Another important quantity, derived from S
Vβ with S

V
 is the conti-

guity parameter, Cβ. The contiguity is the ratio of immobile interface 
area to the total interface area and is quite sensitive to deviations of 
nuclei location from randomness, as recently shown by Vandermeer 
and Jensen5,33; see also Rios et al.29. It can be defined as5:

	 (18)

Recently Rios et al.31 have derived analytical expressions for 
S

Vβ as a function of volume fraction transformed for time depend-
ent nucleation rate and time dependent velocity. They followed up 
the earlier work by Meijring34, Gokhale35,36 and more recently an 
elegant mathematical derivation by Tong et al.37. All these authors 
solved this problem for spherical growth. Rios et al.31 derivation has 
the advantage of being mathematically simpler and not restricted to 
spherical growing regions. The disadvantage of their method is that, 
as will be shown below, they do not obtain an explicit expression for 
S

VβF
, the value of S

Vβ for a fully transformed matrix. Their expressions 
can be used to obtain analytical expressions for S

VT
 and Cβ. Rios et 

al.31 derivation is repeated here for convenience. The starting point 
of their derivation was DeHoff’s relationship between the extended 
and the real interface area, Equation 12, rewritten below in a slightly 
different way:

S
V
 (V

V
, S

VE
) = S

VE
 (1 – V

V
)	 (19)

One can consider that a small change in S
V
, δS

V
, can be seen as 

a sum of changes in each variable, δV
V
 and δS

VE
:

	 (20)

Or

δS
V
 = (1 – V

V
) δS

VE
 – (S

VE
) δV

V
	 (21)

The above has two terms:
a)  The first is always positive, it corresponds to the increase in 

S
V
 when the interface length increases δS

E
 in extended space, 

at a constant V
V
, corrected for impingement by the factor 

(1 – V
V
); and

b)  The second term, - S
VE

 δV
V
, is negative because S

VE
 and δV

V
 are 

always positive. It corresponds to the decrease in S
V
, when the 

area fraction increases for a constant S
VE

, this decrease corre-
sponds to a “loss” in S

V
 due to the “creation” of new impinged 

interface. Two extended interfaces meet to make one impinged 
interface, S

Vβ, so:

	 (22)

where α is a normalizing factor to be determined below.
Integrating Equation 22 gives:
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	 (23)

It is more convenient to write Equation 23 in terms of extended 
quantities with the help of a relationship obtained from Equation 9:

dV
V
 = exp(– V

VE
)dV

VE	
(24)

where V
VE

, the extended volume fraction, is the sum of the volume 
of all growing grains divided by the total volume assuming that the 
growing grains do not impinge. Equation 23 then becomes:

	 (25)

In order to integrate Equation 25 it is necessary to know the rela-
tionship between S

VE
 and V

VE
 which is supposed to be of the form13:

S
VE

 = C(V
VE

)q	 (26)

Resulting in:

	 (27)

This integral can be written in terms of the incomplete Gamma 
function, Γ:

	 (28)

The factor α can be found by taking the limit V
VE 

→ ∞. For 
V

VE 
→ ∞, V

V 
→ 1, the specimen is fully transformed and S

Vβ tends to 
a constant value S

VβF
:

( )C q
S

1
2 V Fa

C
=

+
b

	
(29)

Inserting Equation 29 into 26:

	 (30)

where S
VβF

 is the amount of interface area between transformed re-
gions when the transformation has reached V

V 
= 1. Using the definition 

of contiguity, Equation 18:
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	 (31)

For the cases considered here, C and q can be found from the 
relationships between S

VE
 and V

VE
 given by Equations 14a-b: 

a) site-saturation: q = 2/3 and C = 3(36N
V
)1/3; and

b) constant nucleation rate: q = 3/4 and C = 4(27I)1/4.
More general expressions for C and q can be found in Rios et 

al.31.
Equations 30 and 31 can be written as a function of time with 

the help of Equations 10a and b. The total interface area per unit of 
volume, S

VT
, can be found by means of Equations 15a,b and Equa-

tions 30 and Equation 17. 
Figures 4-7 show the comparison of the values calculated by means 

of Equations 17, 30 and 31 and those obtained from the simulation. 
The agreement is very good. For S

Vβ and S
VT

, Figures 4‑7, the normal-
ized quantities S

Vβ/SVβF
 and S

VT
/(2S

VβF
) were plotted. In order to avoid 

overloading the figures not all simulation points were plotted.
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Figure 4. Area of the interface between transformed and transformed region 
per unit of volume, S

Vβ/SVβF
, against time. There is good agreement between 

theory and simulation: a) site-saturated; and b) constant nucleation rate.

An interesting aspect of the present comparison is that the growing 
regions were not spherical in this simulation. This shows that Rios et 
al.31 expression applies when the shape of the growing regions is not 
spherical34-36.

Figures 5c and 7c show that the normalized quantities S
Vβ/SVβF

 and 
Cβ are practically the same for both nucleation types. Randomness in 
nuclei distribution might have an underlying effect that is stronger 
than the details of the kinetics31.

It is important to mention that no adjustable parameters were used 
in this work. Only exact analytical solutions were compared with 
the simulations. The good agreement between theory and simula-
tion shows that CA is able to reproduce situations for which there 
are mathematically exact solutions. This good agreement suggests 
that CA may be applied to complex situations for which there are no 
analytical solutions. 

6. Summary and Conclusions

First it is worthy mentioning that no adjustable parameters were 
used throughout this work. Moreover, this work was motivated by 
recrystallization studies and it is perhaps more useful in that context. 
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Figure 5. Area of the interface between transformed and transformed region 
per unit of volume, S

Vβ/SVβF
, against volume fraction. There is good agreement 

between theory and simulation: a) site-saturated; b)  constant nucleation rate; 
and c) Figures 5a and 5b plotted together; S

Vβ/SVβF
 as a function of volume 

fraction is practically the same for both nucleation types.
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Figure 6. Total interface area per unit of volume, S
VT

/(2S
VβF

) against time. 
There is good agreement between theory and simulation: a) site-saturated; 
and b) constant nucleation rate.

Nonetheless, its results are general and may be applied to any nuclea-
tion and growth transformation.

Present results show that CA is able to reproduce the site-saturated 
nucleation and constant nucleation rate kinetics for which there are 
exact solutions. This good agreement suggests that CA may be used 
with some confidence in more complex situations for which there 
are no theoretical results.

CA simulation showed to be useful to test expressions developed 
by Rios et al.31 for the evolution of area per unit of volume of the 
interface between the transformed regions. The good agreement 
observed is a reconfirmation of the validity of these new expressions 
in the situations examined here. 
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Figure 7. Contiguity, Cβ, against volume fraction. There is good agreement 
between theory and simulation: a) site-saturated nucleation; b) constant nu-
cleation rate; and c) Figures 7a and 7b plotted together; Cβ as a function of 
volume fraction is practically the same for both nucleation types.
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