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Standardizing catch per unit effort by machine learning techniques in longline fisheries

Standardizing catch per unit effort by machine learning techniques in 
longline fisheries: a case study of bigeye tuna in the Atlantic Ocean

Support vector machine (SVM) is shown to have better performance in catch per unit of effort (CPUE) stan-
dardization than other methods. The SVM performance highly relates to its parameters selection and has 
not been discussed in CPUE standardization. Analyzing the influence of parameter selection on SVM per-
formance for CPUE standardization could improve model construction and performance, and thus provide 
useful information to stock assessment and management. We applied SVM to standardize longline catch 
per unit fishing effort of fishery data for bigeye tuna (Thunnus obesus) in the tropical fishing area of Atlantic 
Ocean and evaluated three parameters optimization methods: a Grid Search method, and two improved 
hybrid algorithms, namely SVMs in combination with the particle swarm optimization (PSO-SVM), and ge-
netic algorithms (GA-SVM), in order to increase the strength of SVM. The mean absolute error (MAE), mean 
square error (MSE), three types of correlation coefficients and the normalized mean square error (NMSE) 
were computed to compare the algorithm performances. The PSO-SVM and GA-SVM algorithms had par-
ticularly high performances of indicative values in the training data and dataset, and the performances 
of PSO-SVM were marginally better than GA-SVM. The Grid search algorithm had best performances of 
indicative values in testing data. In general, PSO was appropriate to optimize the SVM parameters in CPUE 
standardization. The standardized CPUE was unstable and low from 2007 to 2011, increased during 2011-
2013, then decreased from 2015 to 2017. The abundance index was lower compared with before 2000 and 
showed a decreasing trend in recent years.
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INTRODUCTION

Fisheries play a significant role in the global food 
supply (Garcia and Rosenberg, 2010). The catch per unit 
of effort (CPUE) is used as a relative abundance of fishery 
resources (Ricker, 1975; Bigelow et al., 1999) and plays an 
important role in resource assessment and management 
(Maunder and Langley, 2004; Pauly et al., 2013). CPUE is 
estimated mainly from commercial or recreational fisheries 
and requires time-consuming and costly data collection 

(Maunder and Punt, 2004; Ward et al., 2013). The nominal 
CPUEs derived from such data are greatly influenced 
by spatial, temporal and environmental factors, among 
others. Therefore, CPUE derived directly from raw fishing 
data needs to be standardized using statistical models to 
remove those effects (Maunder and Punt, 2004).

Several methods have been applied in CPUE 
standardization (Guan et al., 2014), including traditional 
statistical methods, generalized linear models (GLMs) 
and generalized additive models (GAMs) (Martínez-
Rincón et al., 2012; Maunder and Punt, 2004). Data 
mining techniques, such as artificial neural networks 
(ANNs) (Maunder and Punt, 2004; Hinton and Maunder, 
2004), regression trees (RTs) (Norcross et al., 1997; 
Walsh and Kleiber, 2001), and support vector machine 
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(SVM) (Shono, 2014; Li et al., 2015) have also been used. 
Among those methods, SVM has proven to provide the 
best performance in CPUE standardization (Li et al., 
2015; Shono, 2014; Yang et al., 2015b).

SVM is a classification and regression method based 
on the principle of structural risk minimization (Li et al., 
2015; Shono, 2014; Yang et al., 2015b). It is an effective 
method to avoid local optima and has unique advantages 
in dealing with complex problems such as limited samples, 
high dimensional and nonlinear data. The success of 
SVM depends on the choice of its kernel parameters 
and penalty factor, and the key to improve the accuracy 
is to select the appropriate parameters (Zhou et al., 
2019). However, the selection of appropriate SVM hyper-
parameters is still challenging for casual users and has not 
been discussed in CPUE standardization. At present, there 
are many parameters optimization methods. Yang et al. 
(2015b) applied Grid Search methods to select the SVM 
parameters. Nieto et al. (2015) used the particle swarm 
optimization (PSO) algorithm to optimize SVM parameters, 
and the results confirm the feasibility and superiority of 
the proposed optimization method. Zhou et al. (2019) 
adopted the genetic algorithm (GA) for SVM parameter 
optimization. These methods have been applied for 
parameter optimization in other applications but have not 
been discussed in regard to CPUE standardization.

Bigeye tuna (Thunnus obesus) is mainly exploited in 
the tropical region of the Atlantic Ocean by longliners 
(Hsu and Lee, 2003; Andrade, 2015). The stock status in 
the Atlantic and CPUE trend of the stock quickly increased 
during 1980 and decreased from 1990 to the present. Due 
to its high economic value and stock status, the species 
has become one of the most concerned by regional 
management organizations (Hsu and Lee, 2003; Soto et 
al., 2009; Chassot et al., 2016; Andrade, 2015). Hsu and Lee 
(2003) applied GLM to standardize the Taiwanese longline 
CPUE for bigeye tuna in the Atlantic Ocean and estimate 
an annual trend. Soto et al. (2009) and Katara et al. (2016) 
applied GLM standardization for the purse-seine bigeye 
tuna CPUE. The GLM model has disadvantages when 
standardizing CPUE, such as the need to specify error 
distribution assumptions (Li et al., 2015; Shono, 2014).

Bigeye tuna are caught mainly by longline, especially the 
adult fish. The efficiency of longline gear differs among the 
depth of hooks and their relationship with the swimming 
depth of the fish (Matsumoto et al., 2005). Bertrand (2002) 
verified that the longline catch rate of bigeye tuna is 
influenced by its vertical habitat. In addition, the stock 
assessment procedures for bigeye tuna are commonly 

based on the analysis of data from longline fisheries. The 
potential vertical habitat of bigeye tuna is essential to the 
standardization of CPUE indices currently utilized (Ward 
and Myers, 2005). The thermocline plays a key role to 
determine the vertical habitat preferences of large tropical 
pelagic fish (Bertrand et al., 2002; Schaefer and Fuller, 2010; 
Yang et al., 2015a). Therefore, for analyzing stocks caught 
by longline, subsurface information seems very important. 
Nevertheless, most of the studies on CPUE standardization 
use surface data as environment variables.

In order to evaluate the influence of parameter 
selection on SVM performance in CPUE standardization, 
the SVM model was applied to standardize longline fishery 
catch rates in the Atlantic Ocean and three parameters 
optimization methods were compared, namely Grid 
Search and two improved hybrid algorithms, SVMs in 
combination with the particle swarm optimization (PSO-
SVM) and genetic algorithms (GA-SVM).

Argo profile buoy data were adopted to compute the 
thermocline characteristics used as input environmental 
variables. The mean absolute error (MAE), mean square 
error (MSE), correlation coefficients and the normalized 
mean square error (NMSE) were calculated to evaluate 
the predictive performance of the different algorithms.

MATERIALS AND METHODS

Study site

Bigeye tuna mainly inhabit tropical and temperate 
waters worldwide, and the tuna longline fishery occurs 
mostly in tropical areas. The study area is defined 
as 60°W – 20°E and 25°S – 25°N (Fig. 1). Bigeye tuna 
(Thunnus obesus) is mainly exploited in this region in the 
Atlantic Ocean (Hsu and Lee, 2003).

Figure 1. The study area and spatial distribution of Argo profile data 
in December 2017.
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There were 273 distinct Argo buoys released by 
surrounding countries (United States of America, 
Canada, Brazil, Europe, Germany, France, Spain, United 
Kingdom and others) active in this area as in December 
2017 (Fig. 1).

Fishery data

Bigeye tuna longline data and Argo buoy data from 
2007 to 2017 were used. The longline catch and effort 
data were compiled from the International Commission 
for the Conservation of Atlantic Tunas (ICCAT) website. 
Data were extracted from 2007 to 2017 to match the 
Argo profile buoys data. Fishing data included number of 
hooks, fishing time, longitude and latitude and number of 
bigeye tuna caught. The spatial resolution was 5°×5° and 
the temporal resolution was a month. Nominal CPUE was 
defined as the number of individuals caught per 1000 
hooks on a 5°×5° grid. The nominal CPUE was calculated 
by following equation: CPUE N
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j), Nfish(i, j) and Nhook(i, j) were the average CPUE, monthly 
bigeye tuna number and monthly hooks, respectively.

Environmental data

Argo deployments began in 2000, and the array 
was 100% complete in November 2007. Therefore, 
in this paper, the Argo buoy data during 2007–2017 
downloaded from China Argo real-time data central 
(http://argo.org.cn/english/) were used to characterize 
subsurface environments. The Argo buoy data were 
scattered in the vertical and horizontal direction (Fig. 
1). Akima interpolation methods (Akima, 1970) were 
applied to fit the water temperature data profile in 
2-m intervals before estimating the thermocline and 
subsurface temperatures. Then, the temperature 
gradient in a vertical direction was estimated using 
the simple relationship Δt/Δh, where Δt and Δh are the 
differences in temperature and depth.

According to the method developed by Zhou et 
al. (2002), 0.05 ºC m-1 was adopted as the threshold 
value to identify the thermocline (the upper and lower 
boundaries of temperature and depth) using a stepwise 
discriminant analysis. The details of the computational 
and determination method can be found in Zhou et 
al. (2002) and Yang et al. (2015b). If there were several 
thermocline layers at one point, the upper and lower 
boundaries of temperature and depth were selected as 
those of the first and last thermocline layers, respectively.

All the scattered temperature values of the upper and 
lower boundaries of temperature and all the scattered 
depth values of the upper and lower boundaries of the 
thermocline in the horizontal direction were extracted 
for all years and months and grouped accordingly. Then 
the contour values with 1º × 1º spatial resolution were 
calculated using kriging interpolation methods (Yang et 
al., 2008; 2013). To match with the catch data, the product 
data was averaged into the 5º×5º spatial resolution.

Support vector machine (SVM)
SVM is a pattern recognition method developed 

from statistical learning theory (STL) based on the idea 
of structural risk minimization principle (SRM) (Sun 
and Zou, 2015). The SVM was originally developed 
for classification and was later generalized to solve 
regression problems by importing the insensitive loss 
function ɛ (Nieto et al., 2019), and thereby described as 
support vector regression (SVR).

The basic idea of SVR is briefly described here. The 
assumption is that there are training data sets {(xi, yi), 
i=1,2,...l}, where xi ϵ Rd and yi, ϵ R. X={x1, x2 ∙∙∙ xn}are the 
input data and Y={y1,y2 ∙∙∙yn} is the model output value. 
The aim of SVR is to find an optimal hyper-plane H. The 
distance of all the samples to H is small. We wish to 
predict a real-valued output f(x) for the observed value 
y. So that the regression functions in high dimensional 
feature space is f(x)=w • φ(x)+b. Where “•” is dot product, 
w is the weight vector and b is the threshold, φ:X→Z is a 
transformation of the input space into a new space Z, 
usually a high dimension space. The penalty function is 
defined as 
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Where ɛ is an insensitive loss function. This 
problem is transformed into the optimal problem 
w and b by introducing the relaxation variable 
ξ and penalty factor c. , . .
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This is the ɛ-SVM regression. The solution could be 
obtained from the dual problem. The kernel function 
is defined as K(x,x') = (φ(x), φ(x')). The kernel function is 
useful because many regression problems cannot be 
linearly regressed in the space of the inputs x, which 
might be in a higher dimensional feature space given a 
suitable mapping. At present, there are four commonly 
used kernel functions (linear, polynomial, gauss and 
sigmoid) (Zhou et al., 2019).

http://dict.cn/surrounding%20countries
http://argo.org.cn/english/
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The RBF has only one parameter and fewer numerical 
difficulties compared with other functions (Wang et al., 
2003). Therefore, the RBF is very suitable for nonlinear 
and high-dimensional data and was adopted as kernel 
function in this study. Since the penalty factor c and the 
kernel parameter g need to be manually set and the 
RBF-SVM parameters directly affect the feature space 
mapped, the parameter setting is a key step in the 
method application (Zhou et al., 2019).

Genetic algorithm (GA)
The Genetic Algorithm (GA) is an adaptive heuristic 

search algorithm designed to mimic the process 
of genetic selection and natural selection from the 
biological evolution theory, and realize the evolution of 
the population through natural selection, crossover and 
mutation. Genetic algorithms have been used in science 
and engineering as adaptive algorithms for solving 
practical problems. After setting the random initial 
starting point and constructing the fitness function, GA 
finds the global optimal solution in the search space 
according the search strategy. A GA pseudo-code is as 
following (Zhou et al., 2019; Phan et al., 2016).

particle position Xi
0 and its velocity Vi

0 are initially set 
randomly. The value of the fitness function is then calculated 
for each particle. The velocity and position of the particle 
are then changed according to the following equations:
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constants. The r1 and r2 are random real numbers between 
0 and 1. ϖ1 is the inertia weight, and is used to control the 
impact of the history of the velocity on the current one.

To control the diversity of a particle, the 
mutation algorithm of GA is introduced to 
renew the particle according to the equation
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The PSO pseudo-code is as follows (Nieto et al., 2015):

1: t=0; Initialize P(t)={x1,x2,···,xn}, where n is the number 
of individuals
2: Calculate the fitness of each individual in P(t)
3: Breed new generation individual P"(t) through selec-
tion, crossover and mutation
4: Calculate the fitness of each individual in P"(t)
5: Determine P(t+1)=P"(t) and set t=t+1
6: Return step 3, if the terminating condition is not 
satisfied

Particle swarm optimization (PSO) algorithm

Swarm optimization (Kennedy and Eberhart, 1995) 
is an optimization technique based on the metaphor 
of social behavior. In this algorithm, the particles renew 
their location by tracking the population best (Pbest) 
and the global best (Gbest). If the current value is better 
than Pbest, the Pbest value and location are replaced by 
that of the current particle. Then, the current value was 
compared with the Gbest. If the current value came out 
to be better than Gbest, Gbest was set equal to the current 
value of the particle (Nieto et al., 2015; Ghosh et al., 2019).

A possible solution Xi=(xi1, xi2,···,xiD)T is called a swarm  
particle and represents its position in the search space 
of possible solutions. D is the particle dimension. The 

Input: initialization population of particle Xi = (xi1, xi1,···xin), 
i = 1,2, ··· N;
%N is the number of particles in the population
Output: the best solution g and its corresponding va-
lue fmin=min(f(x))
1:init_particles;
2:eval=0;
3:while termination_condition_not meet do
4:for i=1:N do
5:fi=evaluate_the_new_solution(Xi)
6:eval=eval+1;
7:if fi ≤ Ibesti then
8:Ii=Xi;Ibesti = fi;//save the local best solution
9:end if
10:if fi ≤ fmin then
11: g = Xi, fmin = fi;//save the global best solution
12:end if 
13:Xi=Generate_new_solution(Xi)
14: end for
15: end while

Grid search algorithms

The first step was to set the minimum and maximum 
value of the penalty factor c and the kernel parameter g. 
Second, the values of c and g cycled from 2(min c) to 2(max 

c) and 2(min g) to 2(max g) in a two-layer cycle. K-fold-cross-
validation algorithms (Arlot and Celisse, 2010) was used 
on the training data in each step and then the average 
square error (MSE) of the remaining k-1 subsamples 
was calculated. At last, the output values of c and g 
corresponding to the minimum MSE of the two-layer 
cycles were chosen as the best model parameters. In this 
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paper, the parameters c and g ranged from 2-10 to 210 and 
the interval was set to 1. The k value of cross validation was 
set to 5.

A pure pseudo-code of the Grid search follows:

PSO-SVM
The upper and lower bounds of the SVM parameters 

c and g were specified as [0.1, 100]. The values for the two 
SVM parameters were then generated randomly within 
the specified bounds for each particle. The population 
size was set to 20. Then these parameters were fed into 
a SVM model, and 5-fold cross-validation algorithms 
were used to evaluate model performance. The fitness 
value adopt as mean square error n g y f1

i i

i

n

1

2

-
=

R W/  where yi 
is observed value and fi is predicted value. Fig. 3 shows 
the flowchart of PSO-SVM model. The best parameters 
were applied to construct the SVM.

Start
      bestAccuracy=0;
      bestc=0;
      bestg=0;
      for c=2(min c): 2(max c)

            for g=2(min g) : 2(max g)

                  Division the training set into 5, train(1), train(2), 
train(3), train(4), train(5). Training model by leave-one-
out cross validation and calculate mean error cv.

                  If cv>bestAccuracy
                    best Accuracy = cv; best c = c; best g = g;
                  end
            end
      end
over

GA-SVM
The genetic algorithm was implemented by using 

the Sheffield toolbox (Holland, 1992). The population 
of the first generation was randomly selected. Each 
individual member in the population (e.g. c and g) 
was coded using a binary string with a length of 20. 
The number of the binary string of each individual was 
assumed to be equal to the number of the descriptors 
(e.g., 2). Therefore, the length of a “chromosome” 
in the population was 40. The main operators were 
crossover, selection, reinserts and mutation. First, the 
upper and lower bounds of the two SVM parameters 
c and g were specified [0.1, 100]. The application 
probability of these operators was 0.7 for crossover 
and 0.035 for mutation, respectively. The selection 
method was a random ergodic process and the 
selection probability was 0.9. The population size was 
20. If a fitness criterion (10-2) or a maximum number 
of iterations (200) was reached, the computation 
would stop. A 5-fold cross-validation algorithm on the 
training data for each individual was used, with the 
MSE of the remaining k-1 subsamples as the fitness 
value for identifying suitable parameters for the SVM 
model. The best parameters were applied to construct 
the SVM. Fig. 2 shows the flowchart of the GA-SVM 
model.

Figure 2. Flowchart of the hybrid GA-SVM model.

Figure 3. Flowchart of the hybrid PSO-SVM model.
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Data Preprocessing

The input variables included year, month, latitude, 
longitude and four thermocline factors: the upper 
depth boundary of the thermocline (UDBT), the lower 
depth boundary of the thermocline (LDBT), the upper 
temperature boundary of the thermocline (UTBT), and 
the lower temperature boundary of the thermocline 
(LTBT). The nominal CPUE was defined as the continuous 
response variable in all three SVM models. There are 
differences in the values of different variables in the 
original data. Therefore, the data were normalized 
according to the equation y=(x-xmin)/(xmax-xmin).

All the records were randomly divided into two 
subsets: the training data set (80% of the total) and the 
testing set (20% of the total). The training data set was 
used to find the model parameters and the testing set 
was used to predict the model.

Model evaluation and year trend

The goodness of fit of the models were tested by the 
MAE, MSE, and three correlation coefficients (Pearson’s, 
Kendall’s and Spearman’s coefficients of correlation) 
and the NMSE according to the equation NMSE=Σ(y-ŷ)2/
Σ(y-y)2, where y was the predicted value and ŷ represent 
the nominal CPUE value, respectively. y is the average 
value of the nominal CPUE.

A generalized additive model (GAM) was 
constructed based on all data to examine the nature 
of the relationship between the nominal CPUE and the 
environmental variables. Following Maury et al. (2001), 

we assumed a normal distribution for log (CPUE + 1). 
Year, month, latitude, longitude, and four thermocline 
factors (UDBT, LDBT, UTBT, LTBT) were selected as input 
variables. All explanatory variables were modeled as a 
spline function (df=4). In order to compare with SVM, 
MSE, MAE, three correlation coefficients and NMSE 
were calculated.

After calculating the predicted CPUE value at each 
observed point, average values of all predicted CPUEs in 
each year were computed and mapped.

All simulations and analyses were carried out with 
Matlab 2010b 32-bit software, using the packages 
“libsvm-mat-2.89-3” for SVM and Sheffield toolbox for 
GA. The PSO algorithm was constructed on Matlab 2010 
software without toolbox. The GAM was constructed 
in the R programming environment using the gam 
function in the mgcv package (Wood, 2006). Model 
selection was performed manually, and we retained 
significant candidate predictors, minimized the Akaike 
information criteria (AIC) and increased the amount of 
explained deviance.

RESULTS

Table 1 shows the values of c and g derived from 
the three models. The values of the MSE and MAE in the 
training, testing data and dataset were displayed in Table 2. 
Table 3 presents the values of Pearson’s, Kendall’s, and 
spearman’s correlation coefficients. Table 4 expresses 
the values of NMSE.

Table 1. The parameters of c and g of different models.

c g
Grid search 5.66 64
GA-SVM 5.77 50
PSO-SVM 7.12 60.25

Table 2. Comparison of error between different models.

Model MSE MAE
Training data Testing data All data Training data Testing data All data

Grid search 3.62 8.64* 4.62 0.68 1.81* 0.90*
GA-SVM 0.57 12.37 2.94 0.51 2.11 0.83
PSO-SVM 0.4* 10.92 2.5* 0.46* 2.02 0.77*

Table 3. Comparison of correlation coefficients between different models.

Model Person’s Kendall’s rank Spearman’s rank
Training data Testing data All data Training data Testing data All data Training data Testing data All data

Grid search 0.88 0.69* 0.85 0.85 0.55* 0.77 0.95 0.73* 0.9
GA-SVM 0.99 0.6 0.91 0.92 0.52 0.83 0.98 0.65 0.92
PSO-SVM 0.99* 0.61 0.92* 0.94* 0.52 0.84* 0.99* 0.67 0.92*



Ocean and Coastal Research 2020, v68:e20226 89

Standardizing catch per unit effort by machine learning techniques in longline fisheries

The PSO-SVM and GA-SVM had particularly high 
performances of indicative values for the training data 
and dataset, but the MSE, MAE, correlation coefficients 
and NMSE in the testing dataset were not as good 
as that for the training dataset. The performance of 
the Grid search was better than that of the PSO and 
GA algorithms when comparing the results of the 
testing (Tables 2, 3 and 4). Regarding the comparison 
of PSO-SVM and GA-SVM, the goodness of PSO-SVM is 
marginally better than GA-SVM by different indicative 
values in the training data and testing dataset (Tables 
2, 3 and 4).

The annual trends in standardized CPUE obtained 
from the three models and nominal CPUE were similar 
(Fig. 4). The average CPUE for all three algorithms was 
almost always lower than that of the nominal CPUE 
values. The trends in bigeye tuna relative abundance, 
estimated with the three models, fluctuated from 2007 
to 2017. The nominal CPUE trends were also highly 
correlated with the various standardized trends. Overall, 
the bigeye tuna relative abundance was low from 2007 
to 2011, increased during 2011-2013, then decreased 
from 2015 to 2017.

The results of the GAM analysis indicated that all 
predictor variables were retained at the 0.001 level 
(Table 5). The GAMs explained 29.6% of the null deviance 
(Table 6). The MSE, MAE, correlation coefficients and 
NMSE were inferior to SVM model. The annual trend 

in standardized CPUE obtained from the GAM was 
lower than SVM and nominal CPUE (Fig. 4). The general 
relationships between ln(CPUE+1) and all variables are 
shown in Fig. 5. The hooking rates were low before 
2012 and then increased; seasonally, the hooking rates 
decreased from January to August, and then increased. 
The nominal CPUE values increased from south to north. 
The CPUE value was highest at approximately 40°W. 
UTBT, LDBT, and LTBT had a negative effect. The general 
relationship between nominal CPUE and UDBT was 
characterized by a convex shape.

Table 4. The value of NMSE between different models.

Model NMSE

Training data Testing data All data

Grid search 0.24 0.53* 0.3

GA-SVM 0.04 0.75 0.2

PSO-SVM 0.03* 0.730 0.16*

Figure 4. Comparisons of estimates of annual standardized CPUE 
and the nominal CPUE (mean).

Table 5. F-test for the significance of nonparametric effects.

Variable d.f. F p Variable d.f. F p

s(year) 3 59.21 <0.000001 s(UTBT) 2.99 64.82 <0.000001

s(month) 2 9.68 0.00032 s(UDBT) 2.86 51.33 <0.000001

s(lat) 3 96.23 < 2e-16 s(LTBT) 2 84.98 <0.000001

s(lon) 3 46.65 <0.000001 s(LDBT) 2.45 66.63 <0.000001

Table 6. Statistical characteristics of the GAM model.

Deviance explained (%) AIC R2 (adj) MSE MAE Person’s Kendall’s rank Spearman’s rank NMSE

29.6 11381.74 0.293 13.38 2.33 0.44 0.37 0.52 0.86
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Figure 5. The GAM-derived effects of eight predictors on CPUE.

DISCUSSION

SVM is widely applied for classification and 
regression problems for its high accuracy and ability 
to deal with high-dimensional data. SVM models 
have been applied in CPUE standardization recently 
and showed higher performances than traditional 
standardization algorithms, such as ANNs, RF, GAM and 
GLM (Li et al., 2015; Shono, 2014; Yang et al., 2015b). 
Here the SVM model applied to standardized longline 
fishery catch rates in the Atlantic Ocean appeared to 
be more reliable compared to GAM. The average CPUE 
for all three optimization algorithms was always lower 
than that of the nominal CPUE values, which coincide 
with previous results (Li et al., 2015). The annual trends 
were different from previous work due to data series 
differences (Hsu and Lee, 2003; Andrade, 2015). The data 
used by Hsu and Lee (2003) and Andrade (2015) were up 
to the year 2010. The trends in CPUE suggest that the 
time series could be divided into two periods by 2012. 
The catch rates after 2012 are higher than before 2012. 

This may relate to the resource management in Atlantic 
tuna in recent years.

The year trend of standardized and nominal CPUE was 
similar with the standardized index computed in the 
Report of the 2018 ICCAT bigeye tuna stock assessment 
meeting (ICCAT tropical tuna working group, 2018) (Fig. 
4). The CPUE decreased from 2015. Decreasing trends 
suggesting more management work should be considered 
to maintain the stock status. The ICCAT trend is smoother 
that the SVM and nominal trends during 2010 to 2011. 
The year trend of SVM and nominal CPUE was always 
lower than the ICCAT. The difference may have resulted 
from the data resolution and study area. The monthly 5×5 
geographical grid in the study area was used only in this 
paper.

The SVM high accuracy has been reported in previous 
research (Li et al., 2015; Shono, 2014; Yang et al, 2015b). 
Nevertheless, SVM has disadvantages, like other data 
mining models. For instance, it is difficult to estimate 
the confidence intervals of CPUE trends and inspect the 
effect of input variables on the CPUE. GAM performances 
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are not as efficient as SVM but allows to examine the 
nature of the relationship between the nominal CPUE 
and spatial, temporal and environmental variables. (Fig. 
5). The effects of the eight variables on nominal CPUE 
were nonlinear, except LDBT and LTBT.

Analyses based on depth-specific catch rates can 
lead to serious misinterpretation of abundance trends 
(Bigelow and Maunder, 2007). Considering the tuna depth 
distribution can effectively reduce the CPUE uncertainty 
(Prince et al., 2015). There are strong relationships between 
bigeye tuna depth and CPUE (Abascal et al., 2018) and the 
thermocline is a key factor in depth distribution of bigeye 
tuna (Bertrand et al., 2002; Houssard et al., 2017; Abascal et 
al., 2018). All thermocline parameters were significant in the 
GAM model support, so that the thermocline was adopted 
as an environmental factor in CPUE data standardization. 
In fact, the thermocline is more important than the sea 
surface temperature (SST). Bigeye tuna descend to a depth 
well below the thermocline to prey on the small nektonic 
organisms of the deep scattering layer (DSL) after dawn 
(Evans et al., 2008; Schaefer and Fuller, 2010). SST is not 
the main determinant of the tuna areal distribution and 
relative abundance in the equatorial Atlantic (Zagaglia et 
al., 2004). For example, bigeye tuna stayed preferentially in 
zones where the sea surface temperature (SST) was higher 
than 26°C. However, high hooking rates were observed off 
Namibia, where the SST was lower than 20°C (Yang et al., 
2013). Conversely, small individuals of bigeye tuna were 
caught in the north of the slope that starts from 15°N of 
West Africa and ends at 10°N of South America, where the 
SST was higher than 26 °C (Yang et al., 2013).

The values of c and g were widely different when 
derived from three different algorithms. Under different 
parameters conditions, the model performances 
were different. The GA and PSO algorithms searched 
parameters and quickly achieved the best solution. The 
parameters values (c, g) found by the grid search is in the 
search space of GA and PSO. If the initial populations of 
GA or the PSO algorithms contain the parameters values 
found by the grid search, the GA or the PSO algorithms 
may obtain the best solution more quickly.

Results suggested that the optimization algorithm 
of PSO and GA had excellent capability in global spatial 
searching in the training data set. But the forecasting 
performances of these two optimization algorithms were 
not as good as in the training dataset and testing dataset 
and they were inferior to the Grid search algorithms. 
Over-fitting is a phenomenon that occurs when the 

performance error of the model is observed to be very 
small during training but high in validation. The above 
results suggested that the GA-SVM and PSO-SVM models 
may suffer from an over-fitting problem. But in CPUE 
standardization, models were not used in prediction. 
In general, considering the indicative values obtained 
from training data and dataset, the PSO-SVM performed 
best, and can be applied as an alternative to standardize 
bigeye tuna in the Atlantic Ocean. The PSO is appropriate 
to optimize the SVM model parameters.

CONCLUSIONS

In this paper, we applied SVM to standardize bigeye 
tuna longline fishery catch rates in the Atlantic Ocean 
and the thermocline was adopted as an environmental 
factor in CPUE standardization for the first time. In order 
to increase SVM accuracy, different optimization methods 
were evaluated. All models performed well. PSO and GA 
exhibited excellent capability in global spatial searching, 
however they may suffer from over-fitting problems. PSO 
had best indicative values and is suggested as an effective 
method to optimize the SVM parameters.
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