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INTRODUCTION
The Fuzzy Set Theory was proposed 

by Zadeh (1965) to insert the concept of 
uncertainty, treating natural phenomena or real 
situations naturally (Rocha et al., 2012). It can 
be defined as the part of mathematical logic 
dedicated to the formal principles of uncertain or 
approximate reasoning, whereas algebra, using 
Boolean logic, expresses results in binary form; 
the “maybe” condition is not possible (Cunha  
et al., 2011).

A fuzzy set or subset is a collection of ill-
defined and indistinct objects (samples) with 

unsharp boundaries, in which transitions from 
membership to non-membership in a subset of 
a reference set are gradual rather than abrupt 
(Zadeh, 1965). In fuzzy set theory, an element 
may belong, with appropriate degrees, to different 
sets defined in the same universe of discourse 
(Rocha et al., 2012). The interpretation of fuzzy 
classification is based on membership values that 
indicate the participation of each sampling point 
to predefined classes. In classical cluster analysis 
(hard clustering), each object must be assigned 
to a single cluster. For hydrocarbons, this means 
that a sample pertaining to a cluster classified as 
a “petrogenic source” should not contain pyrolytic 
contribution. This is an important approach to data 
analysis, since most authors classify samples by 
their primary source contribution, refusing intrinsic 

© 2022 The authors. This is an open access article distributed under 
the terms of the Creative Commons license.

http://doi.org/10.1590/2675-2824070.21080lg

Case Report

ISSN 2675-2824

This research study sought to evaluate aimed at evaluating the possible advantages of using Fuzzy Logic 
as opposed to Boolean Logic to assess environmental contamination and source appraisal for polycyclic 
aromatic hydrocarbons (PAH). Results obtained through traditional assessment tools for two different tropical 
coastal areas through using traditional clustering and principal components analysis were compared with those 
derived from the Fuzzy Logic, using the by Fuzzy C-means algorithm. The feedings achieved through Fuzzy 
Logic showed a greater qualitative detail than those derived from traditional tools. The abrupt and unnatural 
changes obtained from the usual classification methods were avoided by having membership values varying 
continuously in space, providing a more accurate picture of environmental contamination in complex and multiple 
sources environments. Furthermore, by not depending on statistic suppositions distribution of data like other 
methods, becomes more suitable for environmental data. Although Fuzzy Logic does not produce quantitative 
interpretations, its application generates adequate the data needed to avoid environmental management bias in 
the inference of contamination sources.

Abstract

Keywords: Fuzzy C-means, Fuzzy logic, Environmental management, Polycyclic aromatic hydrocarbo.

http://orcid.org/0000-0002-8436-894X
http://orcid.org/0000-0001-6176-7254
http://orcid.org/0000-0002-1308-6611
http://orcid.org/0000-0003-4495-6074


Uncertainty and Environmental Assessment

Ocean and Coastal Research 2022, v70:e22015 2

Gripp et al.

uncertainties (Wagener et al., 2019)⁠. Classifying 
samples into mutually exclusive groups is a 
source of ambiguity and error in cases of outliers 
or overlapping clusters, which implies a loss of 
information (Sârbu and Einax, 2008). 

Historically, there has been a tendency to 
classify samples by their predominant source, but 
this can limit the understanding of multiple source 
contamination in coastal environments, reasonable 
exposure sites for pollutants such as PAH 
compounds (Christensen et al., 2010; Baumard 
et al., 1998; Massone et al., 2013; Wagener et 
al., 2010; Wagener et al., 2011; Wagener et al., 
2012; Yunker et al., 2002). Therefore, the theory 
of fuzzy sets is an interesting option to classify 
samples where the signals of different sources 
are superimposed in unknown proportions, 
and composition is constantly changing due 
to weathering (Wagener et al., 2019). Among 
the challenges in researching contamination 
evaluation is the complexity of the sources and 
processes involved in the environment. This issue 
is underlined by discrepancies observed when 
applying the so-called diagnostic ratios in PAH 
source appraisal (Dvorská et al., 2011; Massone et 
al., 2013) and by statistical methods to characterize 
the contaminant composition in environmental 
matrices (Christensen et al., 2010; Hopke, 2015).

Sârbu and Einax (2008) achieved 
unsatisfactory results applying classical clustering 
and principal component analysis to results from 
an extensive monitoring program concerning 
soil lead content, plant lead content, and traffic 
density at different sampling locations in East 
Germany. The authors showed the advantages 
in Fuzzy C-means (FCM), Gustafson–Kessel 
(GK), and fuzzy c-varieties (FCV) over traditional 
clustering methods. Similarly, Tan et al. (2006) 
applied fuzzy classification combined with spatial 
prediction to assess the state of soil pollution in 
the peri-urban Beijing area. The authors reported 
a prediction model with a quantitative uncertainty 
evaluation and higher reliability than conventional 
single geostatistical kriging methods. A similar 
conclusion was reported by Güler et al. (2012), 
when performing an impact assessment of 
anthropogenic activities on the groundwater.

Hu et al. (2016) demonstrated that in 
risk assessment, better decisions are made 
when uncertainty and variability are explicitly 
acknowledged in models, resulting in an effective 
tool for risk assessments and for managing 

contaminated sites. In their research, the 
uncertainties caused by the lack of uniform and 
scientifically supported environmental quality 
guidelines and by the variability in degree 
of exposure of environmental systems to 
contaminants were incorporated in a stochastic 
fuzzy environmental risk characterization 
approach. Since fuzzy classification can deal 
with abrupt transitions such as single pollution 
spots (Franssen et al., 1997), it becomes an 
alternative procedure for interpolating continuous 
soil pollution spatial data of high variability (Amini 
et al., 2005; Dobermann and Oberthür, 1997; 
Franssen et al., 1997; Odeh et al., 1992).

It is challenging for analytical chemists to 
incorporate uncertainty into their environmental 
assessments. Researchers attempt to minimize 
uncertainty to the extent possible to ensure reliable 
results. Fuzzy Logic is a counterpoint, though not 
to disqualify analytical effort. The uncertainty in 
environment assessment associated with non-
controllable parameters by analytical chemist is 
intrinsically much higher than that of controllable 
ones. Several studies have attempted to remove 
or reduce this uncertainty in environment 
assessment, be it through PCA, PMF, hierarchical 
clustering, or other statistical tools (Christensen et 
al., 2010; Hopke, 2015; Stanimirova et al., 2011; 
Yan et al., 2014). This article seeks to corroborate 
the benefits of incorporating uncertainty into data 
assessment and the advantages that can result 
from this approach to unravel the sources of 
anthropic hydrocarbons to coastal systems.

METHODS
Fuzzy Logic application is intended to 

improve understanding of different source 
contributions compared to traditional tools. To 
achieve this, data from solid published articles 
about contamination in sediments from tropical 
estuaries (Massone et al., 2013; Wagener et al., 
2010) were reanalyzed using Fuzzy Logic (Figure 
1). Several algorithms for Fuzzy Logic application 
can be found in literature. The choice of algorithm 
and its application to data is a subject of wide 
discussion and is not the focus of this article. 
All analyses herein were performed using the 
C-means algorithm, known as FCM.

One of the fundamental issues associated 
with the applications of fuzzy set theory is 
the determination of membership functions 
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Figure 1. Location of the study areas selected for the present study - Guanabara Bay on the left and 
Todos os Santos Bay on the right.

(Krishnapuram, 1994). In brief, membership 
functions of the FCM algorithm (Bezdek et al., 
1984) link each sample to all clusters via a real-
valued vector of membership degrees, with values 
between 0 and 1. Values close to 1 indicate a 
strong association to the cluster, while those close 
to 0 indicate a lack of association. 

Data processing before statistical analysis was 
maintained to avoid incorporating or minimizing 
variations beyond Fuzzy Logic. Therefore, the 
same data matrix used in the original publications 
(Guanabara Bay (Massone et al., 2013) and 
Todos os Santos Bay (Wagener et al., 2010)) were 
preserved. FCM and the feedings derived from the 
present appraisal were then compared to previous 
interpretations. This study did not change the 
number of clusters selected by the authors, as the 
comparison between different methods of data 
interpretation is more reliable when maintaining the 
same number of groups. Laboratory uncertainties 
between selected studies were similar and not 
significant for data evaluation, since natural 
uncertainties in the environmental assessment 
are much higher than analytical ones. 

Data analysis, graphs, and maps were 
performed in R software (R Core Team, 2013) 
and related packages: rgdal’ (Bivand et al., 

2020), ‘maptools’ (Bivand and Lewin-Koh, 2018), 
‘maps’ (Becker et al., 2018), ‘tmap’ (Tennekes, 
2018), ‘ggplot2’ (Wickham, 2016) and ‘ppclust’ 
(Cebeci et al., 2017). The latter package was 
used to apply the FCM algorithm, in which 
cluster partitioning divides objects in a dataset 
into non-overlapping subsets, or clusters, using 
prototype-based probabilistic and possibilistic 
clustering algorithms (Cebeci et al., 2017). 
In brief, since hydrocarbon sources were the 
primary objective, concentration bias was 
removed from the samples prior to statistical 
analysis by normalization through the total PAH 
concentration followed by z-score. The number 
of previously defined clusters was further 
corroborated by the Simprof analysis, a tool for 
determining the number of significant clusters 
produced using the assumption of no a priori 
clusters. 

ASSESSMENT AND DISCUSSION

Guanabara Bay
Massone et al. (2013) applied Principal 

Component Analysis (PCA) associated to 
multivariate linear regression (MLR) to attain a 
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quantitative assessment of Policyclic Aromatic 
Hydrocarbons (PAH) sources in the Guanabara 
Bay. The authors confirmed the predominance 
of the pervasive contaminant component 
superimposed to a generalized petrogenic 
imprint. The PAH ratios and PCA-MRL analysis 
were strongly influenced by a common source 
component, in which 11 sediments spread over 
this tropical bay shared at least 56% of their 
relative PAH distribution.

In their research, the PCA feedings were 
confirmed by cluster analyses identifying three 
sectors (Figure 2) with distinct PAH source 
contributions to sediments: (1) an area principally 
contaminated by petrogenic residues including the 
west and north bay regions; (2) an area principally 
contaminated by combustion residues in the 

Figure 2. Representation of the degrees of membership of the samples in relation to groups Petrogenic, 
Natural/Fuel, and Pyrolytic/Weathering throughout Guanabara Bay and the distribution of PAH in the 
P03, P08, and P11 samples. Data from Massone et al. (2013).

southeast region; and (3) an area where natural 
contributions are evident in the northeast region.

Despite the advanced data treatment carried out 
by the authors, the Guanabara Bay sediments were 
classified into regions according to a predominant 
source. in doing so, the complexity of the bay and 
of the hydrocarbon sources were not incorporated 
in the feedings. Guanabara Bay is one of the most 
important embayments of the Brazilian coast, and 
various forms of pollution threaten this estuarine 
environment (Soares-Gomes et al., 2010). The 
bay’s surroundings house 16 oil terminals, 6000 
industries, and two shipyards. The bay receives 
an estimated daily oil input of approximately 9.5 
tons, among other pollutants (Francioni et al., 
2005). This environment also features intricate 
hydrodynamics, characterized by the action of 
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a central channel (Kjerfve et al., 1997) and the 
efficiency of tidal currents. Therefore, given the 
complexity of this environment, segmenting the 
bay in areas of overriding sources does not make 
environmental sense and weakens management 
strategies.

Typically, diagnostic ratios have been employed 
to evaluate sources of PAH in aquatic systems 
(e.g., Budzinski et al., 1997; Wang et al., 1999; 
Garrigues et al., 1995; Yunker et al., 2002). 
However, the original source fingerprinting may be 
altered by preferential degradation rates among 
the PAH caused by factors such as temperature, 
photolysis, and microbiological activity, which is 
more pronounced in tropical environments. As 
such, the use of diagnostic ratios for source 
indication in these environmental conditions was 
proven to be unreliable (Massone et al., 2013; 
Wagener et al., 2011; Wagener et al., 2012; 
Wagener et al., 2010). Dvorská et al. (2011). For 
instance, suggested that the ratio between the five 
series of alkylated PAH over 3 to 6 ring PAH, 
known as the pyrolytic index (Wang et al., 1999), 
is insufficient for source appraisal and detailed 
description of mass balance issues not covered by 
the diagnostic ratios.

Many statistical methods have been applied 
targeting source discrimination and mass balance 
calculations in Guanabara Bay (Christensen et al., 
2010; Massone et al., 2013; Wagener et al., 2010; 
Wagener et al., 2012; Wagener et al., 2019). Among 
them, the FCM approach has gained prominence 
in environmental sciences because the neglected 
uncertainty in traditional methods is incorporated 
into the model (Stanimirova et al., 2011).

The FCM approach applied to Guanabara Bay 
appears in Figure 2, which shows the degree of 
membership among groups (Petrogenic, Natural/
Fuel, and Pyrolytic/Weathering), highlighting that 
no sample belongs to a single group. This feature 
illustrates that, throughout this tropical bay, the 
PAH sources overlap at different scales. It is 
important to note that FCM does not produce a 
quantitative assessment of contributions such as 
PCA-MLR and, therefore, the degrees of relevance 
shall be used only for qualitative purposes.

As for major source identification in general, 
there is consonance between the results reported 
by Massone et al. (2013) and those reported 
herein using FCM. The P3 station, pertaining 
most relevantly to the petrogenic group, has a 
higher proportion of low molecular weight and 

alkylated compounds, which are markers of 
petrogenic origin. PAH in sample P11, pertaining 
most significantly to the pyrolytic/weathering 
group, as the abundance of high molecular weight 
compounds indicates. At this station, there was 
a difference in the method’s classification, and 
the FCM approach proved to be more consistent 
considering the sample PAH composition. A 
sample from the northeast region of Guanabara 
Bay (P8), a region less polluted and close to an 
environmental protection area, appear segregated 
from the others as Natural. This sample, as well 
as sample P7, has a higher perylene and light 
alkylated PAH relative contribution, respectively 
characterizing diagenesis and fuel. In this area, 
in addition to the Environmental Protection Area, 
a rail accident in 2005 spilled 60,000 liters of oil 
directly into rivers, reaching Guanabara Bay. This 
explains the position of sample P7 in the ternary 
diagram of Figure 2, as suggested by FCM (and 
not by the PCA analysis), i.e., a higher influence 
of anthropic sources of PAH in comparison to P8, 
reflecting the potential input of diesel from the spill. 

The attained gain derived from the analysis by 
FCM is more relevant for the evaluation of samples 
permeating different groups of PAH sources. 
Samples that, according to previous conventional 
statistical analysis, belong to a single group, now 
display their complexity by crossing groups. The 
similarity among samples described by Massone 
et al. (2013) and not shown in their assessment 
for group classification is by FCM more prominent. 

There is an outstanding overlap of contributions 
from different components in several samples: 
P1, P2, P4, P6, P7 and P9. The samples with the 
highest degrees of membership within the groups 
are those close to contamination sources. The 
evaluation by FCM opens new frontiers by raising 
important aspects in Guanabara Bay, such as the 
evidence of source overlapping, estuarine mixture, 
and the influence of the source distance.

Todos os Santos Bay (TSB)
Wagener et al. (2010)⁠ studied PAH 

contamination levels and source identification in 
sediments of the Todos os Santos Bay (TSB). 
TSB is the largest coastal bay in Brazil, and its 
drainage basin houses one of the first areas 
of inland petroleum exploration in the country 
as well as an important national petrochemical 
complex. Source evaluation was principally based 
on traditional diagnostic ratios (Baumard et al., 
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1998; Dickhut et al., 2000; Wang et al., 1999; 
Yunker et al., 2002). Wagener et al. (2010) points 
out that conditions in tropical regions accelerate 
degradation of the least persistent compounds 
and affect the efficiency of PAH diagnostic ratios. 
The authors also highlight the complexity of oils 
used in the basin areas as an additional limitation 
to reliable source evaluation based on diagnostic 
ratios.

Even though the occurrence of highly alkylated 
PAH homologous indicating the ubiquitous 
presence of weathered oil residues, the authors 
found a strong bias toward pyrolytic source 
diagnosis in TSB using diagnostic ratios, which 
masked the relevance of petrogenic contribution. 
This petrogenic source underestimation may be 
partly minimized by the FCM approach (Figure 3). 
The main advantage of this method over diagnostic 
ratios, whose source assessment is obtained 
through Boolean Logic (petrogenic or pyrolytic), 
is highlighted by the degree of membership 
regarding the pyrolytic to petrogenic sources, 
corroborated by the respective PAH profiles.

Figure 3. Representation of the degrees of membership of the samples in relation Petrogenic and 
Pyrolytic groups throughout Todos os Santos Bay and the distribution of PAH in I3, I5, I11, and I29 
samples. Data from Wagener et al. (2010).

When comparing results from FCM (Figure 3) 
with those presented by diagnostic ratios (Figure 4), 
the Boolean Logic limitation becomes noticeable 
in a qualitative data analysis. Contribution of 
analytical and natural uncertainties considered by 
Fuzzy Logic allows for verifying the PAH sources 
gradient, through which the FCM allowed the 
determination of two groups ranging from high 
molecular weight (Pyrolytic) to low molecular 
weight (Petrogenic) predominance. Figure 3 
presents the PAH distributions for more relevant 
samples pertaining to the predefined petrogenic 
and pyrolytic groups (I29 and I3, respectively) and 
two samples with intermediate values (I5 and I11).

There is a major relative contribution of 
pyrolytic PAH in the northeast/east portion of the 
TSB, between the mouth and Madre de Deus 
island. This region houses major pollution sources: 
an oil refinery, two harbors, an oil terminal, and 
the urban area of Salvador. Of the 29 sediment 
samples analyzed thus far, 14 were found in this 
area, of which 11 showed a greater degree of 
membership to pyrolytic group (for instance I3 and 
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Figure 4. Diagnostic ratios applied to the Todos os Santos Bay samples. Data from Wagener et al. 
(2010).Ratios: Fl/(Fl+Py) - Fluoranthene (Fl) and Pyrene (Py); (I–Py)/(I-Py+BghiP) -  Indeno(1,2,3-cd)
pyrene (I-Py) and Benzo(ghi)perylene (BghiPer); A/A+Ph - Anthracene (A) and Phenanthrene (Ph); 
BaA/BaA+Ch - Benzo(a)anthracene (BaA) and Chrysene (Ch).

I5). It is plausible to also presume a considerable 
contribution of petrogenic PAH.

Sample I3 lies in the Itapagipe embayment, 
surrounded by a large urban area and 
encompassing a significant industrial center. Most 
diagnostic ratios classified PAH in sample I3 as 
being of pyrolytic source (Wagener et al., 2010)⁠. 
In fact, the higher incidence of high molecular 
weight PAH suggests a predominance of pyrolytic 
compounds. However, the presence of alkylated 
naphthalenes and the maximum concentration 
in C2- or C3-phenanthrene in the phenanthrene 
series, suggests a recent introduction of oil 
residues (Tolosa et al., 2004; Varnosfaderany et 
al., 2015) in addition to pyrolytic PAH. The same 
conclusion can be drawn from the presence of 

dibenzothiophenes, which are good markers for 
diesel oil (MacKenzie and Hunter, 1979; Takada 
et al., 1991; Williams and Bottrill, 1995). Although 
sample I3 shows a high degree of membership 
in pyrolytic group, the FCM evaluation allows for 
considering the contribution of petrogenic sources, 
albeit highlighting the predominance of low 
molecular weight PAH.

For the I5 sample, situated in the Aratu 
embayment, the diagnostic ratios suggest strong 
similarities to the I3 sample, whereas in fact there 
is a greater contribution of high molecular weight 
PAH in this sample. However, using the Boolean 
approach, the significance of petrogenic input is 
not revealed. Aratu is surrounded by terminals, 
chemical industries, and harbors (Aratu and Naval 
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Base), allowing for the passage of large draft 
ships, including those serving the Aratu Industrial 
Center and the Camaçari Petrochemical Complex 
(Hatje and Andrade, 2009). Due to these sources 
of pollution, a higher influence of petrogenic PAH 
than in sample I3 would be expected. This is 
evident from the FCM, which shows that I5 sample 
has a lower degree of membership to the pyrolytic 
group than the I3 sample. Similarly, I5 has a 
greater membership in the petrogenic group than 
I3. For both samples, a portion of the PAH profile 
constituted by higher molecular weight compounds 
is probably due to the accentuated degradation of 
hydrocarbons in this tropical environment.

Sample I11 showed the highest concentrations 
of PAH among the four highlighted samples, 
mainly of the phenanthrene (petrogenic marker) 
and pyrene (pyrolytic marker) series. The region 
surrounding I11 is crossed by pipelines connecting 
the refinery to the port terminal (Hatje and 
Andrade, 2009). Different diagnostic ratios gave 
controversial indications of the predominant PAH 
sources (Figure 4), suggesting a predominance 
of petrogenic or pyrolytic compounds or mixture 
of sources. Conversely, the FCM identified a 
stronger influence of petrogenic compounds, while 
considering a significant pyrolytic contribution, 
since there was an intermediate degree of 
membership to the petrogenic group, however 
smaller than to the pyrolytic.

Sample I29 has both the highest degree of 
membership to the petrogenic group and the 
lowest concentration of PAH among the four 
samples highlighted. Nevertheless, diagnostic 
ratios suggest a predominance of compounds 
formed by biomass combustion. However, the 
degree of membership of this sample reflects 
distancing from pyrolytic PAH sources and the 
greater relative predominance of petrogenic 
compounds. This conflict highlights the advantage 
of FCM in the qualitative analysis. When used in 
addition to traditional methods that prioritize the 
quantitative approach, it offers a detailed profile of 
the contamination, thereby providing support for 
appropriate management strategies.

CONCLUSION
FCM enables verify the samples, which 

show relevance with each classification group. 
This approach proved efficient for the qualitative 
analysis of coastal environmental contamination, 

in which sources are superimposed. The 
information gathered thus far by FCM combined 
with data obtained by traditional methods 
provides an overall characterization of the studied 
compounds. The FCM applied to data which 
was assigned membership values for generated 
classes that varied continuously in space, 
unlike the abrupt and unnatural breaks from 
conventional methods. As such, this membership 
variation allowed new interpretations of the data, 
mainly in relation to the segregation into areas 
of influence. The application of this approach 
proved appropriate as a supplementary tool for 
environmental management issues. Since FCM 
does not rely on a normal probability distribution, 
it is best suited for application to a wide range of 
environmental data.
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