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INTRODUCTION
The California Current system is one of the 

most productive and well-studied eastern bound-
ary upwelling systems with high mesoscale activ-
ity, frequent formation of eddies, fronts, and fila-
ments  throughout the year. Numerous mesoscale 
eddies are generated by surface and subsurface 
currents. Cyclonic eddies are mainly generated at 
the surface with a surface core (in the upper 150 
m), whereas anticyclonic eddies are predominantly 

generated at subsurface with a subsurface core 
(~400 m) (Simpson and Lynn, 1990; Huyer et al., 
1998; Collins et al, 1996, 2000; Garfield et al., 
1999).

Trajectories of a set of N Lagrangian drifters at 
time t are represented by {x(n)(t) = [x(n)(t), y(n)(t)], u(n)

(x, y, t), n = 1, 2, …, N } with (x, y) the  horizontal 
position. They measure fluid characteristics along 
fluid particles’ trajectories (i.e., Lagrangian trajec-
tories), and make water masses distinguishable 
in terms of origin and/or destination and traced, 
while its characteristics are continually chang-
ing. Eulerain velocity field can be calculated from 
Lagrangian trajectories using routine ocean data 
assimilation systems such as the optimal spec-
tral decomposition (OSD) [Chu et al., 2003 a,b].    © 2022 The authors. This is an open access article distributed under 

the terms of the Creative Commons license.
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The SOund Fixing And Ranging (RAFOS) floats were deployed by the Naval Postgraduate School (NPS) near 
California coast from 1992 to 2004 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/). Each 
drifter trajectory is adaptively decomposed using the empirical mode decomposition (EMD) into low-frequency (non-
diffusive, i.e., current) and high-frequency (diffusive, i.e., eddies) components. The identified eddies are mostly 
anticyclonic with total 203 anticyclonic and 36 cyclonic spirals. Eddy characteristics are determined from the time 
series of individual RAFOS float trajectory.  They are the current velocity scale, eddy radial scale, eddy velocity scale, 
eddy Rossby number, and eddy-current kinetic energy ratio. The California Current System is found an eddy-rich 
system with the overall eddy-current kinetic energy ratio of 1.78. It contains submesoscale and mesoscale eddies.  
The horizontal length scale of 10 km is a good threshold of the eddy radial scale (Leddy) to separate the two kinds 
of eddies.  The mean eddy Rossby number is 0.72 for the submesoscale eddies and 0.06 for the mesoscale eddies. 
The current-eddy kinetic energy ratio is similar between submesoscale and mesoscale eddies. This may imply 
similar current-eddy kinetic energy transfer for submesoscale and mesoscale eddies. Statistical characteristics and 
interannual variability of current velocity scale and eddy characteristic parameters are also presented.

Abstract

Descriptors: Empirical mode decomposition, Eddy radial scale, Eddy velocity scale, Eddy rossby number, 
Eddy-current kinetic energy ratio.
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Some phenomena were identified such as fall–win-
ter recurrence of current reversal from westward to 
eastward on the Texas–Louisiana continental shelf 
from near surface drifting buoy and current meter 
[Chu et al. 2005], and propagation of long baro-
clinic Rossby waves at mid-depth (around 1,000 
m deep) in the tropical north Atlantic from the Argo 
floats (Chu et al. 2007).

Three major approaches are availble to iden-
tify dynamic characteristics of currents and eddies 
from Lagrangian drifters without using ocean data 
assimilation: (a) particle dispersion, (b) Eulrian 
mean velocity, and (c) empirical mode decomposi-
tion. The first approach is the particle dispersion 
relative to their center,
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The variances of locations of N drifters at time 
instance t,
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estimate the dispersion of the drifters [e.g., Obuko 
and Ebbesmeyer, 1976; Rypina et al., 2012]. The 
2D turbulent diffusivities (Kx, Ky) are defined by
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With (Dx, Dy) grow linearly with time and the cor-
responding constant spreading rates (Kx, Ky) are 
referred as the 2D turbulent diffusivity of eddies 
[Rypina et al. 2012].

The second approach is to estimate the 
Eulerian mean velocity from a group of N drifters:
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and subtraction of U(x, y) from the veloc-
ity identified from Lagrangian drifters, u(n)(x, y, t),  
leads to the “residue” velocities,
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Here, the Eulerian mean velocities are com-
puted as an ensemble average in the defined 

geographic region that velocities from different 
floats and times [e.g., Davis 1991; Collins et al., 
2004; Chu et al., 2007; Chu and Fan, 2014] or as 
binned velocities with cubic splines [Bauer et al., 
1998].

Both particle dispersion and Lagrangian resi-
due velocities need sufficient number (N) of drift-
ers in the calculation at then same time t.  If there 
is very few co-deployed drifters such as less than 
three SOund Fixing And Ranging (RAFOS) floats 
available at same time-periods by the Naval 
Postgraduate School (NPS) in the California coasts 
(see website: http://www.oc.nps.edu/npsRAFOS/)? 
One option is to combine drifters from different 
time-periods together as if they were deployed at 
the same time-period. Such treatment cannot iden-
tify temporal variability of eddy charcteristics.

The third approach is to use the empirical 
mode decomposition (EMD) (Huang et al. 1998) 
to separate a Lagrangian trajectory x(t) into de-
terministic [low frequency mode representing the 
currents, xcur(t)] and stochastic [non-low frequency 
mode representing eddy, xeddy(t)] trajectories (Chu 
2018)
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where x(t) is the position vector at time t. This 
method is called the deterministic-stochastic EMD. 
The Lagrangian velocity is calculated by
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Such Lagrangian-type decomposition chang-
es the traditional approaches (particle disper-
sion and Lagrangian mean)  of using N drifters 
[x(n)(t), n = 1, , …, N] to get currents (i.e., mean 
flow) and eddies from Lagrangian trajectory data. 
The trajectories of 54 RAFOS floats deployed 
near California coast by C.A. Collins of the Naval 
Postgraduate School from 1992 to 2004 at depth 
between 150 and 600 m (http://www.oc.nps.edu/
npsRAFOS/) (Fig. 1) show combination of deter-
ministic (low frequency) and stochastic (high fre-
quency) components.

This paper uses the deterministic-stochastic 
EMD to separate current and eddy from a single 
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Figure 1. Trajectories of 54 RAFOS floats in the California coast by the Naval Postgraduate School between 
1992 and 2004 (http://www.oc.nps.edu/npsRAFOS/). The thick black trajectory is the Float N073.

Lagrangian drifter. This procedure gives cur-
rent velocity scale as well as eddy character-
istic parameters such as the eddy radial scale, 
eddy velocity scale, eddy Rossby number, and 
eddy-current kinetic energy ratio. The rest of 
the paper is organized as follows. Section 2 
describes the procedure of the deterministic-
stochastic EMD. Section 3 and 4 present the 
identified current and eddy characteristic pa-
rameters for each RAFOS float and their statis-
tics for 54 RAFOS floats. Section 5 describes 
the temporal variability of the current and eddy 
characteristic parameters. Section 6 presents 
the results.

DETERMINISTIC-STOCHASTIC EMD
The EMD (see Appendix A) decomposes a 

Lagrangian trajectory into the intrinsic mode func-
tions (IMFs) regardless of their linearity, stationar-
ity, and stochasticity (Huang et al., 1998; Chu et 
al., 2012, 2014). The key point to perform this de-
composition is the sifting process (with four steps), 
which decomposes a Lagrangian drift trajectory 
x(t) into [see (A5) in Appendix A],
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where xp(t) =[xp(t), yp(t)], is the p-th IMF and r(t) = 
[rx(t), ry(t)] is the trend (no oscillation). The first IMF 
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has highest frequency, and frequency reduces as 
the subscript p increases. The trajectory data from 
the RAFOS float #N073 is used for illustration and 
represented as a thick curve in Fig. 1, downloaded 
from http://www.oc.nps.edu/npsRAFOS/DATAS/
NPS035/DATAS.html. The data were collected by 
Professor C.A. Collins at the Naval Postgraduate 
School). The data are represented by time series 
of horizontal positon vector, x(ti) = [x(ti), y(ti)], with 
x in the zonal direction, and y in the latitudinal 
direction.

The RAFOS subsurface data downloaded from 
http://www.oc.nps.edu/npsRAFOS/ contains 61 
RAFOS floats. Among them 7 floats (N001, N009, 
N012, N042, N046, N049, N068) have too many 

missing data inside the time series. They are not 
included in the computation. The date rate var-
ies from general 3/day to around 22/day (N030 
18 May – 10 June 1994). For each float, the time 
series [x(ti), y(ti)] are decomposed into IMFs and 
trend using the EMD method (see Appendix A). 
Seven IFMs and a trend are identified in the (x, y) 
directions (Fig. 2). It clearly shows that the high 
frequency motion dominates the low IFM modes. 
Frequency reduces as the IFM mode from the low-
est (IMF-1) to the highest (IMF-7). The trend (no 
oscillation) is of course the part of the deterministic 
motion, but not all.

The IMFs are separated into the deterministic 
and stochastic parts, using the steepest ascent 

Figure 2. The IMFs and trend of (a) x(t) and (b) y(t) of the RAFOS float N073 from 21 November 
1999 to 12 February 2001. Combination of IMF-1 to IMF-4 is the high-frequency component (eddy) and 
combination of IMF-5 to IMF-7 and the trend is the low-frequency component (i.e., mean flow).
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low/non-low frequency ratio (see Appendix B). For 
RAFOS N073, combination of IMF-1 to IMF-4 is 
the high-frequency component (eddy) and combi-
nation of IMF-5 to IMF-7 and the trend is the low-
frequency component (i.e., mean flow). After the 
separation of Lagrangian drifter‘s trajectory into 
deterministic and stochastic components with the 
total number of position points of J,
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the deterministic and stochastic velocities can be 
calculated from position vector (only showing x-
direction) with the first-order difference for the two 
end points,
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and the central difference for the internal points,
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Figure 3 shows the observed (red), deter-
ministic (blue), and stochastic (green) trajecto-
ries of RAFOS N073. The deterministic trajec-
tory represents the mean flow, i.e., the current. 
The stochastic trajectory indicates the eddy. 
The eddy is transported along the deterministic 
trajectory. The eddy in Figure 3 does not repre-
sent its real position and is separated from the 
deterministic trajectory arbitrarily just for illus-
tration of eddy-like motion.

EDDY AND CUURENT CHARACTER-
ISTICS IDENTIFIED FROM AN INDI-
VIDUAL RAFOS FLOAT

After the deterministic and stochastic trajecto-
ries and velocities are obtained from an individu-
al RAFOS float, the eddy characteristics can be 
easily identified during the float ‘s drifting period. 
The eddy radial scale is defined by the root mean 
square of the stochastic trajectory
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The eddy velocity scale (Veddy) is defined by

Figure 3. Observed (red), deterministic (blue), and stochastic (green) trajectories of RAFOS N073. 
The deterministic trajectory represents the mean flow. The stochastic trajectory indicates the eddy. The 
center of the eddy is transported by the mean flow (i.e., along the deterministic trajectory), and is put 
away from the deterministic trajectory arbitrarily just for illustration of eddy-like motion.
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The eddy velocity kinetic energy per unit mass, 
eddy angular velocity scale ( eddyΩ ), and eddy 
Rossby number (Reddy) are defined by
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where f is the Coriolis parameter, which is evalu-
ated at 40oN here. The current velocity scale (Vcur) 
is defined by
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Table 1 shows the current velocity scale and 
eddy characteristic parameters identified from the 
RAFOS floats with N073 float (21 November 1999 
to 12 February 2001) as an example,
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The current kinetic energy per unit mass (Kcur) 
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Due to eddy’s circular motion (green trajectory 
in Figure 3), the time series of [xsto(tj), vsto(tj)] or 
[ysto(tj), usto(tj)] determine the types of  eddy (cylc-
ynic or anticyclonic),
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Table 2 shows the eddy-current kinetic energy 
ratio as well as the number of cyclonic/anticylonic 
spirals. For the RAFOS float N073 float, we have

27 anticyclonic spirals, r = 5.45                  (18)

STATISTICS OF EDDY AND CURRENT 
CHARCTERISTIC PARAMETERS

Histograms of current velocity scale (Vcur) and 
eddy characteristic parameters such as radial scale 
(Leddy), velocity scale (Veddy), Rossby number (Reddy), 
and eddy-current kinetic energy ratio (r) are con-
structed from 54 RAFOS floats shown in Tables 1 
and 2. All the histograms are non-symmetric, high 
dispersive, and positively skewed (Figure 4). The 
California Undercurrent is an eddy-rich system 
[i.e., overall more kinetic energy for eddies than 
for currents with mean Keddy /Kcur ratio of 1.78, stan-
dard deviation of 2.00, skewness of 2.79, and kur-
tosis 12.00 (Table 3).  For N007 float (7 July – 5 
September 1993), the eddy-current energy ratio is 
0.13 with the eddy velocity scale of 6.91 cm/s and 
the current velocity scale of 19.16 cm/s, which is the 
minimum ratio to be observed. For N024 float (17 
May – 9 June 1994), the eddy-current energy ratio 
is 11.18 with the eddy velocity scale of 33.94 cm/s 
and the current velocity scale of 10.15 cm/s, which 
is the maximum ratio to be observed.  Besides, 
Table 3 shows the statistics of other eddy param-
eters. For example, the eddy radial scale (Leddy) has 
a mean of 18.37 km, minimum of 1.12 km, maxi-
mum of 102.21 km, standard deviation of 21.33 km, 
skewness of 2.31, and kurtosis of 8.50. The eddy 
velocity scale has a mean of 11.98 cm/s, minimum 
of 2.72 cm/s, maximum of 44.17 cm/s, standard de-
viation of 8.65 cm/s, skewness of 1.74, and kurtosis 
of 5.82.

Among 54 RAFOS floats, 24 RAFOS floats 
(44%) represent the submesoscale eddies with 
Leddy < 10 km (Table 1): 2.12, 6.88, 1.12, 7.98, 
1.26, 0.90, 1.41, 6.09, 1.33, 9.26, 6.86, 1.38, 6.43, 
9.45, 1.81, 2.56, 3.89, 2.42, 5.14, 3.81, 5.06, 6.48, 
2.73, and 9.13 km, with a mean of 4.40 km and a 
standard deviation of 2.89 km. Their eddy velocity 
scales are 8.54, 9.80, 6.91, 10.08, 44.17, 29.22, 
33.94, 10.99, 30.43, 3.43, 7.31, 4.74, 9.71, 8.32, 
5.27, 4.99, 7.16, 6.28, 6.46, 8.02, 2.72, 6.13, 2.81, 
and 5.06 cm/s with a mean of 11.35 cm/s and 
a standard deviation of 11.04 cm/s. Their eddy 
Rossby numbers (Reddy) are 0.45, 0.16, 0.70, 0.14, 
3.99, 3.70, 2.76, 0.20, 2.61, 0.04, 0.12, 0.40, 0.15, 
0.11, 0.33, 0.21, 0.20, 0.30, 0.14, 0.22, 0.06, 0.10, 
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Table 2. Identified 36 cyclonic (denoted by ‘C’) spirals and 203 anticyclonic (denoted by AC) spirals and eddy to 
current kinetic energy ratio from 54 RAFOS floats.

Float Buoy Days Dbar # of 
spirals

Keddy Kcur
Ratio Float Buoy Days dbar # of

spirals
Keddy Kcur 

Ratio
N002 8/12-9/11/92 350 C: 1 2.57 N050 8/29/96-1/9/98 275 AC: 1 1.08
N003 8/12-9/11/92 350 AC: 1 1.27 N051 2/25/97-7/8/98 275 AC: 3 1.91
N004 7/07-9/05/93 350 AC: 3 1.01 N053 9/11/97-8/22/98 275 C: 5 2.03
N005 9/03/93-1/01/94 350 AC: 2 1.70 N055 9/11/97-8/22/98 275 AC: 1 0.52
N006 11/20/93-5/02/94 350 AC: 2 1.71 N062 4/29/98-6/25/99 275 AC: 9 0.50
N007 7/07-9/05/93 350 AC: 5 0.13 N063 5/17/98-7/12/99 275 AC: 4 0.66
N008 9/3-12/30/93 350 AC: 2 1.09 N064 4/29/98-6/25/99 275 AC: 8 1.67
N010 9/3/93-1/1/04 350 C: 1 0.76 N065 4/29/98-6/24/99 275 C: 2 3.94
N011 11/20/93-3/2/94 350 AC: 3 2.03 N066 10/27/98-12/23/99 275 C: 6 0.66
N013 11/20/93-3/2/94 350 AC: 2 1.94 N067 10/27/98-12/23/99 275 AC:11 3.01
N014 1/11-4/23/94 350 C:  1 1.39 N069 5/5/99-5/18/00 275 AC: 1 0.63
N019 4/25-11/11/94 275 AC: 5 1.64 N071 5/5/99-5/18/00 275 AC: 5 0.95
N021 5/19-6/10/94 275 AC: 1 1.96 N072 11/21/99-2/12/01 275 AC: 7 1.30
N022 5/19-6/10/94 275 AC: 3 4.20 N073 11/21/99-2/12/01 275 AC:27 5.45
N024 5/17-6/9/94 275 AC: 5 11.18 N075 11/21/99-2/12/01 275 C: 1 0.20
N026 8/22-12/30/94 290 AC: 3 0.71 N080 7/26/00-9/23/01 275 AC:10 0.52
N028 8/12-12/19/94 350 AC: 5 2.38 N081 7/26/00-5/22/02 275 AC: 2 0.72
N029 10/25/95-6/28/96 300 AC: 1 1.65 N082 7/26/00-9/24/01 275 C: 4 0.59
N030 5/18-6/10/94 275 AC: 1 5.59 N083 9/11/00-12/29/01 275 AC: 9 3.18
N031 8/22-12/30/94 290 AC: 4 8.13 N084 9/11/00-7/9/02 275 C: 1 0.23
N032 8/7/95-10/6/96 300 C:  4 1.61 N085 9/11/00-7/9/02 275 AC: 5 0.40
N033 8/12/94-5/10/95 350 AC: 5 0.48 N087 5/20/01-11/6/02 275 C: 1 0.56
N035 8/7/95-11/5/96 300 C: 1 0.31 N088 5/20/01-7/28/03 275 AC: 5 1.19
N039 7/29/96-12/10/97 275 AC: 3 0.36 N089 5/20/01-7/28/03 275 AC: 4 1.19
N041 7/29/96-11/17/97 275 C: 1 2.70 N090 12/6/01-3/9/04 275 AC: 6 1.65
N043 2/25-12/13/97 275 AC: 3 1.26 N091 12/5/01-3/9/04 275 AC: 8 0.18
N048 7/29/96-9/19/97 275 C: 1 1.08 N092 12/5/01-3/9/04 275   C: 6 0.43

0.11, and 0.06  with the  mean value  of   0.72 and 
the standard deviation of  1.20. 

The rest 30 RAFOS floats (56%) represent the 
mesoscale eddies with Leddy > 10 km (Table 1): 
33.49, 13.67, 28.35, 19.53, 16.36, 35.09, 29.87, 
15.57, 24.35, 17.29, 83.97, 37.95, 17.46, 11.61, 
85.09, 57.07, 11.43, 25.95, 102.21, 10.75, 18.56, 
13.59, 20.21, 36.53, 28.13, 15.04, 12.91, 22.00, 
17.10, and 25.13 km with a mean of 29.54 km and 
a standard deviation of 23.12 km.  The eddy veloc-
ity scales (Veddy) are 28.92, 22.55, 17.63, 25.04, 
16.93, 17.15, 11.99, 10.82, 12.97, 10.18, 22.44, 

9.76, 4.55, 4.85, 10.95, 11.59, 7.37, 8.40, 9.54, 
12.14, 4.94, 7.14, 13.76, 19.56, 6.89, 13.37, 7.13, 
7.02, 7.30, and 11.80 cm/s with a mean of 12.49 
cm/s and a standard deviation of 6.28 cm/s. The 
eddy Rossby numbers (Reddy) are 0.09, 0.17, 0.07, 
0.13, 0.12, 0.05, 0.04, 0.07, 0.06, 0.07, 0.03, 0.03, 
0.03, 0.04, 0.01, 0.02, 0.06, 0.03, 0.01, 0.12, 0.03, 
0.06, 0.07, 0.06, 0.03, 0.10, 0.06, 0.03, 0.05, and 
0.05 with a mean  of 0.06  and a  standard deviation 
0.04. The overall eddy velocity scales are compa-
rable between the submesoscale eddies (mean: 
11.35 cm/s, standard deviation: 11.04 cm/s) and 
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Figure 4. Histograms of current and eddy characteristic parameters identified from 54 RAFOS floats: (a) 
eddy radial scale (km), (b) eddy velocity scale (cm/s), and (c) eddy Rossby number, (d) current velocity 
scale (cm/s), and (e) eddy and current kinetic energy ratio.

the mesoscale eddies (mean: 12.49 cm/s, stan-
dard deviation: 6.28 cm/s). This may imply that the 
California Undercurrent has submesoscale and 
mesoscale eddies and 10 km is a good threshold 
of the eddy radial scale (Leddy) to separate the two. 
The eddy Rossby numbers are more than an order 
of magnitude larger for the submesoscale eddies 
(mean: 0.72, standard deviation: 1.20) than for the 
mesoscale eddies (mean: 0.06, standard devia-
tion: 0.04).

The eddy-current kinetic energy ratio (Table 3)  
ratios are 2.57, 1.27, 0.13, 0.76, 1.96, 4.20, 11.19, 
0.71, 5.59, 0.48, 0.52, 0.50, 1.67, 3.94, 0.63, 0.95, 
1.30, 0.20, 0.52, 0.59, 0.23, 0.56, 0.18, and 0.43 

for Leddy < 10 km, representing submesoscale ed-
dies, with a mean  of 1.71 and a standard devia-
tion of 2.47. The eddy-current kinetic energy ratios 
are 1.01, 1.70, 1.71, 1.09, 2.03, 1.94, 1.39,1.64, 
2.38, 1.65, 8.13, 1.61, 0.31, 0.36, 2.70, 1.26, 1.08, 
1.08, 1.91, 2.03, 0.66, 0.66, 3.01, 5.44, 0.72, 3.18, 
0.40, 1.19, 1.19, and 1.65 for Leddy > 10 km,  rep-
resenting mesoscale eddies, with a mean of 1.84 
and a standard deviation of 1.57  for the rest 30 
floats.  Both mean and standard deviation are 
comparable for the submesoscale and mesoscale 
eddies. This may imply that the current-eddy ki-
netic energy transfer is similar for submesoscale 
and mesoscale eddies. 
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TEMPORAL VARIABILITY OF EDDY 
AND CURRENT CHARACTERISTIC 
PARAMETERS

All the identified eddy and current parameters 
(Leddy, Veddy, Reddy, Vcur, r) have evident temporal 
variabilities (Figure 5). Large dispersion is found 
in Leddy before August 1998 from 1.12 km (7 July 
– 5 September 1993, N007) to 102.21 km (25 
February 1997 – 8 July 1998, N051). Small dis-
persion in Leddy is found after August 1998 with a 
maximum of 36.53 km (21 November 1999 – 12 
February 2001, N073) (Figure 5a) and a minimum 
of 1.81 km (5 May 1999 – 18 May 2000, N069). 
Large dispersion is found in Veddy before 1995 from 
6.91 cm/s (7 July – 5 September 1993, N007) to 
44.17 cm/s (19 May –10 June 1994, N021). Small 

dispersion is found after December 1994 with a 
maximum of 19.56 cm/s (21 November 1999 – 12 
February 2001, N073) and a minimum of 2.72 cm/s 
(11 September 2000 – 9 July 2002, N084) (Figure 
5b). The eddy Rossby number (Reddy) is mostly less 
than 0.5 (Figure 5c). Large disperse is found before 
1995 with  large values of 3.99 (N021), 3.70 (N022), 
2.76 (N024), during 17 May – 10 June 1994 and  
18 May-10 June 1994 and small value of 0.03 dur-
ing 7 August – 30 December 1994 (N031).  Small 
dispersion is found after 1995 with a maximum of 
0.33 during 5 May 1999 -   18 May 2000 (N069) 
(Figure 5c).  The current velocity scale (Vcur) has 
larger dispersion before 1995. It has a maximum of 
31.59 cm/s during 19 May – 10 June 1994 (N021) 
and a minimum of 5.33 cm/s during 12 August – 11 
September 1992 (N002). It has smaller dispersion 

Figure 5. Temporal variation of identified current and eddy characteristic parameters from 54 
RAFOS floats: (a) eddy radial scale (km), (b) eddy velocity scale (cm/s), and (c) eddy Rossby 
number, (d) current velocity scale (cm/s), and (e) eddy and current kinetic energy ratio.
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after 1995 with a maximum of 14.14 cm/s during 21 
November 1999 – 12 February 2001 (N075) and 
a minimum of 4.19 cm/s during 29 April 1998 – 24 
June 1999 (N065) (Figure 5d). The Keddy /Kcur ratio 
has larger dispersion before 1995 with a maximum 
of 11.18 during 17 May – 9 June 1994 (N024) and 
a minimum of 0.13 during 7 July – 5 September 
1993 (N007). It has smaller dispersion after 1995 
with a maximum of 5.45 during 21 November 1999 
– 12 February 2001 (N073) and a minimum of 0.23 
values during 11 September 2000 – 9 July 2002 
(N084) (Figure 5e).

CONCLUSION
The deterministic-stochastic EMD is used 

to decompose a RAFOS float trajectory. Time 
differentiation of the deterministic and stochas-
tic trajectories leads to the Lagragian current 
and eddy velocities. Application of this method 
to analysis of 54 RAFOS floats deployed by 
NPS from 1992 to 2004 at depth between 150 
and 600 m leads to the fact that the California 
Undercurrent is an eddy-rich system with the 
overall eddy-current kinetic energy ratio of 1.78. 
These eddies are mostly anticylconic with total 
203 anticyclonic and 36 cyclonic spirals.   Both 
submesoscale and mesoscale eddies exist with 
the mean eddy Rossby number of 0.72 for the 
submesoscale eddies and 0.06 for the meso-
scale eddies. The overall eddy velocity scales 
are comparable between the submesoscale 
eddies (mean: 11.35 cm/s) and the mesoscale 
eddies (mean: 12.49 cm/s).  The current-eddy 
kinetic energy transfer is similar between the 
two. The horizontal length scale of 10 km is a 
good threshold of the eddy radial scale (Leddy) 
to separate the submesoscale and mesosclate 
eddies.

The identified eddy and current parameters (Leddy, 
Veddy, Reddy, Vcur, r) have evident temporal variabilities.   
Large dispersion is found in Leddy before August 1998   
and small dispersion in Leddy is found after August 
1998. Large dispersion of (Veddy, Reddy, Vcur, r) is found 
before 1995 and small dispersion is found after 1995. 
Further studies are needed on physical mechanisms 
to cause such a temporal variability.
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APPENDIX A. EMPIRICAL MODE DECOMPOSITION
This appendix is duplicated from Section 2 of Chu et al. [2012]. Let x(t) represent the time series with 

fluctuations on various time scales [see Fig. A1]. The empirical mode decomposition (EMD) method is 
depicted as follows. First, the local minima and maxima of the signal x(t) are identified. Second, the local 
maxima are connected together by interpolation, forming an upper envelope emax(t). The same is done for 
local minima, providing a lower envelope emin(t). Third, the mean of the two envelopes are calculated

m1(t) = [emax(t) + emin(t)]/2.                           (A1)

Fourth, the mean is subtracted from the signal, providing the local detail

h1(t) = x(t) - m1(t).                                        (A2)

The time series h1(t) is checked if it has local minima and local maxima. If yes, h1(t) is considered as 
the first IMF and denoted

c1(t) = h1(t).                                                  (A3)

It is subtracted from the original signal and the first residual,

r1(t) = x(t) -h1(t) ,                                          (A4)

is taken as the new series in step 1. If h1(t) is not an IMF, a procedure called “sifting process” is applied as 
many times as necessary to obtain an IMF. In the sifting process, h1(t) is considered as the new data, and 
the same procedure applies. The IMFs are orthogonal, or almost orthogonal functions (mutually uncorre-
lated). Because this method does not require stationarity and linearity of the data and is especially suitable 
for nonstationary and nonlinear time series analysis.

Figure A1. Procedure of the empirical mode decomposition (EMD).

By construction, the number of extrema decreases when going from one residual to the next. The ap-
plication of the above algorithm ends when the residual has only one extrema, or is constant. In this case 
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no more IMF can be extracted. The complete decomposition is then achieved in a finite number of steps. 
The signal c(t) is finally written as the sum of IFMs cp(t) and the trend r(t):

                                                               
1

( ) ( ) ( )
P

p
p

c t c t r t
=

= +∑  ,                     (A5)

where c(t) represents x(t) and y(t). There is no any oscillation (i.e., non-existence of both maximum and 
minimum envelopes) in the trend r(t), which should represent the trend. Obviously, successfulness of the 
EMD depends on accurate determination of upper and lower envelopes.

APPENDIX B. STEEPEST ASCENT LOW/HIGH FREQUENCY RATIO
To separate c(t) into deterministic and stochastic components, we have to  determine the  s-th IMF mo-

de, in which the stochastic signal combination of the 1st, 2nd, …, s-th IMFs constitutes, and the combination 
of (s+1)-th, (s+2)-th, …, P-th IMFs. The trend constitutes the deterministic signal. To do so, the Fourier 
transform is conducted on each IMF cp(t):
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which is a set of complex coefficients in the frequency space. Here,      1i ≡ −  and J is the length of the 
time series. For each IFM cp(t), tthe phase spectrum (Rios and de Mello 2016; Chu 2018) is calculated by  
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pk

f
k

f
θ =                         (B2)

and the amplitude is computed up to the Nyquist frequency

                                          ˆ( ) / ,    1, 2, ..., / 2p pk pka k f f J k J= = .             (B3)

Let m represent lowest α-fraction (α<1) of the frequency domain, i.e., m = [α × J / 2] with the bracket 
indicating the integer part. The powers of lowest α-fraction frequency (Eα) and total frequency (EJ) are 
defined by (Chu 2018):
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The low/non-low frequency ratio is defined by
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,                             (B5)

which indicates the low frequency (α-fraction) dominance of the p-th IMF. The s-th IMF mode is determined 
by the ratio of the low frequency dominance parameter for the (p+1)-th IMF to the p-th IMF  
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,
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R
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+Γ = ,                                  (B6)

which represents increase of strength of the low frequency component. Since the low frequency enhances 
as the mode number p increases, separation of deterministic and stochastic signals is at the IMF with the 
maximum value of the ratio

                                      , ,max( | 1, 2, ..., 1)s p p Pα αΓ = Γ = − .                      (B7)

The combination of the 1st, 2nd, …, s-thIMFs constitutes the stochastic signal, and the combination of 
(s+1)-th, (s+2)-th, …, P-th IMFs, and the trend constitutes the deterministic signal.


