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ABSTRACT

This study aimed to characterize the spatial distribution and composition of living Benthic Foraminifera (BF) and to
comprehend how environmental conditions (e.g., organic matter) can affect communities of these protozoa in the
northern and southern sectors of the Santos Basin (SB), in the continental slope and S&o Paulo Plateau. In this context,
23 stations (65 samples including replicates at each station) were collected between 400 and 2,400 m water depth.
Multivariate analyses revealed that the ecological structure of the community changes mainly along the bathymetric
gradients. Stations located between 400 and 700 m, both in northern and southern sectors, are characterized by
the presence of indicator species of high intensity of currents, such as Globocassidulina subglobosa and Trifarina
bradyi. These stations are also mainly marked by the occurrence of Epistominella exigua, a phytodetritivore species.
The stations at 1,000 and 1,300 m depth, in both sectors, are characterized by high accumulation of organic matter
in the sediments, which favors the development of agglutinated foraminifera species, such as those of the genus
Reophax. Finally, the lower slope and the Sdo Paulo Plateau, in both sectors, are oligotrophic regions, with pulses of
labile organic carbon, probably low current velocities and the presence of Alabaminella weddellensis. The quantity
and quality of food, which are closely related to hydro-sedimentary dynamics and bentho-pelagic coupling in the
slope and Sao Paulo Plateau, are the main factors that influence the distribution of living BF assemblages in the SB.

Keywords: Pelagic-benthic coupling, Food availability, Continental slope, Oceanographic processes,
Southwest atlantic

INTRODUCTION physicochemical parameters, such as food
supply and redox conditions in the sediment

(Gooday, 1988; Jorissen et al., 2007; Fontanier
et al, 2012, 2016; Yamashita et al., 2016).
Jorissen et al. (1995) summarized the role
of food supply and oxygen availability on the
benthic foraminifera in the so-called TROX-
model (Trophic-Oxygen-Microhabitat-Reaction)

i o and validated it for many marine ecosystems
© 2023 The authors. This is an open access article distributed under
5 the terms of the Creative Commons license. (e_g,, Licari et al., 2003, Nardelli et al., 2010,

In  deep-sea environments, the spatial
dynamics of benthic foraminifera (BF) (Adl
et al.,, 2005, 2012) are controlled by many
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Burone et al., 2011; Mello et al., 2014). In well-
oxygenated deep-sea ecosystems, the availability
of sedimentary organic matter is the factor
controlling BF community density and structure,
and the BF microhabitat (with predominance of
epifaunal specimens) (e.g., Jorissen et al., 1995;
Nardelli et al., 2010; Burone et al., 2011; Mello
et al.,, 2014). In eutrophic and depleted oxygen
environments, densities are higher whereas
diversity is usually low. In the mesotrophic
settings, where the oxygen can penetrate deep in
the sediment layers and the organic compounds
are available, the diversity can reach maximum
values (Jorissen et al.,, 1995; Fontanier et al.,
2002, 2006; Singh et al., 2021).

In deep-sea, different sources of organic
matter to the seafloor have been recognized,
but the vertical flux of particulate organic matter
from the sea surface primary productivity is
considered the most important (e.g., Altenbach
and Struck, 2001; Henson et al., 2015). Studies in
the deep sea have noticed the increase in density
and biomass of bacteria and eukaryotic organisms
in the sediments after phytoplankton blooms
(Gooday, 1988; Franco et al., 2007; Veit-Kéhler
et al.,, 2011; Mello et al., 2014). Regarding BF,
studies have shown positive correlations between
their densities and biomass and the flux of organic
matter (e.g., Rijk et al., 2000; Altenbach and
Struck, 2001; Gooday, 2002; Fontanier et al., 2003;
Vicente et al., 2021). Moreover, the BF community
structure is closely related to the nutritional quality
of organic matter (Fontanier et al., 2005; Nardelli
et al., 2010).

The influence of hydrodynamic processes on
the BF community has been demonstrated in
other studies. In environments characterized by
the occurrence of gravity flows, the community
shows low densities and high dominance
(e.g., Koho et al., 2007; Nardelli et al., 2010;
Duros et al., 2011). Furthermore, differences
in hydrodynamic conditions promoted by
water masses, their surface fronts, eddies,
and bottom current intensity can determine
energy conditions that interfere with the input of
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organic matter, sediments texture and oxygen
availability in the environment, changing the
ecological parameters of BF assemblages
(Mello et al., 2014; Yamashita et al., 2016,
2018, 2020; Vicente et al., 2021). Moreover,
the competition for microhabitat and resources
are also important controlling factors of the
foraminiferal dynamics (Boltovskoy and Wright,
1976; Murray, 1991, 2006).

Therefore, the structure of a living BF
community results from a complex interplay
of abiotic and biotic parameters and hydro-
sedimentary processes. In addition, these protists
can be considered environmental sentinels due to
their short reproductive and life cycle, abundance,
and high degree of specialization (Kramer and
Botterweg, 1993; Schoénfeld et al., 2012; Sousa
et al., 2020), and can be used as environmental
monitoring tools in marine systems, such as
continental margins (e.g. Barras et al.,, 2014;
Alve et al, 2016), abyssal regions (Gooday
et al., 2012), canyons (Bella et al., 2019), areas
of natural gas exudations (Fontanier et al., 2014),
and oil exploration regions (Jorissen et al., 2009;
O’'Malley et al., 2021).

The Santos Basin (SB), located at the
southeastern  Brazilian continental margin,
has one of the largest oil provinces in the world,
known as pre-salt, since it is located below a 2 km
thick layer of salt (Gouveia, 2010). This large
sedimentary basin is an important oil and gas
exploration complex and is considered one of the
most profitable regions in the exploration of non-
renewable marine resources (Gouveia, 2010).

The literature (Lorenzzetti and Gaeta, 1996;
Mahiques et al., 2002; Calado et al., 2008; Eichler
et al., 2016; Yamashita et al., 2016) demonstrates
the hydrodynamic complexity of the BS in its coastall
regions, continental shelf, and continental slope.
The upwelling off Cape Frio, in the northern sector
of the basin, and the presence of eddies caused
by the meandering of the Brazil Current are some
of the hydrodynamic processes that make the SB
a dynamic ecosystem. The continental shelf and
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upper continental slope of the southern region of
the SB are characterized by more homogeneous
sedimentation environments, where muddy
sediments predominate (Mahiques et al., 2004).
The southern region also shows high primary
productivity, mainly in Cape Santa Marta (Campos
et al., 2013). At 29° S, below Cape Santa Marta,
the upwelling of South Atlantic Central Water
(SACW) on the continental shelf is documented,
as well as the La Plata River Plume (RdIP), which
reaches the shelf in winter (Mahiques et al., 2004;
Piola and Romero, 2004; Piola et al., 2008) and
the upper continental slope (~200 m) (Matano
et al., 2014; Razik et al., 2015) up to 24° S.
According to Tura and Brandini (2020), the outer
shelf of the SB is characterized by oceanographic
features typical of a meso-oligotrophic western
boundary system, which depends on mesoscale
physical processes for seawater fertilization.
Moreover, these processes are essential for
phytoplankton production in offshore waters
(Castro et al., 2006).

Currently, by using remote sensing methods,
it is relatively easy and fast to estimate the
phytoplankton productivity of surface waters
(Laws et al., 2000; Zscheischler et al., 2017).
However, it is often difficult to understand how
much of what is produced in the surface ocean
reaches the ocean bottom and becomes available
to the benthic fauna, and also to comprehend
the oceanographic processes that enable the
fertilization in deep sea environments. One of the
most sensitive groups to these changes are
the benthic foraminifera (Jorissen et al., 1995;
Gooday, 2003; Burone et al.,, 2011; Yamashita
et al.,, 2016, 2018, 2020; Vicente et al., 2021).
Thus, this study aimed to characterize the spatial
distribution and composition of living BF in the
northern and southern sectors of SB, on the
continental slope and Sao Paulo Plateau, and to
understand how the abiotic factors (e.g., organic
supply) and the hydro-sedimentary can influence
the BF community in remote regions.

The study by Yamashita et al. (2016) on living
BF present up to 1,000 m depth, from Sao Sebastiao
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and llha Grande, is the only found on the slope of
the SB. Therefore, our work is a pioneering study,
which also contributes to the Santos Project—
Santos Basin Environmental Characterization—
coordinated by Petréleo Brasileiro S.A. (Moreira
et al., 2023). This is part of a larger study that aims
to understand the environmental processes that
influence the benthic communities in SB.

METHODS

SEDIMENT SAMPLING

In total, 65 sediment samples, including
replicates from each of the 23 stations,
were collected on the continental slope and Sao
Paulo Plateau, in the Santos Basin during the
2019 winter (Figure 1) between 400 and 2,400 m
of water depth, using a box corer (50x50x50 cm).
At A06 and HO6 sampling stations, collection was
carried out with a Van Veen grab sampler due to
sandy sediments, which made it impossible for
the box corer to penetrate and collect sediment.
This study analyzes samples of four transects:
the transects A and B, with six stations each,
located in the south sector; and the transects G
and H, with five and six stations, respectively,
situated in the north sector of the basin.

At each sampling location three replicates of
sediment were taken for foraminiferal analysis,
following Schénfeld et al. (2012). The upper 0-2cm
of each core was sliced for living (stained) benthic
foraminifera. The samples were stored in plastic
containers with a 10% formaldehyde buffered
with borax with Rose Bengal (2 gL'") solution,
to evidence the presence of protoplasm in living
individuals at the time of collection (Walton, 1952;
Schonfeld et al., 2012). The faunas were washed
in 63 um sieve since the deep ocean community of
BFs is best represented in this fraction (Schroeder
et al., 1987; Schmiedl et al., 1997). The license
to collect, store, and transport biological material,
number 1119/2019, was provided by the Brazilian
Institute for the Environment and Renewable
Natural Resources.
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Figure 1. (a) South America (b) Schematic representation of Brazilian Coastal Current (BCC), Brazil Current (BC), Intermediate
Western Boundary Current (IWBC), Deep Western Boundary Current (DWBC), and oceanographic stations location (White circle).

SEDIMENT GRAIN SIZE AND
GEOCHEMISTRY DATA

BULK

Grain size data (gravel and calcium carbonate)
were obtained from Figueiredo Jr. et al. (2023),
which  describes the methodology used.
The geochemical analysis was carried out at
Pontifical Catholic University of Rio de Janeiro,
coordinated by Renato Carreira. The methodology
used to analyze the parameters total organic
carbon (TOC), chlorophyll a sediment (chlo a
sediment), phaeopigments, and biopolymers

[carbohydrate (CHO), lipid (LIP), and protein
(PTN)] were detailed by Carreira et al. (2022).
The total biopolymeric carbon (BPC, sum of
CHO, PTN, and LIP), used to recognize if the
organic matter is refractory or labile (Danovaro
et al., 1993), was also estimated.

LIVING BENTHIC FORAMINIFERA ANALYSIS

Assemblage data were evaluated using
density (FD) (number of individuals/50 cm?® of
sediment), richness (S), index of Shannon (H’)
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(Shannon, 1948), Pielou evenness index (J)
(Pielou, 1975). These ecological parameters
were estimated using PRIMER v6 (Clarke and
Gorley, 2006).

For species identification, many bibliographic
references were used, such as Boltovskoy et al.
(1980), van Morkhoven et al. (1986), Loeblich and
Tappan (1988), Jones (1994), Debenay (2012) and
Holbourn et al. (2013). The status of the species
names followed the online dataset (WoRMS
Editorial Board, 2023). Some species were
photographed using a digital camera attached to
the stereomicroscope (SteREO Discovery.V12).
Plate 1 shows the photographs.

MULTIVARIATE ANALYSES

The multivariate analyses of clustering were
performed with PAST 4.05 program (Hammer
et al., 2001). The Bray-Curtis similarity with the
UPGMA was used for clustering, considering
species with at least 2% of relative abundance.
To determine which benthic foraminiferal species
contributed the most to the groups formed
in the cluster analysis, a SIMPER (similarity
percentage breakdown) analysis using the
Bray-Curtis similarity was performed in PAST
(Hammer et al., 2001).

Spearman  correlation
performed considering p < 0.05 as significant.
The foraminiferal indexes (S, FD, J', and H')
and main species selected by Simper analysis
with relative abundance—higher than 2%—
were correlated with sea surface chlorophyll
(chlo a surface), gravel, calcium carbonate
content, phytopigments (phaeopigments and
chlo a sediment), TOC, BPC, CHO, PTN, LIP,
PTN:CHO, and the declivity using STATISTICA®
version 10.

analyses  were

REMOTE SENSING SURFACE

CHLOROPHYLL A

DATA:

Surface chlorophyll a concentrations were
estimated to verify a possible relationship
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between surface primary production and
the BF community. For that, chlo a surface
(mg/m® images and algorithms acquired by
remote sensing, from the MODIS-Aqua satellite,
and available on NASA’s Giovanni portal (https://
giovanni.gsfc.nasa.gov/giovanni/) were used.
The temporal resolution of the MODIS-Aqua
satellite was one month, and the spatial resolution
was 4 km. Thus, 16 km radius circles were made
around each sampling point. In this way, data
on the average concentration of chlo a surface
in these circumferences were acquired over
three months prior to collection (March to May).
This period was selected considering the life cycle
of foraminifera, in general, and the time required
for the establishment of the community changes,
depending on the flux of organic carbon to the
bottom (Fontanier et al., 2003).

RESULTS

LIVING BENTHIC FORAMINIFERA

The FD ranges from 166 (at the AQ7 station)
to 1,910 (HO8 station) specimens per 50 cm?®
of sediment (Figure 2a). A total of 669 benthic
foraminiferal species was identified in the
study area. The species that reached higher relative
abundance (up to 4%) were Globocassidulina
subglobosa and Epistominella exigua.

The highest richness was detected at station
HO8 (307) and the lowest at station A07 (97)
(Figure 2b). The stations in the north sector of SB
(G06, HO7 and HO08) showed the highest diversity
values (H' = 4.7), while the lowest ones were
detected in the south sector at A10 (H' = 3.7)
(Figure 2c). Regarding the evenness, Sdo Paulo
Plateau PSP stations (B11 and H11) showed
the highest values (J' = 0.9) and station A06
the lowest value (J' = 0.7) (Figure 2d). Density,
identification of benthic foraminifera, and the
ecological indices, can be found in Tables S1
and S2 (Supplementary Material).
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Figure 2. a) Distribution of foraminiferal density (FD, ind./50 cm?®) in the study area; b) Distribution of species richness (S) in
the study area; c) Distribution of Shannon-Wiener diversity index (H') in the study area; d) Distribution of Pielou’s evenness

(J) in the study area.

ENVIRONMENTAL PARAMETERS

Average Grain Size (AGS) of all sampling
stations was 49.7 uym. The station A09, located at
1,300 m depth in the south sector, presented the
finest grains (8.6 um), while station H11, situated
at 2,400 m depth in the north sector had the
coarsest grains (175.2 um).

The average content of calcium carbonate was
42.8%. Some sampling stations located in the
northern sector, at 700 m (A07) and 2,100 m depth
(B11), presented carbonate peaks > 65 %. In the
southern sector, the stations G08, G09, H08, G10,
and H11 showed CaCO, > 50 %.

The average TOC content was 6.28 mg g at
the analyzed stations and ranged from 1.08 mg g™
(A07)to 10.20 mg g (A09). There was an increase
in TOC contents up to 1,300 m depth, followed by
a decrease towards the lower continental slope
(1,900 m) and Sao Paulo Plateau (2,400 m).
The CHO average was 1.55 mg g'; highest and

lowest CHO contents were recorded at the stations
B09 (2.79 mg g') and A06 (0.46 mg g'), respectively.
The average concentration of PTN was 1.15 mg g
in SB; the highest and lowest PTN contents were
found at AO8 and B0O6 (1.98 mg g' for both stations)
and H11 (0.63 mg g), respectively. Average LIP
content was 0.31 mg g; the highest and lowest
concentrations were found at H08 (0.78 mg g™)
and at H11 (0.14 mg g''), respectively.

In most sampling stations, the BPC reached the
highest contents in the continental slope, between
700 m and 1,300 m depth. The PTN:CHO reached
the highest values (>1) at stations A06, A07, BO6,
B10, and G06.

The lowest value (0.16 pg g') of chlo a sediment
content was found at station HO6, while station
B11 presented the highest one (0.94 pg g').
Station A11 presented the lowest sedimentary
phaeopigment concentration (0.75 ug g') and B09
showed the highest one (4.4 ug g™).
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REMOTE SENSING DATA: SEA SURFACE
CHLOROPHYLL A

Sea surface chlorophyll a concentration
(Figure 3) ranges from 0.10 mg m?* (stations
A11 and H11) and 0.20 mg m™ (station A07).

Santos Basin benthic foraminifera: ecological insights

In the Santos Basin, a general pattern of
gradual increase in chlo a surface concentration
is observed in the coastal region and on
the continental shelf from south towards
north (Figure 3).

Figure 3. Sea surface chlorophyll a concentration at the study area (monthly average between March and May) from MODIS Aqua.

STATISTICAL ANALYSES

The FD showed a statistically significant
correlation between chlo a surface and
phytopigments, while the S presented a significant
correlation with phytopigments  (Figure 4).
The cluster analysis (Figures 5 and 6) differentiated
the species into five different groups: upper slope
stations (Group 1), middle-lower slope stations
(Group 1), lower slope stations in the southern
sector (Group lll), middle slope (station A07,
Group V), and lower slope and Sao Paulo Plateau
stations (Group V).

Group | included the shallowest stations
of the slope (400 m depth — stations A06, B06,
G06, and H06). According to SIMPER analysis,
hyaline species such as Trifarina bradyi, Siphonina
bradyana, and G. subglobosa were the most
important in this group. Group Il was composed
of stations on the continental slope, between 700

and 1,300 m depth (stations H07, HO8, and H09).
The most representative species in this group at
these depths (Table S1, Supplementary Material)
were G. subglobosa (at 700 m), and E. exigua
(at 1,300 m), respectively. Group Il was
composed of stations between 700 and 1,300 m
depth in the southern sector (A08, A09, B0O7, B08,
and B09 stations) and the north sector (G07, GO08,
and G09 stations) and was characterized by
the presence of Reophax sp. 1, and E. exigua.
Group IV is composed only of A07; according
to SIMPER, the most abundant species in this
station were Uvigerina auberiana and T. bradyi.
The stations at the lower continental slope
(1,900 m) and PSP (2,400 m), which compose of
Group V (stations A10, A11, B10, B11, G10, H10,
and H11) have as most representative species,
according to SIMPER analysis, Alabaminella
weddellensis and Reophaxopsis aff. elegans.

Ocean and Coastal Research 2023, v71(suppl 3):23025 7
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Figure 4. Heat map with Spearman’s correlation between biotic parameters and the main species/taxa of living foraminifera
and abiotic parameters: Richness (S), Living benthic foraminifera density (FD; ind/50 cc), Pielou’s evenness (J’), Diversity (H’),
mainly species (Ee — Epistominella exigua; Gspp — Globocassidulina spp.; Gs — Globocassidulina subglobosa; Rsc — Reophax
scorpiurus; Rsp — Reophax spiculifer; Rspp — Reophax spp.; Rsu — Reophax subfusiformis; Re — Reophaxopsis aff. elegans;
Sb — Siphonina bradyana; Tb — Trifarina brady; Ua — Uvigerina auberiana; and Up — Uvigerina peregrina), organic parameters
(TOC — Total Organic Carbon; Chl-a— Surface chlorophyll-a; Chl-as— Chlorophyll-a in the sediment; Phaeo — Phaeopigments;
Phyto — Phytopigments; CHO — Carbohydrates; PTN — Proteins; LIP — Lipids; BPC — Biopolymeric Carbon; PTN/CHO — Protein/
Carbohydrates); Gravel (Grain size); CaCO, — Carbonate and Declivity. Where: ™: data retrieved from remote sensing and *:
data obtained from sediment analysis; bold values — significant correlations, p < 0.05.

Figure 5. Cluster analysis (UPGMAxWard) based on the foraminiferal density: Group | (middle slope-dark green), Group Il
(Middle-lower slope of H’s stations-light green), Group llI (lower slope-orange), Group IV (lower slope outlier-blue), and Group V
(lower slope and Paulo Plateau stations -red). Representative species of each group are listed.
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Figure 6. Location of the five groups identified via cluster analysis (UPGMA).

DISCUSSION

The correlation between FD and chlo a surface
(Figure 4) indicates a benthic-pelagic coupling
mediated interaction in the study area. The chlo
a surface concentration can indirectly provide
information about the pelagic-benthic coupling
system (McTigue et al., 2015). Studies have
demonstrated that high surface concentrations
of chlo a are associated with increased primary
productivity and organic carbon export;
this situation stimulates the trophic web and,
generally, provides higher supply of organic matter
tothe bottom (Altenbach and Struck, 2001; Ducklow
et al., 2001; Vicente et al., 2021). Our data show
a relationship between the input of phytodetritus
and the increase in the number of two species
(E. exigua and G. subglobosa), considered
opportunistic species (r-strategists) (Gooday,
1988, 1993), corroborating the observations of
Duchemin et al. (2007) and Almeida et al. (2022).
It was also observed that species richness is

positively correlated with phytopigments, which
may indicate a preference for phytoplanktonic food
(also protein-rich). This confirms the influence of
organic carbon pulses derived from the primary
productivity in the surface sediments and benthic
foraminiferal community in the basin.

However, no correlation was observed
between chlo a surface and the sediment contents
in TOC, phytopigment, LIP, CHO, BPC, and chlol
a sediment. Some factors may explain the non-
correlation of the data, such as the consumption
of a large part of what is produced in the ocean
surface and along the water column or high nutrient
utilization/recycling rates, (Maier-Reimer, 1993;
Lyle and Lyle, 2006; Griffith et al., 2021) or its
transport to other areas by bottom currents or
its burial in deeper layers of sediment, caused
by bioturbation or other phenomena. In contrast,
we should consider that positive correlations
between protein, PTN:CHO ratio and chlo a
surface concentrations, and between species
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richness and phytopigments are observed, which
indicate the influence of more labile organic
matter in the sediment on the benthic foraminiferal
community in the basin.

The upper continental slope group (Group I),
shows high values of FD, richness and diversity.
The main species of this group are G. subglobosa,
T. bradyi, and S. bradyana, which are considered
opportunistic species (Gooday, 1991, 1993;
Murray, 2006). These species are known to
thrive in environments with seasonal input
of phytodetritus (Gooday, 1993; Hayward
et al., 2002; Sousa et al., 2006; Gupta and Smith,
2010; Yamashita et al., 2016, 2018, 2020; Vicente
et al., 2021), and strong bottom current velocities
(Mackensen et al., 1995; Schmied! et al., 1997;
Sousa et al., 2006; Yamashita et al., 2016, 2018,
2020; Vicente et al., 2021). The sediments of
these stations presented low TOC, CHO, LIP,
and chlorophyll a contents, but displayed the
highest PTN and PTN:CHO ratio values. Notably,
according to Danovaro et al. (1993) PTN:CHO
ratio values > 1 are tracers of fresh organic
matter. Therefore, higher PTN:CHO and chlo
a sediment values reveal the presence of high
quality food for BF. However, the lowest TOC,
CHO, LIP, and chlo a sediment contents in surface
sediments, may be related to the influence of the
high bottom velocities of the Brazil Current (Silveira
et al., 2008), that may be responsible for the low
retention of O.M. on the substrate. Despite the high
bottom velocities of the Brazil Current (Silveira
et al.,, 2004, 2008), these opportunistic species
are able to respond rapidly to input of labile O.M.
(Diz, 2004; Duchemin et al., 2007; Yamashita
et al., 2016, 2018, 2020; Vicente et al., 2021);
the increase in their relative abundance in the BF
community is an indicator of intermittent inputs of
high-quality food in the upper slope of the basin.

Group Il consists only of samples from
transect H (HO7, HO8, and HO09), which is located
off Cape Frio, at the northern sector of Santos
Basin. The faunal composition presented the
highest values of density, richness, diversity,
and evenness among the five analyzed groups,
which is probably related to the availability of
fresh food, which was assumed from the high chlo
a sediment concentrations and by the PTN:CHO

Santos Basin benthic foraminifera: ecological insights

ratios > 1, in stations H08 and H09. The most
abundant species in these stations were E. exigua
and G. subglobosa. It is well known that E. exigua
is an opportunistic species that reproduces rapidly
in the presence of fresh phytodetritus, especially in
regions with a large seasonal supply of nutrients,
as in upwelling areas (Gooday and Turley, 1990;
Gooday, 1993). Epistominella exigua has the
ability to colonize places at different depths, and to
respond quickly to nutrient supply from the sea
surface (Fontanier et al., 2002). Thus, their relative
abundance in the BF community can be considered
an indicator of the presence of labile organic
matter in the sediment (Jorissen et al., 1995;
Fontanier et al., 2003; Murray, 2006; Sun et al.,
2006). The presence of a heterogeneous bottom
morphology (Nagai et al., 2014), with high declivity
of the slope, which can intensify the Intermediate
Water Boundary Current (IWBC) (Zembruscki,
1979; Mahiques et al., 2022), must have a great
influence on the stations of Group II. Furthermore,
the high declivity of the slope could also favor food
transportation from the upper continental slope to
greater depths by mass flow (Murray, 2006; Nardelli
et al.,, 2010). These environmental conditions
benefit the presence of G. subglobosa, which can
thrive in environments with phytodetritus input and
oxic conditions (Gooday, 1993; Sousa et al., 2006)
and high bottom current velocities (Mackensen
et al.,, 1995; Schmiedl et al., 1997). Therefore,
it can also be used as an indicator of the presence
of food pulses in the marine environment (Gupta
and Smith, 2010) associated with active currents.

Group Il presents stations from the northern
and southern middle slope of Santos Basin
(A0O8, A09, B07, B08, B09 G07, G08, and G09),
located between 700 m and 1,300 m water
depth. The ecological indices had lower values
than those found in the upper slope, although
higher TOC, CHO, and LIP contents were found
in these depths. One of the main species found in
these stations was E. exigua, which shows
significant positive correlation to chlo a surface
concentrations. This species is directly associated
with phytodetritus pulses, it blooms during
seasonal increases in phytodetritus to the seafloor
(Gooday, 1988; Gooday and Turley, 1990).
Carreira et al. (2022) found high concentrations
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of BPC, notably in the southern sector of the SB,
between 700 and 1,900 m isobaths, suggesting
that on the middle-lower slope the O.M. still has
nutritional quality to benthic organisms. However,
these authors suggest that the O.M. contained
in surface sediment is degraded since most of
these samples presented PTN:CHO ratios near
or below the threshold of 1.0. The other main
species observed in the Group lll (Figure 5) is
Reophax sp. 1, which has not been described yet.
Species of Reophax has been considered first
recolonizers of physically unstable environments,
due to the action of currents, internal waves,
internal tides, benthic storms, turbidite deposition,
among others (Kaminski, 1985; Kaminski and
Schroder, 1987; Koho et al., 2007; Hess and
Jorissen, 2009; Duros et al., 2011; Martins
et al., 2012). Nevertheless, no correlation between
the distribution of the species Reophax sp. 1 and
the average grain size was found.

A07 (700 m depth) is the sole station in Group IV
and it seems to be located at a deep-sea coral reefs
region (Sumida et al., 2004). Lower values of FD, S,
and H’, highest value of CaCO, (Figueiredo Jr.
et al., 2023), and high declivity of the continental
slope (Zembruscki, 1979; Mahiques et al., 2022)
characterize the environmental conditions in this
region. The species U. auberiana and T. bradyi,
which highly contributed to the dissimilarity of
this group, presented positive correlation to chlo
a surface concentrations. According to Vicente
et al. (2021) U. auberiana is a species that
indicate carbon flux in Campos Basin. Trifarina
bradyi is a common species in environments with
phytodetritus inputs and lability of the particulate
organic matter (Gooday, 1993; Hayward et al.,
2002; Sousa et al., 2006; Gupta and Smith, 2010;
Yamashita et al., 2016, 2018, 2020; Vicente et al.,
2021). The PTN:CHO ratio values > 1 confirm the
presence of labile organic matter in the station AQ7.
However, U. auberiana is also usually associated
with low-oxygen (Jian et al., 1999; Kuhnt et al.,
1999), associating this particularity to the location
of station A0O7. However, more samples should be
analyzed to better understand and evaluate the
environmental characteristics of this area.

Group V, composed of the deepest stations,
is characterized by the lowest values of FD,

Santos Basin benthic foraminifera: ecological insights

richness, and diversity. Alabaminella weddellensis,
Reophax aff. elegans, loanella tumidula,
and Reophax agglutinatus were some examples
of the taxa that contributed to the dissimilarity
of this group. The species A. weddellensis is
an indicator of seasonal phytoplankton blooms
(Kender et al., 2019) in the environment. Moreover,
Reophax aff. elegans is positively correlated with
chlo a sediment and CaCO, contents. However,
the species R. agglutinatus is essentially found in
deep ocean environments with refractory organic
matter (Dessandier et al., 2016). [. tumidula
is considered a species sensitive to organic
enrichment, present in places with low TOC
values (Alve et al.,, 2016). The species is also
present in fine sediments and abundant at great
depths (Martins and Gomes, 2004). These facts,
associated with low values of ecological indices,
suggest that Group V is present in the most
oligotrophic region of the study area and with low-
quality organic matter, occurring seasonal inputs
of phytodetritus.

Thus, the input of more labile food, derived
from the pelagic sources, from the upper to the
lower slope of both sectors of the basin, has a
great influence on the benthic foraminiferal
community in the Santos basin. Moreover,
the Brazil Current System dynamics (Lorenzzetti
and Gaeta, 1996; Sumida et al., 2005; Eichler
et al., 2016; Calil et al., 2021), can play a role in
transporting and delivering organic matter to deep
ocean regions in the basin (Marone et al., 2010;
Mahiques et al., 2017; Tura and Brandini, 2020)

CONCLUSION

In the northern region of the SB, species
richness, and diversity are higher than in the
south, which is due to the greater availability of
fresh food supplied to the sea floor. The lower
slope and Sao Paulo Plateau, however, are similar
in both regions. Despite the spatial variability of
foraminiferal assemblages composition, we found
that species richness (S) is correlated with
phytopigment concentration and FD with chlo a
surface concentration.

For the establishment of living BF faunas in SB,
it seems that the quality of the organic matter
present in the substrate is more important than the
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quantity of this parameter. It is essential to better
understand the bentho-pelagic coupling and/or
decoupling and the dynamics of the vortices in
the SB, as they are oceanographic features with
the potential to induce the production and transport
of food to deep ocean regions.
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