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Abstract. The high mountain environment is a tough habitat that imposes many challenges to reptiles. As temperature 
decreases with altitude and has a dramatic variation throughout the day in the tropical mountains, ectotherms must cope 
with these harsh conditions. We studied the use of microhabitat and activity patterns of Stenocercus trachycephalus in the 
eastern Andes mountain range of Colombia. Three localities were sampled across the wide altitudinal distribution of this lizard 
species, in a range from 2,670 to 3,950 m a.s.l. The initial hypothesis was that these natural history traits would change with 
altitude but instead, we found that they remained roughly consistent, showing the great plasticity of this species. The results 
support that this lizard is a microhabitat-generalist using principally herb across the gradient, rarely shifting to specific plants 
or microhabitats such as rocks depending on availability. Regarding the activity pattern, this species was active throughout the 
day from 8:00 to 16:00 with a similar pattern along the gradient. Nevertheless, some differences were detected across localities. 
The activity pattern shifted from bimodal in the lower locality to unimodal in the higher ones. As expected, a correlation 
between temperature and activity patterns was found in one of the study sites. However, this was not the case for the lower 
and mid-elevation localities, where there was no correlation between these variables. The mid-elevation study site was the 
most interesting locality as the use of microhabitat relied virtually just on the herb stratum and the activity was constrained to 
the morning hours. These findings may be the result of the synergic effects of other ecological variables (weather variability, 
human impact, predation, population structure, or reproductive season). Our study gives the basis for a better understanding 
of how behavior (microhabitat choice and hours of activity) of ectotherms can help to counter thermal constraints in the 
neotropics when facing an altitudinal gradient. Further studies should focus on the thermal biology of this species, considering 
the influence of anthropic impact on these lizards’ populations.
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INTRODUCTION

Elevation shapes the ecology of species and 
populations by determining its habitat tempera-
ture, humidity, radiation, pressure, and vegeta-
tion (Heatwole, 2009; Buckley et al., 2013; Siliceo-
Cantero et  al., 2016). For example, the tempera-

ture is typically lower at higher elevations due 
to increased cloud cover and adiabatic cooling 
(McCullough & Porter, 1971; Hertz & Huey, 1981; 
Buckley et al., 2013; Iraeta et al., 2013). Altitudinal 
thermal changes are particularly important for 
ectotherms like lizards since they heavily depend 
on environmental temperature to grant adequate 
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thermal conditions for performance, reproduction, and 
physiology (Hertz & Huey, 1981; Dunham et  al., 1989; 
Adolph & Porter, 1993).

Tropical mountains are a more stable region than 
temperate zones (Körner, 2003); however, the altitude 
difference promotes the existence of diverse ecosystems 
that may not be optimal for ectothermic animals (Navas, 
2002). This is the case of high Andean ecosystems where 
the environmental temperature is highly fluctuating 
during the day, and night temperatures can reach 0℃ 
or less (Sarmiento, 1986; Méndez-Galeano & Calderón-
Espinosa, 2017). Altitudinal changes can modulate adap-
tation of ecological traits of species (Hertz & Huey, 1981; 
Ballinger, 1983; Adolph & Porter, 1993; Fierro-Estrada 
et  al., 2019) or promote the expansion of their physio-
logical tolerance and the scope of thermal plasticity (Van 
Sluys et al., 2004; Méndez-Galeano et al., 2020). Both hy-
potheses have been previously tested in different studies 
demonstrating the importance of evaluating ecological 
variables in different populations along gradients (Grant 
& Dunham, 1990; Adolph & Porter, 1993; Vitt et al., 2007; 
Fierro-Estrada et al., 2019; Gilbert & Miles, 2019).

Lizards adopt different thermoregulatory strategies 
to deal with these Andean harsh conditions and to reach 
optimal or nearly optimal temperatures such as choos-
ing microhabitats with adequate thermal qualities (Berk 
& Heath, 1975; Hertz & Huey, 1981; Bauwens et al., 1996) 
or shifting their activity period (Hertz, 1992; Adolph & 
Porter, 1993). However, the existence of spatio-tempo-
ral ecological gradients limits the distribution of species 
depending on their capacity to adjust physiologically to 
the environment (Parsons, 1990). Therefore, it is harder 
for reptiles to colonize harsh thermic environments.

As a result, it is intriguing to study how populations at 
different altitudes of the Andean mountains face these 
ecological challenges. In addition to thermoregulatory 
advantages, various microhabitats supply other resourc-
es like preys, shelter, mating sites, oviposition sites, and 
general conditions that allow populations to persist on 
a specific location (Lott, 1991; Hodder et al., 1998; Smith 
& Ballinger, 2001; Van Sluys et al., 2004). Understanding 
the role of microhabitat use in lizard’s ecology allows to 
assess the potential impacts of environmental chang-
es and to suggest conservation measures (Smith & 
Ballinger, 2001). As resources are not equally available 
for lizards to exploit, time and energy budget become 
relevant factors as activity patterns may enhance or con-
strain the use of resources, and therefore alter popula-
tion or community dynamics (Lima & Dill, 1990; Morgan, 
2004). If activity periods are restricted to a few hours of 
the day and lizards do not have enough time for daily 
activities, a population’s survivability could be at risk 
(Smith & Ballinger, 2001; Sinervo et al., 2010; Andrango 
et al., 2016).

The genus Stenocercus comprises species widely dis-
tributed in South America occurring from sea level up to 
4,000  m  a.s.l. and occupying a wide variety of habitats 
(Torres-Carvajal, 2007, 2009). Stenocercus trachyceph-
alus is an endemic species of the Eastern Colombian 
Andes mountain range, distributed between 1,749 and 

3,800 m a.s.l. It inhabits transitional areas between cloud 
forests and páramos, boundaries of native forests and 
forest plantations (Rodríguez-Barbosa et  al., 2017). One 
of the main concerns about this lizard is that the anthro-
pogenic activities on Andean ecosystems have driven to 
changes in land cover over the years (Armenteras et al., 
2017; Rodríguez-Barbosa et al., 2017). This leads to hab-
itat loss and fragmentation of ecosystems which has 
proved to have negative impacts on the populations of 
this lizard (Moreno-Arias et al., 2010).

Given the wide altitudinal range of this species and 
the variable abiotic conditions that provide the Andes 
in the tropics, our objective was: to describe the use of 
microhabitat and activity pattern of S. trachycephalus on 
three localities of different altitude in the eastern Andes 
mountain range. Then evaluate the effect of the altitudi-
nal gradient (1,280  meters) over these two natural his-
tory traits. Additionally, we assess the relation between 
environmental temperature (that has variation along 
the gradient) and activity patterns. We expected that al-
titude would progressively modify these natural history 
traits.

MATERIAL AND METHODS

Study area

Fieldwork was carried out on the western flank of 
eastern Andes mountain range of Colombia along an al-
titude gradient between 2,670‑3,950 m a.s.l. at three dis-
tinct locations in Cundinamarca, Boyacá, and Santander 
departments. Our choice of localities was determined by 
the difference in altitude among them, ease of access to 
each place, and different vegetation formations given by 
elevational changes (Fig. 1):

(1)	 The Santuario de Flora y Fauna Guanentá Alto Rio 
Fonce (Guanentá), a National Natural Park protected 
area of Colombia and its buffer area, located between 
Boyacá and Santander departments [05°58′39.90″N, 
73°05′02.22″W]. The rainy season occurs from April 
to June from September to December with a pre-
cipitation of 1,216  mm and a mean temperature of 
7.02℃ (IDEAM, 2017). The dry season occurs from 
January to February, and from July to August with 
annual precipitation of 213  mm and a mean tem-
perature of 6,73℃ (IDEAM, 2017). We surveyed 
during September 2018 and February and April 2019, 
between 3,700‑3,950  m  a.s.l. This location presents 
abrupt topography with high mountains and val-
leys, several lakes, swamps, and streams. The sur-
veyed habitat was a páramo ecosystem, around open 
high-Andean grasslands with several shrub patches 
and rocky outcrops. The main vegetation consisted 
of grasses (Calamagrostis  sp.) and several species of 
Espeletia spp. (Asteraceae) along with a high diversity 
of plants in both herbaceous and shrub stratum.

(2)	 Las Moyas páramo is at the east of Bogotá 
[04°39′22.26″N, 74°01′33.72″W]. The rainy season 
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happens from April to May and from October to 
November with precipitation of 444 mm and a mean 
temperature of 8.5℃ (IDEAM, 2017). The dry season is 
in January and February and from July to August with 
precipitation of 256 mm and a mean temperature of 
8.3℃ (IDEAM, 2017). We surveyed in August 2018 at 
3,270  m  a.s.l. (average). Las Moyas presents natural 
páramo vegetation with anthropic degradation. The 
habitat is diverse and heterogeneous like most pára-
mos but with some introduced vegetation (Pinus sp.). It 
consisted of high-Andean grasslands and shrublands 
with big rocky outcrops. The herbaceous stratum 
was mainly composed of Calamagrostis sp. (Poaceae) 
and several Puya  spp. (Bromeliaceae). The shrub 
stratum consists of Arcytophyllum  sp. (Rubiaceae), 
Hypericum spp. (Hypericaceae), Espeletia sp. and sev-
eral other species of Asteraceae, Melastomataceae, 
and Ericaceae.

(3)	 La Chacua is in Soacha municipality of Cundinamarca 
department, at the south of Bogotá D.C., 
[04°31′55.02″N, 74°13′42.48″W]. The rainy season oc-
curs from April to May and from October to November 
with a precipitation of 376 mm and a mean tempera-
ture of 9.15℃ (IDEAM, 2017). The dry season occurs 
from January to February, and from July to August with 
a precipitation of 778 mm and a mean temperature of 
11.60℃ (IDEAM, 2017). We surveyed from May to June 
(when the dry season started) 2014 at 2,670 m a.s.l. 
This study site had soft hills with open habitats, hav-
ing mostly herbaceous vegetation, mainly Cenchrus 
clandestinum (Chiov.) Morrone, Calamagrostis sp 
(Poaceae), small rocky outcrops, and human-made 
rock walls. Most of the vegetation is a product of dis-
turbances by anthropic activities. However, some nat-
ural vegetation represented in several isolated shrub 
patches is still present in the zone which consists 
mostly of Asteraceae, Ericaceae  spp., Monnina  sp. 
(Polygalaceae), Dodonaea  sp. (Sapindaceae) and 
Miconia spp. (Melastomataceae).

Data collection

We conducted sampling using visual encounter sur-
veys (VES) (Heyer et al., 1994; Angulo et al., 2006). Surveys 
took place during the day from 8:00 to 16:00 and we did 
146 hours/researcher per surveyed locality. The surveys 
consisted of searching carefully all microhabitats occu-
pied by the species in the páramo grasslands.

For the lizards observed or captured, we recorded date, 
hour, GPS coordinates (with GARMIN GPS eTrex 10), and 
microhabitat type: ground, rock, shrub (> 1 m) and herb 
(< 1 m), based on páramo vegetation structure (Lozano-
Contreras & Schnetter, 1976; Rangel‑Ch. et al., 1997). A han-
dling permit only was required for the work at Guanentá, 
it was granted by the Ministerio de Ambiente y Desarrollo 
Sostenible by Resolution No. 205 of December 21 of 2018.

For the estimation of environmental temperature 
there are two approaches usually used, dataloggers 
(Monasterio et  al., 2009; Méndez-Galeano & Calderón-
Espinosa, 2017) and weather station data (Fischer & 
Lindenmayer, 2005; Iraeta et al., 2006; Pincheira-Donoso 
et al., 2007). We used the second as it is a common ap-
proach in ecological studies along environmental gradi-
ents (Graae et al., 2012). Although it has some limitations 
due to the potential difference between the station and 
the microsite of study due to altitude, wind, and slope 
(Graae et  al., 2012; Suggitt et  al., 2017; Bütikofer et  al., 
2020), we considered the most optimal station to get the 
smaller possible difference (Table 1). Additionally, for La 
Chacua station that had a 130 m altitude difference with 
the study site we adjusted weather station data to the 
elevation equivalent using a rate of ‑0.55℃/100 m based 
in extensive analysis of global climate records (Körner, 
2007; Graae et al., 2012; Yan et al., 2020). As extreme oper-
ative temperatures are better descriptors of the thermal 
environment than mean temperatures (Camacho et  al., 
2015), we used for our analysis the mean and standard 
deviation of temperature data, to account for the ex-
treme temperatures and central tendency measures.

Figure 1. Study locations in the Andes eastern mountain range. (A) Guanentá, 3,750‑3,950 m; (B) Las Moyas Páramo, 3,200 m; (C) La Chacua, 2,670 m.
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The weather stations used were: Instituto Distrital de 
Riesgos y Cambio Climático (IDIGER, 2020) for La Chacua 
and Las Moyas, and Parques Nacionales Naturales de 
Colombia (PNN) for Guanentá. We gathered the tem-
perature data for the days we sampled in each locality, 
during the interval of fieldwork. We then averaged tem-
peratures for the IDIGER station to get half-hour data for 
each station on the sampled days. PNN data was already 
in half-hour averages of temperature. Each station is list-
ed in Table 1, and the data used is available in Appendix I 
(Table S1‑S3).

Statistical analyses

A Pearson’s chi-square test was used to assess wheth-
er there was differential use of microhabitat between lo-
cations. To establish if one microhabitat was used more 
than others, a Chi-squared test for given probabilities 
was used for data on each site.

To estimate activity patterns, density curves were 
used to avoid biases that might appear choosing hour 
intervals (Ávila-Nájera et al., 2016; Hernández Hernández 
et  al., 2018). This approach is often used to describe 
activity patterns in mammals, and it allows to analyze 
data as circular probabilities (Oliveira-Santos et al., 2013; 
Oberosler et al., 2017). We used the Multimode R pack-
age to test for modality (Ameijeiras-Alonso et al., 2019). 
Besides, a Chi-squared test for given probabilities was 
used to evaluate if there was a preference for the morn-
ing vs the afternoon in each locality. Since activity pat-
terns data did not follow a Von Mises normal distribution 
(Watson’s U² test: p < 0.05), the Rao’s test was applied to 
assess uniformity, and the Watson-Wheeler test was per-
formed to address differences in activity patterns across 
locations. Also, overlap coefficients were calculated for 
each paired-locality comparison.

For environmental temperatures, the Levene’s test ad-
dressed differences in the temperatures among days for 
each site (taking every hour temperature average). For 
each locality, a normality (Shapiro-Wilks) test was per-
formed for the environmental temperatures and lizard’s 
activity (taken as hour probability values of Kernell den-
sity curves). Then, Pearson’s or Spearman’s correlation 
tests were performed to assess the correlation between 
environmental temperature and lizard’s activity for each 
locality. As weather station data might differ from the 
real temperature of the microhabitat (Graae et al., 2012) 
of the lizard, we did not expect a perfect match with this 
variable.

The same tests were performed to assess differences 
between the rainy and the dry seasons in La Chacua and 
Guanentá. Pearson’s Chi squared was applied to test if 
the use of microhabitat was different between seasons. 
Fisher’s exact test was used when data did not meet the 
assumptions for the Chi-squared test. Rao’s test was used 
to assess for uniformity in circular data in both seasons, 
and the Watson-Wheeler test was applied to evaluate 
differences in activity patterns given by seasonality. This 
was made to test if seasons were influencing our studied 
variables and whether the localities could be compared. 
Most of the statistical tests were performed with R‑Studio 
3.6 (RStudio Team, 2018), except for the Watson-Wheeler 
test performed in PAST 4.0 (Hammer, 2001).

RESULTS

Neither the use of microhabitat nor the activity 
pattern changed due to seasonality for La Chacua and 
Guanentá (see below). In other words, these ecological 
traits stayed consistent through the seasons in these two 
localities. For this reason, we could compare the results 
for the three sampled localities, even though Las Moyas 
was not sampled during the rainy season.

Use of microhabitat

A total of 111 individuals of S.  trachycephalus were 
observed across the three study sites. The abundance 
was higher at Guanentá (n = 44) and La Chacua (n = 40), 
and lower at Las Moyas (n  =  27). Among all microhab-
itats available, S.  trachycephalus was found mainly in 
herb (n = 69, 62.16%), followed by bare ground (n = 28, 
25.22%), and rocks (n = 10, 9.0%), being shrubs the least 
frequently used microhabitat (n = 2, 1.8%). There was a 
statistical difference on the use of microhabitat through 
localities (Pearson’s Chi-squared test: Χ² = 25.612, df = 6, 
P  <  0.001). A significant association was detected be-
tween the herb microhabitat and lizard’s abundance 
along all three locations (Chi-squared test for given 
probabilities: Guanentá: Χ² = 34.116, df = 3, P < 0.001; Las 
Moyas: Χ² = 66.185, df = 3, P < 0.001; La Chacua: Χ² = 18.6, 
df = 3, P < 0.001; Fig. 2).

Variation in microhabitat use among the study sites is 
shown in Fig. 2. Lizards used exclusively herb, and avoid-
ed almost all the other microhabitats in Las Moyas, even 
though they were available. For the herbaceous stratum 
in this locality, the lizards were found in Calamagrostis sp. 
(n = 17, 63%) and Puya sp. (n = 8, 29.6%), both resources 
were abundant in this study site (pers. obs.). At La Chacua 
and Guanentá there were Puya  spp. and other similar 
bromeliads, but any S. trachycephalus was recorded using 
the leaves of those plants. Besides herb, rock and ground 
were also often used in La Chacua (Fig. 2). On the other 
hand, in Guanentá the species showed a broader use of 
microhabitat being recorded in all types, with a higher 
abundance of lizards in herb and ground (Fig. 2). No dif-
ferences were found for this variable between seasons in 

Table 1. Weather stations of reference for each locality. Supplementary data 
in Appendix I.

Locality Station Coordinates Altitude Distance Frequency
Guanentá Lagunas Encantadas 05°58′07.1″N, 

73°05′07.5″W
3,850 1.5 km Half hour to Hour

Las Moyas Cerro Los Cazadores 04°39′57.7″N, 
74°01′43.1″W

3,180 1.0 km Minute

La Chacua Colegio Sierra Morena 04°34′28.7″N, 
74°10′12.2″W

2,800 8.0 km Minute
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Guanentá (Pearson’s Chi-squared test: Χ² = 4.1829, df = 3, 
P > 0.05) or in La Chacua (Fisher’s exact test: P > 0.05).

Activity pattens

Regarding the activity pattern, S.  trachycephalus 
was active throughout the day from 8:00 to 16:00  h 
with a similar pattern along the gradient. Support was 
found for unimodal activity pattern in Guanentá (Excess 
mass = 0.09706, p = 0.342) and Las Moyas (Excess mass 
= 0.12606, p = 0.21); in contrast, la Chacua had a bimod-
al activity pattern (Excess mass = 0.18537, p < 2.2e-16). 
The peaks of activity were at: 11:39 on Guanentá, 10:26 
on Moyas, and 11:28 and 14:07 on La Chacua (Fig.  3). 
There was not a preference for the morning or the af-
ternoon in most of the study sites (Chi-squared test for 
given probabilities, La Chacua: Χ² = 1.6, df = 1, P > 0.05, 
Guanentá: Χ² = 1.6, df = 1, P > 0.05), except for Las Moyas 
in the morning (Chi-squared test for given probabilities 

Χ² = 6.2593, df = 1, P < 0.05; Fig. 3). Different probabili-
ties of encounter for the lizards were obtained along the 
day across study sites. In particular, the activity started 
earlier in Las Moyas and ended later in the afternoon 
in Guanentá (Fig.  3). Rao’s test rejected uniformity for 
each locality (ULa Chacua = 271.3, p < 0.05; ULas Moyas = 261.6, 
p < 0.05; UGuanentá = 251.4; p < 0.05), and for seasonal data 
for Chacua (UDry = 267.4, p < 0.05; URainy = 263, p < 0.05) 
and Guanentá (UDry  =  257.2, p  <  0.05; URainy  =  262.5, 
p < 0.05). Activity patterns remained seasonally constant 
in both La Chacua (W = 1.114, p = 0.57) and Guanenta 
(W = 0.355, p = 0.84). Additionally, the activity patterns of 
S. trachycephalus did not varied between Guanentá and 
La Chacua (W = 0.136, p = 0.935). Nor between Guanentá 
and Las Moyas (but presents a considerable marginal sig-
nificance: W = 5.775, p = 0.056). Yet it differed from Las 
Moyas and La Chacua (W = 6.359, p = 0.04). This agrees 
with overlap coefficients (La Chacua-Las Moyas = 78.6; La 
Chacua-Guanenta: 91.6; Las Moyas-Guanenta: 79.9).

There was disparity regarding the environmen-
tal temperature variation among localities as Levene’s 
test showed differences in the variance of the sam-
pled day temperatures at each site: σ²  La  Chacua  =  1.099, 
σ² Las Moyas = 4.736, and σ² Guanentá = 4.442, (F [₂₂₃₅] = 14.794, 
P  <  0.001). Nevertheless, variance was significant-
ly different only between La Chacua and Las Moyas 
(F [₁₁₄₀] = 30.326, P < 0.001, Appendix II: Fig. S1, S2) and 
between La Chacua and Guanenta (F  [₁₁₅₈]  =  24.548, 
P  <  0.001, Appendix  II: Fig.  S1,  S3), but not between 
Las Moyas and Guanentá (F  [₁₁₇₂]  =  0.2524, P  =  0.616, 
Appendix  II: Fig.  S2,  S3). This means that temperature 
fluctuates more through the day at higher altitudes 
(Appendix  II: Fig. S2, S3). Furthermore, lower mean day 
temperatures were found at higher altitudes, (La Chacua 
=  18.07  ±  1.04℃, Las Moyas =  11.49  ±  2.17℃, and 
Guanenta =  10.96  ±  2.10℃) (Appendix  I: Table  S1‑S3). 
Additionally, we found significant positive correlations 
between environmental temperatures and probability 
of detecting lizards at Guanentá (R² = 0.723, P < 0.001) 
but no correlation was found for Las Moyas (rho = 0.254, 
P = 0.322) neither for La Chacua (R² = 0,515, P = 0.07).

DISCUSSION

Environmental factors and their variation on an altitu-
dinal gradient can have deep consequences over lizards’ 
ecological traits (Hertz & Huey, 1981; Smith & Ballinger, 
2001; Gilbert & Miles, 2019). There are few studies that as-
sess this potential variability on lizards in the Neotropics. 
Here we supply new information on how the use of 
microhabitat and activity patterns are influenced by a 
1,280 m altitudinal gradient. Contrary to expected, there 
were no conspicuous differences in the use of microhab-
itat and activity patterns along this altitudinal gradient.

Our results support that herb was the most used 
microhabitat by Stenocercus trachycephalus across the 
altitudinal gradient. Therefore, it must supply thermal 
or ecological advantages over other microhabitats also 
available at different elevations (Adolph, 1990; Peñalver-

Figure 2. Frequency of individuals of Stenocercus trachycephalus on each mi-
crohabitat by locality.

Figure 3. Activity patterns density curve along the three localities. Guanentá 
in dark gray, Las Moyas in light gray and La Chacua in gray.
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Alcázar et al., 2016; Ortega et al., 2019). In general, areas 
with open vegetation like grasses supply sunny patch-
es that increases the availability of thermally heteroge-
neous microhabitats that can be used for thermoregu-
lation (Scheffers et al., 2017; Guerra-Correa et al., 2020). 
Besides, studies on the composition of arthropod fauna 
in the lower vegetation strata of high-Andean ecosys-
tems match the stomach contents found in S. trachyceph-
alus (Rodríguez-Barbosa et al., 2017), indicating that herb 
and bare ground offer suitable resources for foraging. In 
this sense, this single microhabitat offers several useful 
resources for this species. Although, lizard’s abundance 
for this microhabitat was consistent, most of the differ-
ences observed along the gradient can be explained by 
the conditions of the locality rather than altitude.

On the other hand, the higher abundance of the liz-
ards in herb at Las Moyas may be linked to records of 
S. trachycephalus using medium-sized Puya sp. rosettes. 
In these bromeliads there are spinose-serrate margins 
on the leaves, and some authors have suggested that 
this kind of vegetation may be useful as a refuge for 
the species (Rodríguez-Barbosa et al., 2017). In addition, 
the increasing loss of natural habitat due to urbaniza-
tion near Las Moyas may be favoring the loss of refug-
es and increased predation rates in this peri-urban area 
(Anderson & Burgin, 2008). Moreover, domestic animals 
are also pushing these lizards to use rosettes more often 
to avoid predation or injuries considering the increasing 
presence of these animals (Loss & Marra, 2017; Woinarski 
et al., 2018). In fact, we recorded several S. trachycephalus 
with a regenerated tail, indicating predation events. The 
threats over Andean mountain environments (Alarcon & 
Pabón, 2013; Rodríguez Eraso et al., 2013; Correa-Ayram 
et  al., 2020) highlight the need of addressing the an-
thropic effect and apply conservation actions to maintain 
refuges and thermoregulation sites for these lizards, en-
abling populations to persist (Moreno-Arias et al., 2010).

Despite herb stratum’s overall association, local-
ities supplied heterogeneous microhabitats for liz-
ards such as several rocks, shrubs, and bare ground. In 
both Guanentá and Las Moyas, there were small to big 
rocky outcrops that were rarely used. In contrast, in La 
Chacua there was an artificial rock wall where most of 
the lizards using rocks were found. This observation is 
interesting as the anthropic transformation of the hab-
itat has been linked with a reduction in the abundance 
of this species (Moreno-Arias et al., 2010; Cortés-Suárez, 
2011). As La Chacua had a similar number of observa-
tions to Guanentá (the protected area), we propose that 
these stone structures have helped to mitigate the loss 
of natural habitat providing shelter and thermoregula-
tion sites, differing in this way from other natural rock 
microhabitats (Avery, 1978; Van Sluys et al., 2004; Ribeiro 
et al., 2009). This finding reveals the importance of main-
taining heterogenous microhabitats as S. trachycephalus 
takes advantage of conditions given by microhabitat and 
resource availability.

According to several studies in the natural history 
of tropidurid lizards, there are species with a restrained 
microhabitat use (specialist) and species with a varied 

use of microhabitats (generalist) (Van Sluys et al., 2004; 
Ribeiro et al., 2009; Daza & Castillo, 2011). For generalist 
Tropidurus, the use of microhabitat shifts towards the 
most abundant microhabitat available, although a wide 
variety of microhabitats is present along its environment 
(Van Sluys et al., 2004; Ribeiro et al., 2009). Daza & Castillo 
(2011) observed Stenocercus santander, a lizard distrib-
uted close to our focal species, using open ecosystems 
where rocks and soil microhabitat were preferred. By 
contrast S. trachycephalus used mostly herbaceous veg-
etation and rarely other microhabitats. As we recorded 
this lizard using several microhabitats along its distri-
bution, we consider that it is a microhabitat-generalist. 
Given the high diversity on the ecology of tropidurids, 
further studies on other species that occupy broad eco-
logical gradients will allow to identify patterns in the re-
sponses in this family and genus.

Regarding the overall activity pattern of Stenocercus 
trachycephalus, the lizards were active throughout most 
of the daylight period, with higher activity in the morn-
ing. This pattern was roughly consistent through the al-
titudinal gradient; hence, we rejected our hypothesis. A 
similar activity during the day is common among other 
tropidurids (Van Sluys et al., 2004) that present a single 
peak (Vitt et al., 1997; Ribeiro et al., 2009). In Tropidurus 
such as T. torquatus, T. itambere and T. oreadicus, it have 
been reported a similar activity pattern, but only during 
the rainy season (Faria & Araujo, 2004; Ribeiro et al., 2009; 
Velasquez & Gonzalez, 2010). Instead, S. santander is also 
active during the day but it has a more consistent activity 
from 7:30‑15:30 (Daza & Castillo, 2011). There are not pre-
vious studies showing the differences in activity patterns 
along an altitudinal gradient in any tropidurid species.

The higher activity in the morning was especially 
pronounced in Las Moyas, where activity started earlier. 
In general, lizards are cool after night in the early morn-
ing and as they emerge from their refuges, they use the 
sun to warm up (Paulissen, 2001; Ibargüengoytía, 2005; 
Vidal et al., 2010). This is especially important in high-An-
dean ecosystems as the environment presents tempera-
tures close to 0℃ during the night across all the year 
(Sarmiento, 1986; Navas, 2002). The higher activity early 
in the morning at Las Moyas must be a consequence of 
the strong effect of a continuous cloud cover observed 
only in this locality (pers.  obs.), that decreases the inci-
dence of solar radiation leading to less opportunities for 
thermoregulation (Howland et al., 1990; Vitt, 1991; Perez-
Mellado & de la Riva, 1993; Vitt & Zani, 1996; Vitt et  al., 
1997; Rangel‑Ch., 2000). Moreover, the cold and fluctu-
ating temperatures presented at this locality constrain 
the activity during the day (Fig. 3.; Appendix I: Table S2; 
Appendix  II: Fig.  S2) (Hertz, 1981; Hertz & Huey, 1981; 
Méndez-Galeano & Calderon-Espinosa, 2017). Therefore, 
to avoid losing opportunities to reproduce or forage, liz-
ards need to optimize their time investing their activity 
in the morning, especially at this locality.

On the other hand, there was a unimodal activity 
pattern at higher elevations (Las Moyas and Guanentá) 
and a bimodal one in the lower elevation (La Chacua). A 
bimodal activity pattern has been associated with higher 
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midday temperatures in the lower altitudes of some spe-
cies (Appendix II: Fig. S1) (Huey et al., 1977; Marquet et al., 
1989; Zamora-Camacho et al., 2013). This pattern is also 
expected in high-mountain species such as S. guentheri 
where lizards may find temperatures over the maximum 
critical temperatures across their habitat (Guerra-Correa 
et al., 2020). Thus, it is not a surprise that a bimodal activ-
ity pattern was found at La Chacua, which had a higher 
mean and midday temperatures (Appendix I: Table S1).

Despite the mentioned variation of the activity 
peaks along the altitudinal gradient, we could not de-
tect differences in activity patterns between Chacua 
and Guanentá. This is explained by the fact that activity 
patterns resembled in all localities, as the overlap coeffi-
cients proves. Therefore, it can be said that activity pat-
terns of S. trachycephalus are similar along the altitudinal 
gradient with few changes caused by the specific charac-
teristics of each site. This supports that lizards have their 
capabilities to counter thermal constraints along the 
gradient (Bauwens et al., 1996; Gilbert & Miles, 2019). In 
contrast to our results, other lizards like Psammodromus 
algirus do present pronounce differences on its activity 
pattern along an altitudinal gradient (Zamora-Camacho 
et al., 2013). However, we observed differences in the ac-
tivity pattern between Las Moyas and La Chacua and a 
marginal difference between Las Moyas and Guanentá, 
explained by the particular weather conditions observed 
for Las Moyas.

We did not find a correlation between temperature 
and probability of encounter of the lizards at Las Moyas 
and La Chacua. Thermoregulatory behaviors might ex-
plain this as microhabitat selection (herb) that allow in-
dividuals to compensate the particular thermal regime 
of Las Moyas (Appendix II: Fig. S2 (Bauwens et al., 1996; 
Fierro-Estrada et  al., 2019), which also explains the ab-
sence of these lizards on rocks and ground at this locality, 
and the use of Puya  sp. rosette plants in addition to its 
use as a refuge (Guerra-Correa et al., 2020). Several other 
ecological factors might explain the lack of association 
of activity patterns with temperature in this locality. For 
example, exposition to predator cues (Downes, 2001), re-
productive season (Ribeiro et  al., 2009), sex proportion 
in a population (Vidal et al., 2010) or the activity sched-
ule of their prey (Huey, 1974; Díaz & Cabezas-Díaz, 2004). 
Finally, as we explained before we did not except perfect 
match between weather station temperatures and mi-
crosite temperatures, so this result can be linked to this 
fact (Suggitt et al., 2017).

CONCLUSION

We studied two natural history traits of S. trachyceph-
alus across a 1,280  m elevation gradient, as it shapes 
multiple ecological variables of this lizard’s habitats. We 
expected that microhabitat use and activity patterns 
changed among the studied sites due to differences 
in altitude. However, our study proved that the use of 
microhabitat and activity pattern of S.  trachycephalus 
was rather similar along the altitudinal gradient, so we 

rejected our hypothesis. We conclude that S.  trachy-
cephalus is a microhabitat generalist lizard influenced 
by resource availability, principally using herb stratum 
in all the study sites. The use of microhabitat and activ-
ity patterns may shift depending on specific conditions 
of each site, for example, availability of Puya rosettes, 
human-made rock walls, anthropic disturbance or a 
combined effect of low temperatures and cloud cover. 
On the other hand, this lizard’s activity patterns ranged 
from 8:00 to 16:00 with higher activity in the morning 
hours. Some differences along the gradient were found 
such as changes from bimodal to unimodal pattern as 
altitude increased. This plasticity helps them to face 
thermal and ecological constraints that come with an 
environmental gradient.

We highlight the importance of studying high-moun-
tain lizards, as they are interesting models and ecolog-
ical information about them is scarce, especially in the 
Neotropics. Further studies should focus on understand-
ing the thermal biology of this lizard. Besides, Las Moyas 
is an interesting locality for further studies as the micro-
habitat use and activity pattern were more constrained. 
It was also the locality with the lowest abundance of 
lizards. Finally, the anthropic impact and its relationship 
to populations dynamics should be considered in future 
works.
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APPENDIX I. SUPPLEMENTARY TABLES

Table S2. Environmental temperature (℃) throughout the day for the sampled days in Las Moyas.

Table S1. Environmental temperature (℃) throughout the day for the sampled days in La Chacua.

Table S3. Environmental temperature (℃) throughout the day for the sampled days in Guanentá.

Hour/Date 31/05/14 08/06/14 14/06/14 21/06/14
0:00 15.59 14.89 14.85 14.74
0:30 15.35 15.24 14.80 14.47
1:00 15.43 15.53 14.71 14.72
1:30 15.50 14.66 14.60 14.54
2:00 15.05 14.56 14.37 14.52
2:30 14.39 14.54 14.43 14.56
3:00 14.58 14.47 14.63 14.54
3:30 14.61 14.47 14.81 14.71
4:00 14.72 14.32 14.85 14.71
4:30 14.83 14.17 14.74 14.85
5:00 14.78 14.17 14.70 14.71
5:30 14.70 14.35 14.87 14.72
6:00 14.75 14.99 14.96 14.81
6:30 15.05 16.06 15.21 14.42
7:00 15.42 16.65 15.40 15.08
7:30 15.85 16.43 15.65 15.62

Hour/Date 31/05/14 08/06/14 14/06/14 21/06/14
8:00 16.53 17.35 15.69 15.69
8:30 16.95 17.42 16.05 15.98
9:00 17.25 17.71 16.72 17.08
9:30 17.74 18.05 16.72 17.99

10:00 17.66 18.64 17.18 17.85
10:30 17.81 18.24 17.97 18.64
11:00 18.51 18.08 19.09 19.17
11:30 18.68 19.18 19.41 19.14
12:00 18.24 18.76 19.09 19.00
12:30 17.61 18.42 19.09 19.02
13:00 19.23 18.44 18.43 19.12
13:30 18.67 18.60 19.80 18.45
14:00 18.48 19.12 18.99 19.05
14:30 18.13 18.54 17.57 19.12
15:00 19.17 18.42 15.82 18.39
15:30 19.33 17.15 15.66 17.82

Hour/Date 31/05/14 08/06/14 14/06/14 21/06/14
16:00 18.99 17.34 15.70 17.09
16:30 17.68 17.07 15.60 17.00
17:00 17.73 16.72 15.37 16.70
17:30 17.20 16.45 15.34 16.40
18:00 16.80 16.05 14.94 16.14
18:30 16.69 15.95 14.90 15.98
19:00 16.51 15.86 15.02 15.92
19:30 16.14 15.68 15.00 15.87
20:00 16.19 15.56 14.92 15.86
20:30 16.27 15.48 14.90 15.94
21:00 16.20 15.53 15.05 16.01
21:30 16.12 15.55 14.97 15.83
22:00 16.00 15.41 14.79 15.57
22:30 15.85 15.33 14.88 15.38
23:00 15.81 15.35 14.66 15.27
23:30 15.65 15.18 14.52 15.34

Hour/Date

07
/0

8/
18

08
/0

8/
18

11
/0

8/
19

19
/0

8/
19

20
/0

8/
18

0:00 7.32 7.50 8.31
0:30 7.15 7.35 8.47
1:00 7.41 7.03 8.53
1:30 7.32 7.04 8.52
2:00 7.63 7.18 8.40
2:30 7.81 7.18 8.37
3:00 7.76 7.10 8.22
3:30 8.05 6.99 8.04
4:00 7.95 6.77 7.97
4:30 7.58 7.14 8.43 8.02
5:00 7.64 7.48 8.35 8.03
5:30 7.76 7.52 8.28 7.85
6:00 7.96 7.60 8.29 8.04
6:30 8.12 7.81 8.27 8.31
7:00 8.73 8.18 8.23 8.66
7:30 9.48 8.68 7.94 10.12

Hour/Date

07
/0

8/
18

08
/0

8/
18

11
/0

8/
19

19
/0

8/
19

20
/0

8/
18

8:00 10.24 8.97 7.98 10.47
8:30 10.52 9.13 7.94 10.52
9:00 11.25 9.39 11.48 8.02 10.24
9:30 13.90 10.28 13.22 7.96 10.37

10:00 15.01 11.19 12.43 8.06 10.87
10:30 15.09 11.20 13.45 8.03 11.46
11:00 12.75 12.23 14.82 8.23 12.43
11:30 11.43 12.45 15.10 8.35 12.62
12:00 10.33 11.13 14.76 8.41 12.87
12:30 9.96 11.14 14.73 9.04 15.41
13:00 10.08 10.45 15.03 9.45 14.38
13:30 9.95 11.12 16.61 10.08 13.40
14:00 10.42 12.97 16.05 10.24 12.26
14:30 10.26 12.66 14.31 10.69 12.07
15:00 10.18 12.06 13.61 11.99 13.04
15:30 8.80 11.31 12.79 11.24 12.18

Hour/Date

07
/0

8/
18

08
/0

8/
18

11
/0

8/
19

19
/0

8/
19

20
/0

8/
18

16:00 8.33 11.43 14.57 11.20 12.84
16:30 8.36 10.47 11.56 10.40 12.34
17:00 9.02 9.71 10.01 10.24 13.73
17:30 9.89 9.08 9.03 10.97 11.79
18:00 9.99 8.80 8.89 9.87 9.49
18:30 8.88 8.60 8.87 8.37 8.92
19:00 9.62 8.67 8.33 8.39 8.94
19:30 9.04 8.47 8.49 8.86 9.19
20:00 8.75 8.34 8.52 9.00 8.95
20:30 8.60 7.69 8.45 9.01 8.74
21:00 8.05 7.57 8.46 9.05 8.59
21:30 8.08 7.71 8.48 8.56 8.51
22:00 7.87 7.66 8.52 8.46 8.37
22:30 7.61 7.59 8.39 8.62 8.25
23:00 7.55 7.64 8.39 8.50 8.42
23:30 7.48 7.55 8.33 8.91 8.37

Hour/Date

20
/0

9/
18

21
/0

9/
18

22
/0

9/
18

23
/0

9/
18

15
/0

2/
19

16
/0

2/
19

17
/0

2/
19

07
/0

4/
19

0:00 5 4.3 5.5 4.3 5.6 5.8 4.5 5.8
0:30 5.1 4.4 5.7 4.3
1:00 5 4.6 5.7 5.1 6.2 4.6 4.5 5.3
1:30 5.2 4.5 5.6 5.3
2:00 5.2 4.8 5.6 5.8 5.2 5.4 4.3 5.5
2:30 5.2 5.2 5.7 4.8
3:00 5.2 4.4 5.5 5.3 4.7 3.1 5.8 4.8
3:30 5.2 4.4 5.2 5
4:00 4.9 5.2 5.2 5.2 5.8 4.4 6.2 2.8
4:30 4.5 4.6 4.9 5.1
5:00 4.5 4.1 4.6 4.9 6.4 5.1 4.1 2.9
5:30 4.2 4 4.3 4.8
6:00 3.8 4.3 4.6 4.7 5.2 2.8 5.8 3
6:30 3.8 4.6 5 4.7
7:00 4.2 4.9 5.5 4.8 6.3 3.1 6.9 4.4
7:30 6.1 6.7 6.2 5.3

Hour/Date

20
/0

9/
18

21
/0

9/
18

22
/0

9/
18

23
/0

9/
18

15
/0

2/
19

16
/0

2/
19

17
/0

2/
19

07
/0

4/
19

8:00 7.5 8.1 7.3 5.8 11.2 7.8 9.2 6.1
8:30 8.8 9.3 8.4 6.4
9:00 9.3 9.9 9.1 6.6 14.2 11.5 12 8.9
9:30 10.5 11.2 9.2 7.3

10:00 11.3 11.2 10.1 8.1 14.6 9.4 13.5 10.6
10:30 11.4 11.9 11.2 9.4
11:00 11.9 12.6 10.4 10.3 12.9 9.7 15.2 11.1
11:30 12.3 13.7 10.4 9.3
12:00 13.1 14.6 10.6 9.9 14.6 11 12.1 13.3
12:30 13.1 13.1 13 9.3
13:00 12.6 15.1 13.8 9 14.7 11.9 12.1 11.9
13:30 12.9 13.5 12.5 8.3
14:00 12.6 13 11.4 9.6 11.3 13.2 11 10.6
14:30 13.2 12.1 11.1 10.1
15:00 11.4 12.4 10.6 10.4 11.6 10.9 9.5 10.4
15:30 11.8 11 10.4 8.8

Hour/Date

20
/0

9/
18

21
/0

9/
18

22
/0

9/
18

23
/0

9/
18

15
/0

2/
19

16
/0

2/
19

17
/0

2/
19

07
/0

4/
19

16:00 11.4 10.1 10.6 8.8 10.8 8.7 7.5 8.4
16:30 11.2 9.5 10.6 9.3
17:00 9.2 9.6 9.9 8.2 9.7 7.2 7.6 8.8
17:30 8.6 8.8 8.9 7.3
18:00 6.1 7.6 6.7 6.4 9.1 6.4 6.8 7.4
18:30 5.4 7 5.3 6
19:00 5.2 6.1 4.9 6.3 6.2 6.3 6.6 6.8
19:30 4.9 5.8 5.2 6.4
20:00 4.2 5.9 6 6.3 4.7 6.5 6.4 7.1
20:30 4.7 5.7 6 6.1
21:00 5.2 5.9 5.9 5.8 4.3 6.7 6.5 6.2
21:30 5.4 6 5.7 5.2
22:00 5.3 5.9 5.9 4.8 4.7 6.6 6.4 6
22:30 4.9 6.1 5 5.2
23:00 4.1 5.9 5.4 4.8 4.2 5.9 6.1 6.3
23:30 3.9 5.9 5 4.6
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APPENDIX II. SUPLEMENTARY FIGURES

Figure S3. Environmental temperature fluctuation throughout the day in Guanentá.

Figure S1. Environmental temperature fluctuation throughout the day in La Chacua.

Figure S2. Environmental temperature fluctuation throughout the day at Las Moyas.
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