Acessibilidade / Reportar erro

Characterization of conducting hydrogels made with PAAm and PEDOT/PSS using factorial design

Conductive semi-IPN hydrogels made with polyacrylamide (PAAm) and the conductive polymer poly(3,4-ethylene dioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) were synthesized and the hydrophilicity, mechanical, ionic conductivity and optical properties were characterized through the 2³ factorial design. The experiments concerning the factorial design were randomly performed. The inputs were acrylamide (AAm), N,N’-methylene-bis-acrylamide (MBAAm) and PEDOT/PSS contents, each fixed in three levels, one being the central point. The outputs were the swelling degree, maximum compression stress, ionic conductance and relative intensity of light transmitted through the hydrogel. ANOVA was obtained using Statistical Software®. The results of the twelve runs from the factorial design (eight runs from 2³ plus four central point replicates) were applied to evaluate the main effects and their interaction, in addition to decide if they are statistically significant. The results demonstrated that mechanical stability of semi-IPN hydrogels is preserved, with PEDOT/PSS creating additional entanglements within the PAAm network. In addition, the optical properties are strongly influenced by the presence of PEDOT/PSS. In summary, hydrogels could be synthesized with controlled hydrophilicity, transparency and mechanical stability, which is important for optical devices.

Conducting hydrogels; factorial design; optic properties; mechanical stability


Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br