Acessibilidade / Reportar erro

Prevalence of bovine tuberculosis: A systematic review and meta-analysis

Prevalência da tuberculose bovina: uma revisão sistemática e meta-análise

ABSTRACT:

Bovine tuberculosis is a zoonotic disease with global distribution. This study aimed to describe its prevalence in cattle through a systematic review and meta-analysis of studies conducted all around the world. The research consisted of a systematic literature review following the precepts of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Cross-sectional studies that described the prevalence of the disease using the diagnostic method through an intradermal test with bovine and avian purified protein derivative (PPD) were selected. Identifying articles was performed in the PubMed, ScienceDirect, Scopus, and Web of Science databases. Of the total number of studies found (n=1,839), 60 met all criteria and were included in this review. The overall prevalence was 3.27% (2.11-5.05%) for animals and 18.09% (11.20-27.90%) for herds. Analysis of risk factors for tuberculosis in cattle was found or performed in 50 studies. The heterogeneity identified among the works included was expected, given the differences in research design, year of publication, and the number of animals sampled. It is necessary to evaluate the insertion of new ante mortem diagnostic tests into control and eradication programs, which, combined with allergic tests, may identify the largest number of animals that presented an actual positive for the disease.

INDEX TERMS:
Mycobacterium bovis; tuberculosis; prevalence; systematic review

RESUMO:

A tuberculose bovina é uma doença zoonótica com distribuição global. O objetivo do presente trabalho foi descrever a prevalência da enfermidade em bovinos através de uma revisão sistemática e meta-análise em estudos realizados no mundo. A pesquisa consistiu em uma revisão sistemática de literatura seguindo os preceitos da metodologia “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA). Estudos transversais que descreveram a prevalência da enfermidade utilizando o método de diagnóstico através da prova intradérmica com derivado proteico purificado (PPD) bovino e aviário foram selecionados. O processo de identificação dos artigos foi desenvolvido nas bases de dados PubMed, ScienceDirect, Scopus e Web of Science. Do total de estudos encontrados (n=1.839), 60 atenderam a todos os critérios e foram incluídos na presente revisão. A prevalência geral encontrada foi de 3,27% (2,11-5,05%) para animais e 18,09% (11,20-27,90%) para rebanhos. Análises de fatores de riscos para a tuberculose em bovinos foi encontrada ou realizada em 50 estudos. A heterogeneidade identificada entre os trabalhos incluídos nesta revisão era esperada tendo em vista as diferenças relacionadas aos desenhos de pesquisa, anos de publicação dos estudos e a quantidade de animais amostrados. É necessária a avaliação da introdução de novos testes de diagnóstico ante-mortem aos programas de controle e erradicação que, combinados com os testes alérgicos, possam identificar o maior número de animais verdadeiramente positivos para a enfermidade.

TERMOS DE INDEXAÇÃO:
Mycobacterium bovis; tuberculose; prevalência; revisão sistemática

Introduction

Bovine tuberculosis (BTB) is a zoonotic disease that causes economic losses in cattle breeding and has direct impacts on public health in developed and developing countries. Caused by a member of the Mycobacterium tuberculosis complex, mainly Mycobacterium bovis, the microorganism adapts to cattle as a host but also causes the disease in other animal species, including some of the wild type (FAO et al. 2017FAO, OMS & OIE 2017. Hoja de Ruta Contra la Tuberculosis Zoonótica. Food and Agriculture Organization of the United Nations (FAO), Organización Mundial de la Salud (OMS), Organización Mundial de Sanidad Animal (OIE), World Health Organization(WHO). 20p. <https://dx.doi.org/10665/259231>
https://doi.org/https://dx.doi.org/10665...
).

Presenting worldwide distribution but with a significant reduction or elimination in developed countries (Kemal et al. 2019Kemal J., Sibhat B., Abraham A., Terefe Y., Tulu K.T., Welay K. & Getahun N. 2019. Bovine tuberculosis in Eastern Ethiopia: Prevalence, risk factors and its public health importance. BMC Infect. Dis. 19:39. <https://dx.doi.org/10.1186/s12879-018-3628-1> <PMid:30630431>
https://doi.org/https://dx.doi.org/10.11...
), bovine tuberculosis is on the list of notifiable diseases of the World Organization for Animal Health (WOAH). Intergovernmental organizations, as well as other entities, have adopted the One Health approach to discuss the challenges of the animal, human, and environmental health interface more comprehensively (Olea-Popelka et al. 2017Olea-Popelka F., Muwonge A., Perera A., Dean A.S., Mumford E., Erlacher-Vindel E., Forcella S., Silk B.J., Ditiu L., El Idrissi A., Raviglione M., Cosivi O., LoBue P. & Fujiwara P.I. 2017. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis - a call for action. Lancet Infect. Dis. 17(1):e21-e25. <https://dx.doi.org/10.1016/S1473-3099(16)30139-6> <PMid:27697390>
https://doi.org/https://dx.doi.org/10.10...
).

In cattle, many cases are asymptomatic, making its control difficult. When present, clinical signs vary from cough and dyspnea in the respiratory form to diarrhea and constipation when the digestive system is involved (Dametto et al. 2020Dametto L.L., Santos E.D., Santos L.R. & Dickel E.L. 2020. Bovine tuberculosis: diagnosis in dairy cattle through the association of analyzes. Pesq. Vet. Bras. 40(1):12-16. <https://dx.doi.org/10.1590/1678-5150-PVB-6294>
https://doi.org/https://dx.doi.org/10.15...
).

The delayed-type hypersensitivity skin test is the standard method for detecting the disease in cattle. It consists of measuring skin thickness, injecting tuberculin intradermally, and measuring any subsequent swelling at the injection site 72 hours later. The comparative cervical test (CCT), using bovine and avian tuberculin, has moderate to high sensitivity (68-95%) and high specificity (96-99%) (Ghebremariam et al. 2016Ghebremariam M.K., Rutten V.P.M.G., Vernooij J.C.M., Uqbazghi K., Tesfaalem T., Butsuamlak T., Idris A.M., Nielen M. & Michel A.L. 2016. Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea. BMC Vet. Res. 12:80. <https://dx.doi.org/10.1186/s12917-016-0705-9> <PMid:27225267>
https://doi.org/https://dx.doi.org/10.11...
), being important for differentiating between infection by M. bovis and environmental mycobacteria.

Outbreaks of the disease in cattle can generate large economic costs for society, as they can affect international trade of animals and animal products, generate productivity losses (e.g., reduced production of milk and meat, and reduced fertility), require costly measures due to restrictions in animal markets, trigger large control and eradication programs, and increase human health costs (Dejene et al. 2016Dejene S.W., Heitkönig I.M.A., Prins H.H.T., Lemma F.A., Mekonnen D.A., Alemu Z.E., Kelkay T.Z. & Boer W.F. 2016. Risk factors for Bovine Tuberculosis (bTB) in cattle in ethiopia. PLoS One 11(7):e0159083. <https://dx.doi.org/10.1371/journal.pone.0159083> <PMid:27404387>
https://doi.org/https://dx.doi.org/10.13...
).

In Brazil, for example, only 14 Federative Units conducted studies to characterize the epidemiological situation of the disease, finding levels of prevalence varying from 0.0009% to 1.6% (Bahiense et al. 2016Bahiense L., Ávila L.N., Bavia M.E., Amaku M., Dias R.A., Grisi-Filho J.H.H., Ferreira F., Telles E.O., Gonçalves V.S.P., Heinemann M.B. & Ferreira Neto J.S. 2016. Prevalence and risk factors for bovine tuberculosis in the State of Bahia, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3549-3560. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3549>
https://doi.org/https://dx.doi.org/10.54...
, Belchior et al. 2016Belchior A.P.C., Lopes L.B., Gonçaves V.S.P. & Leite R.C. 2016. Prevalence and risk factors for bovine tuberculosis in Minas Gerais State, Brazil. Trop. Anim. Health Prod. 48(2):373-378. <https://dx.doi.org/10.1007/s11250-015-0961-x>
https://doi.org/https://dx.doi.org/10.10...
, Dias et al. 2016Dias R.A., Ulloa-Stanojlovic F.M., Belchior A.P.C., Ferreira R.S., Gonçalves R.C., Aguiar R.S.C.B., Sousa P.R., Santos A.M.A., Amaku M., Ferreira F., Telles E.O., Grisi-Filho J.H.H., Gonçalves V.S.P., Heinemann M.B. & Ferreira Neto J.S. 2016. Prevalence and risk factors for bovine tuberculosis in the state of São Paulo, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3673-3684. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3673>
https://doi.org/https://dx.doi.org/10.54...
, Galvis et al. 2016Galvis J.O.A., Grisi-Filho J.H.H., Costa D., Said A.L.P.R., Amaku M., Dias R.A., Ferreira F., Gonçalves V.S.P., Heinemann M.B., Telles E.O. & Ferreira Neto J.S. 2016. Epidemiologic characterization of bovine tuberculosis in the State of Espírito Santo, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3567-3578. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3567>
https://doi.org/https://dx.doi.org/10.54...
, Guedes et al. 2016Guedes I.B., Bottene I.F.N., Monteiro L.A.R.C., Leal Filho J.M., Heinemann M.B., Amaku M., Grisi-Filho J.H.H., Dias R.A., Ferreira F., Telles E.O., Gonçalves V.S.P. & Ferreira Neto J.S. 2016. Prevalence and risk factors for bovine tuberculosis in the State of Mato Grosso do Sul, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3579-3588. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3579>
https://doi.org/https://dx.doi.org/10.54...
, Lima et al. 2016Lima P.R.B., Nascimento D.L., Almeida E.C., Pontual K.A.Q., Amaku M., Dias R.A., Ferreira F., Gonçalves V.S.P., Telles E.O., Grisi-Filho J.H.H., Heinemann M.B., Silva J.C.R. & Ferreira Neto J.S. 2016. Epidemiological situation of bovine tuberculosis in the State of Pernambuco, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3601-3610. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3601>
https://doi.org/https://dx.doi.org/10.54...
, Néspoli et al. 2016Néspoli J.M.B., Negreiros R.L., Amaku M., Dias R.A., Ferreira F., Telles E.O., Heinemann M.B., Grisi-Filho J.H.H., Gonçalves V.S.P. & Ferreira Neto J.S. 2016. Epidemiological situation of bovine tuberculosis in the state of Mato Grosso, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3589-3600. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3589>
https://doi.org/https://dx.doi.org/10.54...
, Queiroz et al. 2016Queiroz M.R., Groff A.C.M., Silva N.S., Grisi-Filho J.H.H., Amaku M., Dias R.A., Telles E.O., Heinemann M.B., Ferreira Neto J.S., Gonçalves V.S.P. & Ferreira F. 2016. Epidemiological status of bovine tuberculosis in the state of Rio Grande do Sul, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3647-3658. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3647>
https://doi.org/https://dx.doi.org/10.54...
, Ribeiro et al. 2016Ribeiro L.A., Gonçalves V.S.P., Francisco P.F.C., Mota A.L.A.A., Nascimento G.T., Licurgo J.B., Ferreira F., Grisi-Filho J.H.H., Ferreira Neto J.S., Amaku M., Dias R.A., Telles E.O., Heinemann M.B. & Borges J.R.J. 2016. Epidemiological status of bovine tuberculosis in the Federal District of Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3561-3566. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3561>
https://doi.org/https://dx.doi.org/10.54...
, Rocha et al. 2016Rocha W.V., Jayme V.S., Mota A.L.A.A., Brito W.M.E.D., Pires G.R.C., Ferreira Neto J.S., Grisi-Filho J.H.H., Dias R.A., Amaku M., Telles E.O., Ferreira F., Heinemann M.B. & Gonçalves V.S.P. 2016. Prevalence and herd-level risk factors of bovine tuberculosis in the State of Goiás, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3625-3638. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3625>
https://doi.org/https://dx.doi.org/10.54...
, Silva et al. 2016Silva M.C.P., Gonçalves V.S.P., Mota A.L.A.A., Koloda M., Ferreira Neto J.S., Grisi-Filho J.H.H., Dias R.A., Amaku M., Telles E.O., Ferreira F., Heinemann M.B., Alfieri A.A. & Muller E.E. 2016. Prevalence and herd-level risk factors for bovine tuberculosis in the State of Paraná, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3611-3624. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3611>
https://doi.org/https://dx.doi.org/10.54...
, Veloso et al. 2016Veloso F.P., Baumgarten K.D., Mota A.L.A.A., Ferreira F., Ferreira Neto J.S., Grisi-Filho J.H.H., Dias R.A., Amaku M., Telles E.O. & Gonçalves V.S.P. 2016. Prevalence and herd-level risk factors of bovine tuberculosis in the State of Santa Catarina. Semina, Ciênc. Agrár. 37(5 Supl.2):3659-3672. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3659>
https://doi.org/https://dx.doi.org/10.54...
, Vendrame et al. 2016Vendrame F.B., Amaku M., Ferreira F., Telles E.O., Grisi-Filho J.H.H., Gonçalves V.S.P., Heinemann M.B., Ferreira Neto J.S. & Dias R.A. 2016. Epidemiologic characterization of bovine tuberculosis in the State of Rondônia, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3639-3646. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3639>
https://doi.org/https://dx.doi.org/10.54...
, Ferreira Neto et al. 2020Ferreira Neto J.S., Barbosa R.G., Ferreira F., Amaku M., Dias R.A., Grisi-Filho J.H.H., Gonçalves V.S.P., Baquero O.S., Machado S.T.Z. & Telles E.O. 2020. Epidemiological situation of bovine tuberculosis in the State of Tocantins, Brazil. Semina, Ciênc. Agrár. 42(3 Supl.1):1673-1684. <https://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p1673>
https://doi.org/https://dx.doi.org/10.54...
).

Research and surveys on the prevalence of bovine tuberculosis around the world are few and restricted to certain states or areas. The objective of this research was to describe the prevalence of bovine tuberculosis through a systematic review with meta-analysis in studies conducted all around the world.

Materials and Methods

The research consisted of a systematic literature review following the precepts of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology (Moher et al. 2009Moher D., Liberati A., Tetzlaff J. & Altman D.G. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7):e1000097. <https://dx.doi.org/10.1371/journal.pmed.1000097> <PMid:19621072>
https://doi.org/https://dx.doi.org/10.13...
). Cross-sectional studies that described the prevalence of the disease using the diagnostic method through the intradermal test with bovine and avian purified protein derivative (PPD) were selected. There were no restrictions on the year, language, or country where the work was conducted or published.

The types of publications included were complete and original articles published in indexed journals that addressed issues related to the following criteria: (I) prevalence of bovine tuberculosis and/or (II) diagnosis of the disease through the CCT test. Possible factors described in the studies associated with the Mycobacterium bovis infection were also analyzed. The exclusion criteria were: (I) literature reviews, research notes and editorials; (II) experimental tests; (III) diagnosis of the disease using a test other than the Comparative Cervical Test; and (IV) other types of publications that did not meet the inclusion criteria.

Following the establishment of the inclusion criteria, articles were identified on the PubMed, ScienceDirect, Scopus, and Web of Science databases. The following combination of English search terms was used: (bovine OR cattle) AND (tuberculosis OR M. bovis) AND (tuberculinization OR tuberculin) AND (prevalence). Citations of the studies identified, containing title and abstract, were saved in BibTex format and exported to a bibliographic manager (Mendeley®) for later selection. Data on risk factors were extracted from studies and included in the form of tag clouds. When possible and necessary, words with the same meaning were combined to present the same structure in different studies. The search was performed on August 18, 2023. Researchers P.S.B.N., D.A.M., and C.H.L. have read titles, abstracts, and full articles.

For the meta-analyses, we used the random effects model to estimate the combined prevalence of bovine tuberculosis at the individual and herd levels, using quantitative data (number of animals and herds tested and that tested positive) from the primary studies, dividing them into subgroups according to the continent where the research was conducted. The heterogeneity between studies was verified by Cochran’s Q test and quantified by Higgins and Thompson’s I² test. Visual analysis of the inverted funnel plot and the application of Egger’s test were used to verify the presence of publication bias. The analyses were performed using the R statistical program, version 3.5.1 (R Core Team 2020R Core Team. 2020. R: A Language and Environment for Statistical Computing. Version 2.6.2. R Foundation for Statistical Computing. Vienna, Austria. Available at <Available at https://www.r-project.org/ > Accessed on Dec. 2022.
https://www.r-project.org/...
), using the meta-statistical package (Balduzzi et al. 2019Balduzzi S., Rücker G. & Schwarzer G. 2019. How to perform a meta-analysis with R: a practical tutorial. Evid.-Based Ment. Health 22:153-160. <https://dx.doi.org/10.1136/ebmental-2019-300117> <PMid:31563865>
https://doi.org/https://dx.doi.org/10.11...
), and the wordcloud2 package was used to create the tag cloud (Lang & Chien 2018Lang D. & Chien G. 2018. Wordcloud2: create word cloud by ‘htmlwidget’. Version 0.2.1. Available at <Available at https://CRAN.R-project.org/package=wordcloud2 > Accessed on Aug. 2023.
https://CRAN.R-project.org/package=wordc...
).

Results

In Figure 1, we can observe the primary results found in the searched databases. Of the total number of studies found (n=1,839), 60 met all the criteria and were included in this review (Table 1). The overall prevalence found in the meta-analysis of the 60 studies was 3.27% (2.11-5.05%) for animals and 18.09% (11.20-27.90%) for herds, with high heterogeneity between studies in both situations. The articles included were published from 1993 to 2023.

Fig.1.
Flowchart of the search and selection process of primary studies included in the systematic review.

Table 1.
Summary of the main characteristics of the 60 studies included in the meta-analysis regarding the prevalence of tuberculosis in cattle

The primary studies were divided into subgroups according to the continent where the research was conducted to identify possible causes of the heterogeneity found in the meta-analyses: Africa (n=39), South America (n=16), and Asia (n=5). On the African continent, Nigeria, Ethiopia, Ghana, Cameroon, Malawi, Niger, Tanzania, Eritrea, Egypt, Uganda, Mozambique, and Zambia published studies on the prevalence of bovine tuberculosis. In South America, studies were conducted in Brazil and Ecuador. In Asia, they occurred in Bangladesh, India, and Pakistan. Several works from other continents had their research excluded for not using the intradermal test with bovine and avian purified protein derivative (PPD) for diagnosing tuberculosis. In these studies, the diagnosis was performed through microbiological culture, polymerase chain reaction (PCR), interferon-gamma assay (IFN-γ), and enzyme-linked immunosorbent assay (ELISA).

The highest combined prevalence of the disease in cattle was in Asia (8.19%; CI 6.16-10.80%), although the region presents only five studies. With sixteen studies, South America had the lowest prevalence (0.36%; CI 0.18-0.75%) (Fig.2, Table 2).

Fig.2.
Forest plot of the meta-analysis by continent subgroup, showing the prevalence per animal.

Table 2.
Summary of the meta-analysis of the prevalence of tuberculosis for bovines by subgroup, according to the continent where the research was conducted

In the visual evaluation of the funnel charts regarding prevalence studies for animals and herds (Fig.3 and 4), it was possible to observe evidence of asymmetry in the distribution of the points that represent the individual studies under the graph plotting area, which indicates possible publication bias. However, Egger’s test did not prove that asymmetry is a consequence of this type of bias (p<0.05).

Fig.3.
Funnel chart for verification of publication bias in studies on the prevalence of tuberculosis in cattle.

Fig.4.
Funnel chart for verification of publication bias in studies on the prevalence of tuberculosis for herds

Regarding the prevalence for herds, with only three studies, the Asian continent presented very high numbers, thus presenting the highest prevalence (48.3%; CI 39.38-57.33%) and South America the lowest (2.99%; CI 1.57-5.6 %) (Fig.5, Table 3).

Fig.5.
Forest plot of the meta-analysis by continent subgroup, prevalence by herd.

Table 3.
Summary of the meta-analysis of the prevalence of tuberculosis for herds by subgroup according to the continent where the research was conducted

In addition to prevalence, risk factors for tuberculosis in cattle were analyzed in 50 studies, generating a tag cloud with the most significant ones (Fig.6). Several factors associated with the infection were described by the authors in their research and “age” was the most used one (27 studies). Other terms with high frequency were “herd size” (n=21), “other species” (n=9), “acquisition of animals” (n=7), and “type of exploitation” (n=5) (Table 1).

Fig.6.
Tag cloud representing risk factors for bovine tuberculosis reported in 50 primary studies. The larger the words, the more frequent they are.

Discussion

In this systematic review and meta-analysis, a total of 60 cross-sectional studies were considered, and they showed a prevalence of 3.27% (2.11-5.05%) for animals and 18.09% (11.20-27.90 %) for herds. Despite meeting the eligibility criteria, the selected studies do not share the same methodology, especially regarding the sampling system used in the surveys, which is one of the possible explanations for the high heterogeneity found in the meta-analyses, classified as methodological heterogeneity by Santos & Cunha (2013)Santos E.J.F. & Cunha M. 2013. Interpretação crítica dos resultados estatísticos de uma meta-análise: estratégias metodológicas. Millenium 44(18):85-98..

The use of non-random sampling in part of the studies may have directly influenced the results obtained, considering that this type of selection allows the determination of important epidemiological indicators. However, selecting the sampling units according to non-probabilistic criteria generalizes the results, influencing the prevalence (Ramalho et al. 2020Ramalho G.C., Limeira C.H., Falcão B.M.R., Nogueira D.B., Costa F.T.R., Bezerra C.S., Silva M.L.C.R., Martins C.M., Alves C.J., Santos C.S.A.B. & Azevedo S.S. 2020. Seroprevalence of enzootic bovine leukosis (EBL): a systematic review and meta-analysis. Res. Soc. Develop. 9(12):e43591211228. <https://dx.doi.org/10.33448/rsd-v9i12.11228>
https://doi.org/https://dx.doi.org/10.33...
).

When analyzing the subgroups according to the continent where the research was conducted, a higher prevalence for animals and herds was observed in Asia (8.19%; CI 6.16-10.80%/48.3%; CI 39.38-57.33%). On the other hand, South America, with 16 papers, fifteen of which were from Brazil, had the lowest prevalence (0.36%; CI 0.18-0.75%/2.99%; CI 1.57-5.6%). Many developed nations have reduced or eliminated tuberculosis from their cattle populations by implementing effective control strategies, including testing and culling infected animals, active surveillance, and restrictions on movement in affected areas (Tulu et al. 2021Tulu B., Zewede A., Belay M., Zeleke M., Girma M., Tegegn M., Ibrahim F., Jolliffe D.A., Abebe M., Balcha T.T., Gumi B., Martineau H.M., Martineau A.R. & Ameni G. 2021. Epidemiology of bovine tuberculosis and its zoonotic implication in Addis Ababa Milkshed, Central Ethiopia. Front. Vet. Sci. 8:595511. <https://dx.doi.org/10.3389/fvets.2021.595511> <PMid:33681321>
https://doi.org/https://dx.doi.org/10.33...
).

In Brazil, after two decades of implementation of the “Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal” (National Program for the Control and Eradication of Brucellosis and Animal Tuberculosis - PNCEBT), it can be verified the effectiveness of the implemented actions with the reduction of the prevalence of the illnesses in cattle and buffaloes in some Federative Units, as is the case of Tocantins, with a very low prevalence (0.009%) for animals and 0.16% for herds (Ferreira Neto et al. 2020Ferreira Neto J.S., Barbosa R.G., Ferreira F., Amaku M., Dias R.A., Grisi-Filho J.H.H., Gonçalves V.S.P., Baquero O.S., Machado S.T.Z. & Telles E.O. 2020. Epidemiological situation of bovine tuberculosis in the State of Tocantins, Brazil. Semina, Ciênc. Agrár. 42(3 Supl.1):1673-1684. <https://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p1673>
https://doi.org/https://dx.doi.org/10.54...
). Currently, the action strategy of the PNCEBT is based on classifying states in terms of the degree of risk for these diseases and on the application of animal health defense procedures suited to different realities (MAPA 2017MAPA 2017. Instrução Normativa SDA Nº 10, de 3 de março de 2017. Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal. Diário Oficial da União, O Secretário de Defesa Agropecuária do Ministério da Agricultura, Pecuária e Abastecimento, Brasília, DF. 23p.).

We observed an asymmetry in both the visual evaluation of the funnel chart in the meta-analysis of prevalence for animals and herds (Fig.3 and 4). However, the result of Egger’s test was not significant for the presence of publication bias (p<0.05). The observed asymmetry may not necessarily be a potential publication bias. According to Sibhat et al. (2017)Sibhat B., Asmare K., Demissie K., Ayelet G., Mamo G. & Ameni G. 2017. Bovine tuberculosis in Ethiopia: A systematic review and meta-analysis. Prevent. Vet. Med. 147:149-157. <https://dx.doi.org/10.1016/j.prevetmed.2017.09.006> <PMid:29254713>
https://doi.org/https://dx.doi.org/10.10...
, the lack of symmetry around the inverted funnel plot is related to the number of reports of studies with low prevalence. It works with reduced sampling and is a consequence of the high heterogeneity between studies (Sterne et al. 2011Sterne J.A.C., Sutton A.J., Ioannidis J.P.A., Terrin N., Jones D.R., Lau J., Carpenter J., Rücker G., Harbord R.M., Schmid C.H., Tetzlaff J., Deeks J.J., Peters J., Macaskill P., Schwarzer G., Duval S., Altman D.G., Moher D. & Higgins J.P.T. 2011. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002. <https://dx.doi.org/10.1136/bmj.d4002> <PMid:21784880>
https://doi.org/https://dx.doi.org/10.11...
).

Based on the results, the risk factors associated with the disease were mainly related to age, herd size, other species, acquisition of animals, and type of exploitation (beef, dairy, or mixed). In line with other studies, the prevalence of tuberculosis increased with the age of the animals and with the size of the herd, probably due to greater exposure to the agent over time and greater contact between susceptible hosts and infectious agents (Javed et al. 2011Javed M.T., Irfana M., Ali I., Farooqi F.A., Wasiq M. & Cagiol M. 2011. Risk factors identified associated with tuberculosis in cattle at 11 livestock experiment stations of Punjab Pakistan. Acta Trop. 117(2):109-113. <https://dx.doi.org/10.1016/j.actatropica.2010.10.009> <PMid:21078279>
https://doi.org/https://dx.doi.org/10.10...
, Moiane et al. 2014Moiane I., Machado A., Santos N., Nhambir A., Inlamea O., Hattendorf J., Källenius G., Zinsstag J. & Correia-Neves M. 2014. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique. PLoS One 9(3):e91527. <https://dx.doi.org/10.1371/journal.pone.0091527> <PMid:24632593>
https://doi.org/https://dx.doi.org/10.13...
, Dejene et al. 2016Dejene S.W., Heitkönig I.M.A., Prins H.H.T., Lemma F.A., Mekonnen D.A., Alemu Z.E., Kelkay T.Z. & Boer W.F. 2016. Risk factors for Bovine Tuberculosis (bTB) in cattle in ethiopia. PLoS One 11(7):e0159083. <https://dx.doi.org/10.1371/journal.pone.0159083> <PMid:27404387>
https://doi.org/https://dx.doi.org/10.13...
). The results also showed the presence of other species associated with the disease in cattle. Lima et al. (2021)Lima D.A.R., Rodrigues R.A., Etges R.N. & Araújo F.R. 2021. Bovine tuberculosis in Safari Park in Brazil. Pesq. Vet. Bras. 41:e06719. <https://dx.doi.org/10.1590/1678-5150-PVB-6719>
https://doi.org/https://dx.doi.org/10.15...
, for example, confirmed an outbreak of tuberculosis by Mycobacterium bovis in captive deer in the state of Rio Grande do Sul, Brazil, with the presence of suggestive lesions, confirming the transmission of the agent to other species. Regarding the type of exploitation, dairy herds proved to be more susceptible to infection since the animals are kept very close for milking (Ferreira Neto et al. 2016Ferreira Neto J.S., Silveira G.B., Rosa B.M., Gonçalves V.S.P., Grisi-Filho J.H.H., Amaku M., Dias R.A., Ferreira F., Heinemann M.B., Telles E.O. & Lage A.P. 2016. Analysis of 15 years of the National Program for the Control and Eradication of Animal Brucellosis and Tuberculosis, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3385-3402. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3385>
https://doi.org/https://dx.doi.org/10.54...
).

As in any other type of research, we identified limitations in our study. Although the World Organization for Animal Health considers delayed-type hypersensitive skin testing the standard method for detecting tuberculosis in cattle (WOAH 2018WOAH 2018. Bovine tuberculosis, p.1061-1064. In: Ibid. (Eds), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. World Organization for Animal Health, Paris.), it has an imperfect performance caused by cross-reactions and errors during the application of the tuberculin (Zhu et al. 2023Zhu X., Wang J., Zhao Y., Zhang Z., Yan L., Xue Y., Chen Y., Robertson I.D., Guo A. & Aleri J. 2023. Prevalence, distribution, and risk factors of bovine tuberculosis in dairy cattle in central China. Prevent. Vet. Med. 213:105887. <https://dx.doi.org/10.1016/j.prevetmed.2023.105887> <PMid:36893605>
https://doi.org/https://dx.doi.org/10.10...
). There is a possibility that infected animals will not react to the test, thus being possible sources of infection for other animals and/or humans. In some countries, new ante mortem diagnostic tests can be used as complementary to skin tests. In the European Union, the IFN-γ assay was formally recognized as a supplementary parallel test to allow detection of the maximum number of infected bovines in herds (De la Rua-Domenech et al. 2006De la Rua-Domenech R., Goodchild A.T., Vordermeier H.M., Hewinson R.G., Christiansen K.H. & Clifton-Hadley R.S. 2006. Ante-mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 81(2):190-210. <https://dx.doi.org/10.1016/j.rvsc.2005.11.005> <PMid:16513150>
https://doi.org/https://dx.doi.org/10.10...
).

In a study conducted in Taiwan, researchers observed that 29% of dairy cows that tested positive in the intradermal allergy test were subsequently found to be negative for tuberculosis based on necropsy, histopathological examination, and mycobacterial isolation results. It is believed that the other false-positive results in the test could be related to cross-reactions by nontuberculous mycobacteria (Lin et al. 2022Lin H.-C., Chu C., Su Y. & Lai J.-M. 2022. Evaluation of using comparative intradermal tuberculin test to diagnose bovine tuberculosis in dairy cattle in Taiwan. Trop. Anim. Health Prod. 54:79. <https://dx.doi.org/10.1007/s11250-021-03023-4> <PMid:35079921>
https://doi.org/https://dx.doi.org/10.10...
). In Egypt, a high sensitivity was observed for detecting infected cases using the indirect ELISA assay for the qualitative detection of antibodies against M. bovis in serum. It could detect 80% of the cases presenting lesions of the disease in slaughterhouses, therefore considered promising for diagnosing the disease (Borham et al. 2021Borham M., Oreiby A., El-Gedawy A., Hegazy Y. & Al-Gaabary M. 2021. Tuberculin test errors and its effect on detection of bovine tuberculosis. J. Hellenic Vet. Med. Soc. 72(4):3263-3270. <https://dx.doi.org/10.12681/jhvms.29357>
https://doi.org/https://dx.doi.org/10.12...
).

Several studies in different countries have suggested the risk of occupational exposure to M. bovis infection, especially for animal handlers who have close contact, slaughterhouse workers, veterinarians and their assistants (Devi et al. 2021Devi K.R., Lee L.J., Yan L.T., Syafnaz N.-A., Rosnah I. & Chin V.K. 2021. Occupational exposure and challenges in tackling M. bovis at human-animal interface: a narrative review. Int. Arch. Occup. Environ. Health 94(6):1147-1171. <https://dx.doi.org/10.1007/s00420-021-01677-z> <PMid:33725176>
https://doi.org/https://dx.doi.org/10.10...
). In Portugal, through regulation (UE) 2019/627, post mortem inspection requirements applied to cattle have been analyzed, essentially reducing handling and incisions in young cattle to reduce exposure to the agent (Gonçalves et al. 2022Gonçalves S., Cardoso M.F., Vieira-Pinto M. & Gomes-Neves E. 2022. Bovine Tuberculosis - Analysis of 10-year cases and impact of visual inspection in the surveillance at the slaughterhouse in Portugal. One Health 15:100451. <https://dx.doi.org/10.1016/j.onehlt.2022.100451> <PMid:36532678>
https://doi.org/https://dx.doi.org/10.10...
).

Conclusion

The heterogeneity identified among the works included in this review was expected, given the differences in their research design, year of publication, and the number of animals sampled. It is necessary to evaluate the introduction of new ante mortem diagnostic tests to the control and eradication programs, which, combined with allergic tests, can identify the greatest number of animals that presented a true positive for the disease.

References

  • Abubakar A., Allam L., Okaiyeto S.O., Kudi A.C., Abdullahi S.U., Brooks P.H. & Goyal M. 2013. Tuberculin screening of some selected Fulani lactating cows in North-Central Nigeria. Trop. Anim. Health Prod. 45(7):1505-1508. <https://dx.doi.org/10.1007/s11250-013-0389-0> <PMid:23475733>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-013-0389-0
  • Akinseye V.O., Adebayo M.D., Genesis O.O., Adelakun O.D. & Cadmus S.I.B. 2017. Prevalence and risk factors of mycobacterial infections in farm and trade cattle in southwestern Nigeria. Trop. Anim. Health Prod. 50(4):761-772. <https://dx.doi.org/10.1007/s11250-017-1492-4> <PMid:29274054>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-017-1492-4
  • Almaw G., Conlan A.J.K., Ameni G., Gumi B., Alemu A., Guta S., Gebre S., Olani A., Garoma A., Shegu D., Yimesgen L., Nigussie D., Wood J.L.N., Abebe T., Mihre A. & Berg S. 2021. The variable prevalence of bovine tuberculosis among dairy herds in Central Ethiopia provides opportunities for targeted intervention. Plos One 16(7):e0254091. <https://dx.doi.org/10.1371/journal.pone.0254091> <PMid:34214106>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0254091
  • Asante-Poku A., Aning K.G., Boi-Kikimoto B. & Yeboah-Manu D. 2014. Prevalence of bovine tuberculosis in a dairy cattle farm and a research farm in Ghana. Onderstepoort J. Vet. Res. 81(2). <https://dx.doi.org/10.4102/ojvr. v81i2.716>
    » https://doi.org/https://dx.doi.org/10.4102/ojvr. v81i2.716
  • Awah-Ndukum J., Kudi A.C., Bradley G., Ane-Anyangwe I., Titanji V.P.K., Fon-Tebug S. & Tchoumboue J. 2012. Prevalence of bovine tuberculosis in cattle in the highlands of Cameroon based on the detection of lesions in slaughtered cattle and tuberculin skin tests of live cattle. Vet. Med. 57(2):59-76. <https://dx.doi.org/10.17221/5252-VETMED>
    » https://doi.org/https://dx.doi.org/10.17221/5252-VETMED
  • Bahiense L., Ávila L.N., Bavia M.E., Amaku M., Dias R.A., Grisi-Filho J.H.H., Ferreira F., Telles E.O., Gonçalves V.S.P., Heinemann M.B. & Ferreira Neto J.S. 2016. Prevalence and risk factors for bovine tuberculosis in the State of Bahia, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3549-3560. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3549>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3549
  • Balduzzi S., Rücker G. & Schwarzer G. 2019. How to perform a meta-analysis with R: a practical tutorial. Evid.-Based Ment. Health 22:153-160. <https://dx.doi.org/10.1136/ebmental-2019-300117> <PMid:31563865>
    » https://doi.org/https://dx.doi.org/10.1136/ebmental-2019-300117
  • Barbieri J.M., Oliveira L.F., Dorneles E.M.S., Mota A.L.A.A., Gonçalves V.S.P., Maluf P.P., Ferreira Neto J.S., Ferreira F., Dias R.A., Telles E.O., Grisi-Filho J.H.H., Heinemann M.B., Amaku M. & Lage A.P. 2016. Epidemiological status of bovine tuberculosis in the state of Minas Gerais, Brazil, 2013. Semina, Ciênc. Agrár. 37(5 Supl.2):3531-3548. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3531>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3531
  • Bedard B.G., Martin S.W. & Chinombo D. 1993. A prevalence study of bovine tuberculosis and brucellosis in Malawi. Prev. Vet. Med. 16(3):193-205. <https://dx.doi.org/10.1016/0167-5877(93)90066-3>
    » https://doi.org/https://dx.doi.org/10.1016/0167-5877(93)90066-3
  • Belchior A.P.C., Lopes L.B., Gonçaves V.S.P. & Leite R.C. 2016. Prevalence and risk factors for bovine tuberculosis in Minas Gerais State, Brazil. Trop. Anim. Health Prod. 48(2):373-378. <https://dx.doi.org/10.1007/s11250-015-0961-x>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-015-0961-x
  • Bonsu O.A., Laing E. & Akanmori B.D. 2000. Prevalence of tuberculosis in cattle in the Dangme-West district of Ghana, public health implications. Acta Trop. 76(1):9-14. <https://dx.doi.org/10.1016/s0001-706x(00)00082-6> <PMid:10913759>
    » https://doi.org/https://dx.doi.org/10.1016/s0001-706x(00)00082-6
  • Borham M., Oreiby A., El-Gedawy A., Hegazy Y. & Al-Gaabary M. 2021. Tuberculin test errors and its effect on detection of bovine tuberculosis. J. Hellenic Vet. Med. Soc. 72(4):3263-3270. <https://dx.doi.org/10.12681/jhvms.29357>
    » https://doi.org/https://dx.doi.org/10.12681/jhvms.29357
  • Boukary A.R., Thys E., Abatih E., Gamatie D., Ango I., Yenikoye A. & Saegerman C. 2011. Bovine tuberculosis prevalence survey on cattle in the rural livestock system of Torodi (Niger). Plos One 6(9):e24629. <https://dx.doi.org/10.1371/journal.pone.0024629> <PMid:21961039>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0024629
  • Dametto L.L., Santos E.D., Santos L.R. & Dickel E.L. 2020. Bovine tuberculosis: diagnosis in dairy cattle through the association of analyzes. Pesq. Vet. Bras. 40(1):12-16. <https://dx.doi.org/10.1590/1678-5150-PVB-6294>
    » https://doi.org/https://dx.doi.org/10.1590/1678-5150-PVB-6294
  • De la Rua-Domenech R., Goodchild A.T., Vordermeier H.M., Hewinson R.G., Christiansen K.H. & Clifton-Hadley R.S. 2006. Ante-mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 81(2):190-210. <https://dx.doi.org/10.1016/j.rvsc.2005.11.005> <PMid:16513150>
    » https://doi.org/https://dx.doi.org/10.1016/j.rvsc.2005.11.005
  • Dejene S.W., Heitkönig I.M.A., Prins H.H.T., Lemma F.A., Mekonnen D.A., Alemu Z.E., Kelkay T.Z. & Boer W.F. 2016. Risk factors for Bovine Tuberculosis (bTB) in cattle in ethiopia. PLoS One 11(7):e0159083. <https://dx.doi.org/10.1371/journal.pone.0159083> <PMid:27404387>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0159083
  • Devi K.R., Lee L.J., Yan L.T., Syafnaz N.-A., Rosnah I. & Chin V.K. 2021. Occupational exposure and challenges in tackling M. bovis at human-animal interface: a narrative review. Int. Arch. Occup. Environ. Health 94(6):1147-1171. <https://dx.doi.org/10.1007/s00420-021-01677-z> <PMid:33725176>
    » https://doi.org/https://dx.doi.org/10.1007/s00420-021-01677-z
  • Dias R.A., Ulloa-Stanojlovic F.M., Belchior A.P.C., Ferreira R.S., Gonçalves R.C., Aguiar R.S.C.B., Sousa P.R., Santos A.M.A., Amaku M., Ferreira F., Telles E.O., Grisi-Filho J.H.H., Gonçalves V.S.P., Heinemann M.B. & Ferreira Neto J.S. 2016. Prevalence and risk factors for bovine tuberculosis in the state of São Paulo, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3673-3684. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3673>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3673
  • Dinka H. & Duressa A. 2011. Prevalence of bovine tuberculosis in Arsi Zones of Oromia, Ethiopia. Afr. J. Agricult. Res. 6(16):3853-3858. <https://dx.doi.org/10.5897/AJAR11.521>
    » https://doi.org/https://dx.doi.org/10.5897/AJAR11.521
  • Duguma A., Abera S., Zewdie W., Belina D. & Haro G. 2016. Status of bovine tuberculosis and its zoonotic implications in Borana zone, Southern Ethiopia. Trop. Anim. Health Prod. 49(3):445-450. <https://dx.doi.org/10.1007/s11250-016-1213-4> <PMid:27988853>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-016-1213-4
  • Durnez L., Sadiki H., Katakweba A., Machang’u R.R., Kazwala R.R., Leirs H. & Portaels F. 2009. The prevalence of Mycobacterium bovis-infection and atypical mycobacterioses in cattle in and around Morogoro, Tanzania. Trop. Anim. Health Prod. 41(8):1653-1659. <https://dx.doi.org/10.1007/s11250-009-9361-4> <PMid:19437127>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-009-9361-4
  • FAO, OMS & OIE 2017. Hoja de Ruta Contra la Tuberculosis Zoonótica. Food and Agriculture Organization of the United Nations (FAO), Organización Mundial de la Salud (OMS), Organización Mundial de Sanidad Animal (OIE), World Health Organization(WHO). 20p. <https://dx.doi.org/10665/259231>
    » https://doi.org/https://dx.doi.org/10665/259231
  • Ferreira Neto J.S., Barbosa R.G., Ferreira F., Amaku M., Dias R.A., Grisi-Filho J.H.H., Gonçalves V.S.P., Baquero O.S., Machado S.T.Z. & Telles E.O. 2020. Epidemiological situation of bovine tuberculosis in the State of Tocantins, Brazil. Semina, Ciênc. Agrár. 42(3 Supl.1):1673-1684. <https://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p1673>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p1673
  • Ferreira Neto J.S., Silveira G.B., Rosa B.M., Gonçalves V.S.P., Grisi-Filho J.H.H., Amaku M., Dias R.A., Ferreira F., Heinemann M.B., Telles E.O. & Lage A.P. 2016. Analysis of 15 years of the National Program for the Control and Eradication of Animal Brucellosis and Tuberculosis, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3385-3402. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3385>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3385
  • Fetene T. & Kebede N. 2009. Bovine tuberculosis of cattle in three districts of northwestern Ethiopia. Trop. Anim. Health Prod. 41(2):273-277. <https://dx.doi.org/10.1007/s11250-008-9186-6> <PMid:18607767>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-008-9186-6
  • Firdessa R., Tschopp R., Wubete A., Sombo M., Hailu E., Erenso G., Kiros T., Yamuah L., Vordermeier M., Hewinson R.G., Young D., Gordon S.V., Sahile M., Aseffa A. & Berg S. 2012. High prevalence of bovine tuberculosis in dairy cattle in central Ethiopia: implications for the dairy industry and public health. Plos One 7(12):e52851. <https://dx.doi.org/10.1371/journal.pone.0052851> <PMid:23285202>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0052851
  • Galvis J.O.A., Grisi-Filho J.H.H., Costa D., Said A.L.P.R., Amaku M., Dias R.A., Ferreira F., Gonçalves V.S.P., Heinemann M.B., Telles E.O. & Ferreira Neto J.S. 2016. Epidemiologic characterization of bovine tuberculosis in the State of Espírito Santo, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3567-3578. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3567>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3567
  • Ghebremariam M.K., Michel A.L., Vernooij J.C.M., Nielen M. & Rutten V.P.M.G. 2018. Prevalence of bovine tuberculosis in cattle, goats, and camels of traditional livestock raising communities in Eritrea. BMC Vet. Res. 14:73. <https://dx.doi.org/10.1186/s12917-018-1397-0> <PMid:29514650>
    » https://doi.org/https://dx.doi.org/10.1186/s12917-018-1397-0
  • Ghebremariam M.K., Rutten V.P.M.G., Vernooij J.C.M., Uqbazghi K., Tesfaalem T., Butsuamlak T., Idris A.M., Nielen M. & Michel A.L. 2016. Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea. BMC Vet. Res. 12:80. <https://dx.doi.org/10.1186/s12917-016-0705-9> <PMid:27225267>
    » https://doi.org/https://dx.doi.org/10.1186/s12917-016-0705-9
  • Gonçalves S., Cardoso M.F., Vieira-Pinto M. & Gomes-Neves E. 2022. Bovine Tuberculosis - Analysis of 10-year cases and impact of visual inspection in the surveillance at the slaughterhouse in Portugal. One Health 15:100451. <https://dx.doi.org/10.1016/j.onehlt.2022.100451> <PMid:36532678>
    » https://doi.org/https://dx.doi.org/10.1016/j.onehlt.2022.100451
  • Guedes I.B., Bottene I.F.N., Monteiro L.A.R.C., Leal Filho J.M., Heinemann M.B., Amaku M., Grisi-Filho J.H.H., Dias R.A., Ferreira F., Telles E.O., Gonçalves V.S.P. & Ferreira Neto J.S. 2016. Prevalence and risk factors for bovine tuberculosis in the State of Mato Grosso do Sul, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3579-3588. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3579>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3579
  • Gumi B., Schelling E., Firdessa R., Aseffa A., Tschopp R., Yamuah L., Young D. & Zinsstag J. 2011. Prevalence of bovine tuberculosis in pastoral cattle herds in the Oromia region, southern Ethiopia. Trop. Anim. Health Prod. 43(6):1081-1087. <https://dx.doi.org/10.1007/s11250-010-9777-x> <PMid:21499975>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-010-9777-x
  • Gumi B., Schelling E., Firdessa R., Erenso G., Biffa D., Aseffa A., Tschopp R., Yamuah L., Young D. & Zinsstag J. 2012. Low prevalence of bovine tuberculosis in Somali pastoral livestock, southeast Ethiopia. Trop. Anim. Health Prod. 44(7):1445-1450. <https://dx.doi.org/10.1007/s11250-012-0085-5> <PMid:22286399>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-012-0085-5
  • Habitu T., Areda D., Muwonge A., Tessema G.T., Skjerve E. & Gebrehiwot T. 2018. Prevalence and risk factors analysis of bovine tuberculosis in cattle raised in mixed crop-livestock farming system in Tigray region, Ethiopia. Transbound. Emerg. Dis. 66(1):488-496. <https://dx.doi.org/10.1111/tbed.13050> <PMid:30372585>
    » https://doi.org/https://dx.doi.org/10.1111/tbed.13050
  • Hamed Y.K., Nasr E.A., Azooz M.F. & Youssef H.M. 2021. Prevalence and risk factors of bovine tuberculosis in dairy cattle farms in Egypt. Iraqi J. Vet. Sci. 35(2):351-359. <https://dx.doi.org/10.33899/ijvs.2020.126850.1399>
    » https://doi.org/https://dx.doi.org/10.33899/ijvs.2020.126850.1399
  • Ibrahim S., Agada C.A., Umoh J.U., Ajogi I., Farouk U.M. & Cadmus S.I.B. 2010. Prevalence of bovine tuberculosis in Jigawa State, northwestern Nigeria. Trop. Anim. Health Prod. 42(7):1333-1335. <https://dx.doi.org/10.1007/s11250-010-9599-x> <PMid:20512412>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-010-9599-x
  • Inangolet F.O., Demelash B., Oloya J., Opuda-Asibo J. & Skjerve E. 2008. A cross-sectional study of bovine tuberculosis in the transhumant and agro-pastoral cattle herds in the border areas of Katakwi and Moroto districts, Uganda. Trop. Anim. Health Prod. 40(7):501-508. <https://dx.doi.org/10.1007/s11250-007-9126-x> <PMid:18716906>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-007-9126-x
  • Islam M.N., Khan M.K., Khan M.F.R., Kostoulas P., Rahman A.K.M.A. & Alam M.M. 2021. Risk factors and true prevalence of bovine tuberculosis in Bangladesh. Plos One 16(2):e0247838. <https://dx.doi.org/10.1371/journal.pone.0247838> <PMid:33635911>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0247838
  • Islam S.K.S., Rumi T.B., Kabir S.M.L., van der Zanden A.G.M., Kapur V., Rahman A.K.M.A., Ward M.P., Bakker D., Ross A.G. & Rahim Z. 2020. Bovine tuberculosis prevalence and risk factors in selected districts of Bangladesh. Plos One 15(11):e0241717. <https://dx.doi.org/10.1371/journal.pone.0241717> <PMid:33170869>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0241717
  • Javed M.T., Irfana M., Ali I., Farooqi F.A., Wasiq M. & Cagiol M. 2011. Risk factors identified associated with tuberculosis in cattle at 11 livestock experiment stations of Punjab Pakistan. Acta Trop. 117(2):109-113. <https://dx.doi.org/10.1016/j.actatropica.2010.10.009> <PMid:21078279>
    » https://doi.org/https://dx.doi.org/10.1016/j.actatropica.2010.10.009
  • Kader N.A., Hazarika R.A., Prasad M.C.B., Kandhan S., Milton A.A.P., Bora D.P., Barman N.N., Sonowal S., Ghatak S., Lindahl J.F. & Das S. 2023. Prevalence of bovine tuberculosis and analysis of risk factors among the dairy farms in and around Guwahati metropolitan city, India. Res. Vet. Sci. 161:15-19. <https://dx.doi.org/10.1016/j.rvsc.2023.05.012> <PMid:37301049>
    » https://doi.org/https://dx.doi.org/10.1016/j.rvsc.2023.05.012
  • Katale B.Z., Mbugi E.V., Karimuribo E.D., Keyyu J.D., Kendall S., Kibiki G.S., Godfrey-Faussett P., Michel A.L., Kazwala R.R., van Helden P. & Matee M.I. 2013. Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet. Res. 9:267. <https://dx.doi.org/10.1186/1746-6148-9-267> <PMid:24377705>
    » https://doi.org/https://dx.doi.org/10.1186/1746-6148-9-267
  • Kazoora H.B., Majalija S., Kiwanuka N. & Kaneene J.B. 2014. Prevalence of Mycobacterium bovis skin positivity and associated risk factors in cattle from Western Uganda. Trop. Anim. Health Prod. 46(8):1383-1390. <https://dx.doi.org/10.1007/s11250-014-0650-1> <PMid:25187023>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-014-0650-1
  • Kazwala R.R., Kambarage D.M., Daborn C.J., Nyange J., Jiwa S.F.H. & Sharp J.M. 2001. Risk factors associated with the occurrence of bovine tuberculosis in cattle in the southern highlands of Tanzania. Vet. Res. Commun. 25(8):609-614. <https://dx.doi.org/10.1023/A:1012757011524> <PMid:11767006>
    » https://doi.org/https://dx.doi.org/10.1023/A:1012757011524
  • Kemal J., Sibhat B., Abraham A., Terefe Y., Tulu K.T., Welay K. & Getahun N. 2019. Bovine tuberculosis in Eastern Ethiopia: Prevalence, risk factors and its public health importance. BMC Infect. Dis. 19:39. <https://dx.doi.org/10.1186/s12879-018-3628-1> <PMid:30630431>
    » https://doi.org/https://dx.doi.org/10.1186/s12879-018-3628-1
  • Khattak I., Mushtaq M.H., Ahmad M.D., Khan M.S., Chaudhry M. & Sadique U. 2016. Risk factors associated with Mycobacterium bovis skin positivity in cattle and buffalo in Peshawar, Pakistan. Trop. Anim. Health Prod. 48(3):479-485. <https://dx.doi.org/10.1007/s11250-015-0976-3> <PMid:26754290>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-015-0976-3
  • Lang D. & Chien G. 2018. Wordcloud2: create word cloud by ‘htmlwidget’. Version 0.2.1. Available at <Available at https://CRAN.R-project.org/package=wordcloud2 > Accessed on Aug. 2023.
    » https://CRAN.R-project.org/package=wordcloud2
  • Lima D.A.R., Rodrigues R.A., Etges R.N. & Araújo F.R. 2021. Bovine tuberculosis in Safari Park in Brazil. Pesq. Vet. Bras. 41:e06719. <https://dx.doi.org/10.1590/1678-5150-PVB-6719>
    » https://doi.org/https://dx.doi.org/10.1590/1678-5150-PVB-6719
  • Lima P.R.B., Nascimento D.L., Almeida E.C., Pontual K.A.Q., Amaku M., Dias R.A., Ferreira F., Gonçalves V.S.P., Telles E.O., Grisi-Filho J.H.H., Heinemann M.B., Silva J.C.R. & Ferreira Neto J.S. 2016. Epidemiological situation of bovine tuberculosis in the State of Pernambuco, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3601-3610. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3601>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3601
  • Lima P.R.B., Nascimento D.L., Silveira Filho M.E.M., Fonte M.M., Sousa F.D.N., Silva Junior J.L., Lima Filho C.D.F., Almeida E.C., Fonsêca F.S., Pinheiro Júnior J.W., Dias R.A., Ferreira F., Ferreira Neto J.S. & Silva J.C.R. 2022. Prevalence of bovine tuberculosis in the Fernando de Noronha Archipelago and your role for the directing actions for the Animal Health Defense. Med. Vet. 16(2):128-135. <https://dx.doi.org/10.26605/medvet-v16n2-3610>
    » https://doi.org/https://dx.doi.org/10.26605/medvet-v16n2-3610
  • Lin H.-C., Chu C., Su Y. & Lai J.-M. 2022. Evaluation of using comparative intradermal tuberculin test to diagnose bovine tuberculosis in dairy cattle in Taiwan. Trop. Anim. Health Prod. 54:79. <https://dx.doi.org/10.1007/s11250-021-03023-4> <PMid:35079921>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-021-03023-4
  • MAPA 2017. Instrução Normativa SDA Nº 10, de 3 de março de 2017. Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal. Diário Oficial da União, O Secretário de Defesa Agropecuária do Ministério da Agricultura, Pecuária e Abastecimento, Brasília, DF. 23p.
  • Mekonnen G.A., Conlan A.J.K., Berg S., Ayele B.T., Alemu A., Guta S., Lakew M., Tadesse B., Gebre S., Wood J.L.N., Ameni G. & The ETHICOBOTS consortium. 2019. Prevalence of bovine tuberculosis and its associated risk factors in the emerging dairy belts of regional cities in Ethiopia. Prev. Vet. Med. 168:81-89. <https://dx.doi.org/10.1016/j.prevetmed.2019.04.010> <PMid:31097127>
    » https://doi.org/https://dx.doi.org/10.1016/j.prevetmed.2019.04.010
  • Moher D., Liberati A., Tetzlaff J. & Altman D.G. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7):e1000097. <https://dx.doi.org/10.1371/journal.pmed.1000097> <PMid:19621072>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pmed.1000097
  • Moiane I., Machado A., Santos N., Nhambir A., Inlamea O., Hattendorf J., Källenius G., Zinsstag J. & Correia-Neves M. 2014. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique. PLoS One 9(3):e91527. <https://dx.doi.org/10.1371/journal.pone.0091527> <PMid:24632593>
    » https://doi.org/https://dx.doi.org/10.1371/journal.pone.0091527
  • Muma J.B., Syakalima M., Munyeme M., Zulu V.C., Simuunza M. & Kurata M. 2013. Bovine tuberculosis and brucellosis in traditionally managed livestock in selected districts of southern province of Zambia. Vet. Med. Int. 2013:730367. <https://dx.doi.org/10.1155/2013/730367> <PMid:23862096>
    » https://doi.org/https://dx.doi.org/10.1155/2013/730367
  • Munyeme M., Muma J.B., Samui K.L., Skjerve E., Nambota A.M., Phiri I.G.K., Rigouts L. & Tryland M. 2009. Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/wildlife interface areas of Zambia. Trop. Anim. Health Prod. 41(3):345-352. <https://dx.doi.org/10.1007/s11250-008-9195-5> <PMid:18536998>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-008-9195-5
  • Mwakapuja R.S., Makondo Z.E., Malakalinga J., Bryssinckx W., Mdegela R.H., Moser I., Kazwala R.R. & Tanner M. 2013. Prevalence and significant geospatial clusters of bovine tuberculosis infection at livestock-wildlife interface ecosystem in Eastern Tanzania. Trop. Anim. Health Prod. 45(5):1223-1230. <https://dx.doi.org/10.1007/s11250-013-0350-2> <PMid:23338818>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-013-0350-2
  • Néspoli J.M.B., Negreiros R.L., Amaku M., Dias R.A., Ferreira F., Telles E.O., Heinemann M.B., Grisi-Filho J.H.H., Gonçalves V.S.P. & Ferreira Neto J.S. 2016. Epidemiological situation of bovine tuberculosis in the state of Mato Grosso, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3589-3600. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3589>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3589
  • Olea-Popelka F., Muwonge A., Perera A., Dean A.S., Mumford E., Erlacher-Vindel E., Forcella S., Silk B.J., Ditiu L., El Idrissi A., Raviglione M., Cosivi O., LoBue P. & Fujiwara P.I. 2017. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis - a call for action. Lancet Infect. Dis. 17(1):e21-e25. <https://dx.doi.org/10.1016/S1473-3099(16)30139-6> <PMid:27697390>
    » https://doi.org/https://dx.doi.org/10.1016/S1473-3099(16)30139-6
  • Proaño-Perez F., Benitez-Ortiz W., Celi-Erazo M., Ron-Garrido L., Benitez-Capistros R., Portaels F., Rigouts L. & Linden A. 2009. Comparative intradermal tuberculin test in dairy cattle in the North of Ecuador and risk factors associated with bovine tuberculosis. Am. J. Trop. Med. Hyg. 81(6):1103-1109. <https://dx.doi.org/10.4269/ajtmh.2009.09-0182> <PMid:19996444>
    » https://doi.org/https://dx.doi.org/10.4269/ajtmh.2009.09-0182
  • Queiroz M.R., Groff A.C.M., Silva N.S., Grisi-Filho J.H.H., Amaku M., Dias R.A., Telles E.O., Heinemann M.B., Ferreira Neto J.S., Gonçalves V.S.P. & Ferreira F. 2016. Epidemiological status of bovine tuberculosis in the state of Rio Grande do Sul, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3647-3658. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3647>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3647
  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. Version 2.6.2. R Foundation for Statistical Computing. Vienna, Austria. Available at <Available at https://www.r-project.org/ > Accessed on Dec. 2022.
    » https://www.r-project.org/
  • Ramalho G.C., Limeira C.H., Falcão B.M.R., Nogueira D.B., Costa F.T.R., Bezerra C.S., Silva M.L.C.R., Martins C.M., Alves C.J., Santos C.S.A.B. & Azevedo S.S. 2020. Seroprevalence of enzootic bovine leukosis (EBL): a systematic review and meta-analysis. Res. Soc. Develop. 9(12):e43591211228. <https://dx.doi.org/10.33448/rsd-v9i12.11228>
    » https://doi.org/https://dx.doi.org/10.33448/rsd-v9i12.11228
  • Regassa A., Tassew A., Amenu K., Megersa B., Abunna F., Mekibib B., Macrotty T. & Ameni G. 2010. A cross-sectional study on bovine tuberculosis in Hawassa town and its surroundings, Southern Ethiopia. Trop. Anim. Health Prod. 42(5):915-920. <https://dx.doi.org/10.1007/s11250-009-9507-4> <PMid:19957029>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-009-9507-4
  • Ribeiro L.A., Gonçalves V.S.P., Francisco P.F.C., Mota A.L.A.A., Nascimento G.T., Licurgo J.B., Ferreira F., Grisi-Filho J.H.H., Ferreira Neto J.S., Amaku M., Dias R.A., Telles E.O., Heinemann M.B. & Borges J.R.J. 2016. Epidemiological status of bovine tuberculosis in the Federal District of Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3561-3566. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3561>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3561
  • Rocha W.V., Jayme V.S., Mota A.L.A.A., Brito W.M.E.D., Pires G.R.C., Ferreira Neto J.S., Grisi-Filho J.H.H., Dias R.A., Amaku M., Telles E.O., Ferreira F., Heinemann M.B. & Gonçalves V.S.P. 2016. Prevalence and herd-level risk factors of bovine tuberculosis in the State of Goiás, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3625-3638. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3625>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3625
  • Rodrigues D.L., Amorim E.A., Ferreira F., Amaku M., Baquero O.S., Grisi Filho J.H.H., Dias R.A., Heinemann M.B., Telles E.O., Gonçalves V.S.P., Compton C. & Ferreira Neto J.S. 2022. Apparent prevalence and risk factors for bovine tuberculosis in the state of Paraná, Brazil: an assessment after 18 years since the beginning of the Brazilian program. Trop. Anim. Health Prod. 54(6):360. <https://dx.doi.org/10.1007/s11250-022-03350-0> <PMid:36279048>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-022-03350-0
  • Santos E.J.F. & Cunha M. 2013. Interpretação crítica dos resultados estatísticos de uma meta-análise: estratégias metodológicas. Millenium 44(18):85-98.
  • Shitaye J.E., Getahun B., Alemayehu T., Skoric M., Treml F., Fictum P., Vrbas V. & Pavlik I. 2006. A prevalence study of bovine tuberculosis by using abattoir meat inspection and tuberculin skin testing data, histopathological and IS6110 PCR examination of tissues with tuberculous lesions in cattle in Ethiopia. Vet. Med. 51(11):512-522. <https://dx.doi.org/10.17221/5585-VETMED>
    » https://doi.org/https://dx.doi.org/10.17221/5585-VETMED
  • Sibhat B., Asmare K., Demissie K., Ayelet G., Mamo G. & Ameni G. 2017. Bovine tuberculosis in Ethiopia: A systematic review and meta-analysis. Prevent. Vet. Med. 147:149-157. <https://dx.doi.org/10.1016/j.prevetmed.2017.09.006> <PMid:29254713>
    » https://doi.org/https://dx.doi.org/10.1016/j.prevetmed.2017.09.006
  • Silva M.C.P., Gonçalves V.S.P., Mota A.L.A.A., Koloda M., Ferreira Neto J.S., Grisi-Filho J.H.H., Dias R.A., Amaku M., Telles E.O., Ferreira F., Heinemann M.B., Alfieri A.A. & Muller E.E. 2016. Prevalence and herd-level risk factors for bovine tuberculosis in the State of Paraná, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3611-3624. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3611>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3611
  • Sterne J.A.C., Sutton A.J., Ioannidis J.P.A., Terrin N., Jones D.R., Lau J., Carpenter J., Rücker G., Harbord R.M., Schmid C.H., Tetzlaff J., Deeks J.J., Peters J., Macaskill P., Schwarzer G., Duval S., Altman D.G., Moher D. & Higgins J.P.T. 2011. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002. <https://dx.doi.org/10.1136/bmj.d4002> <PMid:21784880>
    » https://doi.org/https://dx.doi.org/10.1136/bmj.d4002
  • Swai E.S. & Schoonman L. 2012. Differences in prevalence of tuberculosis in indigenous and crossbred cattle under extensive and intensive management systems in Tanga Region of Tanzania. Trop. Anim. Health Prod. 44(3):459-465. <https://dx.doi.org/10.1007/s11250-011-9919-9> <PMid:21748525>
    » https://doi.org/https://dx.doi.org/10.1007/s11250-011-9919-9
  • Tigre W., Alemayehu G., Abetu T. & Ameni G. 2012. Preliminary study on the epidemiology of bovine tuberculosis in Jimma town and its surroundings, Southwestern Ethiopia. Afr. J. Microbiol. Res. 6(11):2591-2597. <https://dx.doi.org/10.5897/AJMR11.553>
    » https://doi.org/https://dx.doi.org/10.5897/AJMR11.553
  • Tora E., Getachew M., Seyoum W. & Abayneh E. 2022. Public awareness, prevalence and potential determinants of bovine tuberculosis in selected districts of gamo zone, southern Ethiopia. Vet. Med., Res. Rep. 13:163-172. <https://dx.doi.org/10.2147/VMRR.S370733> <PMid:35959096>
    » https://doi.org/https://dx.doi.org/10.2147/VMRR.S370733
  • Tschopp R., Schelling E., Hattendorf J., Aseffa A. & Zinsstag J. 2009. Risk factors of bovine tuberculosis in cattle in rural livestock production systems of Ethiopia. Prev. Vet. Med. 89(3/4):205-211. <https://dx.doi.org/10.1016/j.prevetmed.2009.02.006> <PMid:19339066>
    » https://doi.org/https://dx.doi.org/10.1016/j.prevetmed.2009.02.006
  • Tsegaye W., Aseffa A., Mache A., Mengistu Y., Berg S. & Ameni G. 2010. Conventional and molecular epidemiology of bovine tuberculosis in dairy farms in Addis Ababa City, the capital of Ethiopia. Int. J. Appl. Res. Vet. Med. 8(2):143-151.
  • Tulu B., Zewede A., Belay M., Zeleke M., Girma M., Tegegn M., Ibrahim F., Jolliffe D.A., Abebe M., Balcha T.T., Gumi B., Martineau H.M., Martineau A.R. & Ameni G. 2021. Epidemiology of bovine tuberculosis and its zoonotic implication in Addis Ababa Milkshed, Central Ethiopia. Front. Vet. Sci. 8:595511. <https://dx.doi.org/10.3389/fvets.2021.595511> <PMid:33681321>
    » https://doi.org/https://dx.doi.org/10.3389/fvets.2021.595511
  • Veloso F.P., Baumgarten K.D., Mota A.L.A.A., Ferreira F., Ferreira Neto J.S., Grisi-Filho J.H.H., Dias R.A., Amaku M., Telles E.O. & Gonçalves V.S.P. 2016. Prevalence and herd-level risk factors of bovine tuberculosis in the State of Santa Catarina. Semina, Ciênc. Agrár. 37(5 Supl.2):3659-3672. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3659>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3659
  • Vendrame F.B., Amaku M., Ferreira F., Telles E.O., Grisi-Filho J.H.H., Gonçalves V.S.P., Heinemann M.B., Ferreira Neto J.S. & Dias R.A. 2016. Epidemiologic characterization of bovine tuberculosis in the State of Rondônia, Brazil. Semina, Ciênc. Agrár. 37(5 Supl.2):3639-3646. <https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3639>
    » https://doi.org/https://dx.doi.org/10.5433/1679-0359.2016v37n5Supl2p3639
  • WOAH 2018. Bovine tuberculosis, p.1061-1064. In: Ibid. (Eds), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. World Organization for Animal Health, Paris.
  • Zhu X., Wang J., Zhao Y., Zhang Z., Yan L., Xue Y., Chen Y., Robertson I.D., Guo A. & Aleri J. 2023. Prevalence, distribution, and risk factors of bovine tuberculosis in dairy cattle in central China. Prevent. Vet. Med. 213:105887. <https://dx.doi.org/10.1016/j.prevetmed.2023.105887> <PMid:36893605>
    » https://doi.org/https://dx.doi.org/10.1016/j.prevetmed.2023.105887

Publication Dates

  • Publication in this collection
    15 Apr 2024
  • Date of issue
    2024

History

  • Received
    21 Nov 2023
  • Accepted
    22 Dec 2023
Colégio Brasileiro de Patologia Animal - CBPA Pesquisa Veterinária Brasileira, Caixa Postal 74.591, 23890-000 Rio de Janeiro, RJ, Brasil, Tel./Fax: (55 21) 2682-1081 - Rio de Janeiro - RJ - Brazil
E-mail: pvb@pvb.com.br