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SUMMARY

The spatial variability of soil and plant properties exerts great influence 
on the yeld of agricultural crops. This study analyzed the spatial variability of 
the fertility of a Humic Rhodic Hapludox with Arabic coffee, using principal 
component analysis, cluster analysis and geostatistics in combination.  The 
experiment was carried out in an area under Coffea arabica L., variety Catucai 
20/15 – 479.  The soil was sampled at a depth 0.20 m, at 50 points of a sampling 
grid.  The following chemical properties were determined: P, K+, Ca2+, Mg2+, 
Na+, S, Al3+, pH, H + Al, SB, t, T, V, m, OM, Na saturation index (SSI), remaining 
phosphorus (P-rem), and micronutrients (Zn, Fe, Mn, Cu and B).  The data were 
analyzed with descriptive statistics, followed by principal component and cluster 
analyses.  Geostatistics were used to check and quantify the degree of spatial 
dependence of properties, represented by principal components.  The principal 
component analysis allowed a dimensional reduction of the problem, providing 
interpretable components, with little information loss.  Despite the characte-
ristic information loss of principal component analysis, the combination of this 
technique with geostatistical analysis was efficient for the quantification and 
determination of the structure of spatial dependence of soil fertility.  In general, 
the availability of soil mineral nutrients was low and the levels of acidity and 
exchangeable Al were high.

Index-terms: Coffea arabica L., precision agriculture, principal components, 
cluster analysis.
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RESUMO:        ANÁLISE MULTIVARIADA E GEOESTATÍSTICA DA FERTILI-
DADE DE UM LATOSSOLO VERMELHO-AMARELO HÚMICO 
CULTIVADO COM CAFÉ

A variabilidade espacial das propriedades do solo e planta exerce grande influência 
sobre o rendimento de culturas agrícolas. Este estudo teve como objetivo analisar a varia-
bilidade espacial da fertilidade de um Latossolo Vermelho distrófico húmico cultivado 
com café arábica, utilizando, conjuntamente, análise de componentes principais, análise 
de agrupamento e geoestatística.  O experimento foi realizado em uma área cultivada com 
Coffea arabica L.  variedade Catucaí 20/15 - 479.  As amostras de solo foram coletadas a 
uma profundidade de 0,20 m, em uma grade de amostragem com 50 pontos.  Os atributos 
químicos estudados foram: P, K+, Ca2+, Mg2+, Na+, S, Al3+, pH, H + Al, SB, t, T, V, m, MO, 
ISNa, fósforo remanescente (P-rem) e micronutrientes (Zn, Fe, Mn, Cu e B).  Os dados fo-
ram analisados pela estatística descritiva, seguida de análise de componentes principais e 
análise de agrupamentos.  A geoestatística foi utilizada para verificar e quantificar o grau 
de dependência espacial de atributos – representado por componentes principais.  A análise 
de componentes principais permitiu a redução dimensional do problema, fornecendo com-
ponentes interpretáveis, com baixa perda de informações.  Apesar da perda de informação 
característica da análise de componentes principais, a combinação desta técnica com a 
análise geoestatística foi eficiente para quantificar e determinar a estrutura de dependência 
espacial da fertilidade do solo.  O solo apresentou, em geral, reduzida disponibilidade de 
nutrientes minerais e altos níveis de acidez e Al trocável.

Termos de indexação: Coffea arabica L., agricultura de precisão, componentes principais, 
análise de agrupamentos.

INTRODUCTION

Knowledge on the spatial variability of soil 
and plant properties that control crop yields is 
indispensable in modern agriculture, since minor 
changes can lead to great yield differences. The 
behavior of these properties in the cultivated areas 
was characterized by significant changes, associated 
with significant spatial and temporal variability, 
due to the agricultural management and other 
factors (Silva et al., 2010a).

An analysis of the variability of soil properties 
in defined landscape, geomorphic surface and soil 
mapping units, must take the influence of crop ma-
nagement into account (Sanchez et al., 2005). This 
variability affects the course of boundaries between 
soil classes, the true potential of production areas 
(Marques Júnior & Lepsch, 2000) and guides deci-
sion making for optimized yields.

In the specific case of coffee production, the 
development of high yielding varieties, the search 
for specialty coffees and production on highly 
heterogeneous soils require a better understanding 
of the soil-plant system, including spatial nutrient 
variability and its dynamics (Silva et al., 2010b).  
These measures can prevent nutritional deficiency, 
which considerably hamper the efficiency of 
fertilization programs, reducing yields (Reis Jr.  & 
Martinez, 2002).

However, to analyze the structure of soil fertility 
and the nutritional status of plants, it is necessary 
to evaluate a number of nutrients involved, which 
often increases the size of the problem, for being 
performed by univariate methods. One possibility of 
analysis of this kind of data is multivariate analysis, 
in particular, principal component analysis (PCA), to 
reduce the problem and thus facilitate interpretation 
(Boruvka et al., 2005).

The PCA is a technique based on linear combina-
tions of original variables.  The first principal compo-
nents explain most of the total variance contained in 
the data set and can be used to represent it (Valla-
dares et al., 2009).  The practical utility, especially 
for soil mapping, is the possibility of identifying the 
most important variables in the space of principal 
components, generating interpretable components, 
to define and quantify the spatial behavior of soil 
fertility, using geostatistics and a reduced number 
of variables.

This study analyzed the spatial variability of 
fertility of a Humic Rhodic Hapludox under coffee, 
using principal component analysis, cluster analysis 
and geostatistics in combination.

MATERIAL AND METHODS

The experiment was carried out in an area of 
approximately 1.2 ha of Coffea arabica L.  variety 
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yellow catucai 20/15 – 479, spaced 2.5  x  0.6  m, 
with steep slopes (30 cm m-1), located in the Zona 
da Mata of the State of Minas Gerais, in Reduto 
(20º 45’ 45,4’ S and 41º 32’ 9,75’ W).  The soil of the 
experimental area was classified as Humic Rhodic 
Hapludox (Soil Survey Staff, 2006).

The climate of the region is Aw, humid subtropical, 
with humid Summers (mean temperature > 27 °C) 
and dry and cool Winters (mean temperature 
< 20 ºC) (Köppen & Geiger, 1928).

Soil fertility was mapped in a grid of 50 
georeferenced sampling points (Figure 1).  The soil 
samples were collected under the canopy of three 
coffee trees in the soil layer 0–0.20 m, using a steel 
probe (internal diameter 0.05 m).  The three soil 
samples from each point were mixed, corresponding 
to the representative sample of the sampling point.

The following soil chemical properties were 
analyzed: P, K+, Ca2+, Mg2+, Na+, S, Al3+, active 
acidity (pH in water), potential acidity (H  + A l), 
sum of exchangeable bases (SB), effective cation 
exchange capacity (t), cation exchange capacity – 
pH 7 (T), base saturation (V), Al3+ saturation (m), 
organic matter content (OM), Na saturation index 
(SSI), remaining P (P-rem) and micronutrients (Zn, 
Fe, Mn, Cu, and B).

The method of laboratory analysis, as well as the 
extractants for the determination of soil properties 
were used as recommended by Embrapa (1997).

The values were determined based on the position 
and dispersion in the descriptive and exploratory 
statistical analysis.  Data normality were evaluated 
by the Shapiro-Wilk test (p < 0.05).

The principal component analysis (PCA) was 
performed based on the correlation matrix between 

the components and the actual properties, to identify 
new variables that explain most of the variability, 
generating new values for each sampling point 
corresponding to principal components.  These 
components can be seen as “super variables”, based 
on the combination of the correlation between 
variables and are extracted in decreasing order of 
importance, in terms of their contribution to the 
total data variance.

Cluster analysis was performed according to the 
Ward method, to classify the soil chemical properties 
and principal components into homogeneous groups.  
This multivariate analysis does not take into 
account the data distribution, but clustering is 
based on the similarity measures between plants 
(Johnson & Wichern, 2002).

The number of principal components was 
determined based on the quality criterion of the 
correlation matrix, using the components associated 
with eigenvalues of over 1 (Johnson & Wichern, 
2002).  The correlation of the components with soil 
chemical properties was considered significant 
if greater than 0.7, according to Zwick & Velicer 
(1986).

Geostatistics were used to check and if detected, 
to quantify the degree of spatial dependence of 
data generated by PCA.  The fitting of theoretical 
functions to experimental variogram models was 
based on the assumption of stationarity of the 
intrinsic hypothesis and according to the equation:

where N (h) is the semivariance, N (h) is the number 
of pairs of experimental observations Z (xi), Z 
(xi + h), separated by vector h.

To fit theoretical models to experimental 
variograms the nugget effect (C0), sill (C0 + 
C1), structural variance (C1) and range (a) were 
determined.  Spherical, exponential, Gaussian 
and linear models were tested.  The variogram 
was determined by the least square method and 
adopted as criterion for selecting the highest R2 
value (determination coefficient), the smallest SSR 
(sum of square residues) and the highest correlation 
coefficient obtained by the cross validation method.

To analyze the spatial dependence index (SDI), 
the relationship C0/(C0 + C1) and intervals proposed 
by Cambardella et al. (1994) were used, that consider 
the spatial dependence: low (SDI > 75 %); moderate 
(25 % ≤ SDI ≤ 75 %) and high (SDI < 25 %).

After the identification of spatial dependence, 
the interpolation method of ordinary kriging was 
used to estimate values at unmeasured locations.

Figure 1. Digital elevation model (DEM) of study 
area with the distribution of sampling points.
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RESULTS AND DISCUSSION

The table  1 shows the exploratory analysis of 
the values found for the properties.  Measures of 
central tendency (mean and median) were similar 
for more than 80  % of the properties, indicating 
a data distribution with little variation around a 
central value.

Phosphorus, K+, Na+, Ca2+, Mg2+, SB, SSI, Fe, 
and Cu showed asymmetric right-sided distribution, 
indicating a deviation from the normal distribution, 
by the Shapiro-Wilk test (p < 0.05).  The remaining 
properties showed asymmetry coefficients close to 
zero, tending to normal distribution, as confirmed 
by the normality test.

Paz-Gonzalez et al. (2001) stated that, in the 
case of data normality, estimates using the kriging 
method are more efficient and obtain better results 
than other methods.  According to Cressie (1993), 
even for data with non-normal distribution, kriging 
is efficient, in situations where the tails of the 
normal distribution are not very long.

The kurtosis of all properties was nearly zero, 
except for pH, V %, and SSI.  The distribution of 
pH and V % was platykurtic, but did not affect data 

normality, since their standard deviations were 
low.  The distribution of SSI was leptokurtic, but 
non-normal, due to the non-zero asymmetry and 
high standard deviation.  Vieira (2000) observed 
that the coefficient of kurtosis should be analyzed 
together with the errors and standard deviations, in 
order to confirm the trend to normal or non-normal 
distribution.

Analyzing the variation coefficient (CV) according 
to the classification proposed by Warrick & Nielsen 
(1980), the values were grouped as: low - CV < 12 %; 
moderate - 12 % ≤ CV ≤ 60 %; and high - CV > 60 %.  
Except for P (high), pH, T, V % and OM, all other 
properties were in the range 12–60 % and variation 
was therefore considered moderate.

The variations in soil chemical properties were 
related to successive changes caused by agricultural 
activities and, consequently, by erosion processes. 
The different behavior of the properties across the 
landscape can also be explained by successive and 
irregular fertilization and liming (Silva & Chaves, 
2001).

The mean values of soil chemical properties 
were classified, according Ribeiro et al. (1999) for 
the State of Minas Gerais, as: high acidity for pH, 

Table 1. Descriptive statistics and frequency distribution of soil properties

Property
Statistic

Mean Median Minimum Maximum CV% s Cs Ck w

pH (H2O) 4.95 4.94 4.66 5.30 3.34 0.17 0.24 -0.57 ns

P (mg dm-3) 5.28 3.90 0.90 14.10 73.83 3.90 0.89 -0.25 *

K+ (mg dm-3) 55.15 53.00 22.00 112.00 40.97 22.60 0.67 -0.13 *

Na+ (mg dm-3) 3.52 3.80 2.90 4.80 17.74 0.62 0.60 -0.41 *

Ca2+ (cmolc dm-3) 0.92 0.89 0.40 1.73 34.46 0.32 0.66 -0.17 *

Mg2+ (cmolc dm-3) 0.28 0.27 0.09 0.64 47.38 0.13 0.78 0.24 *

Al3+(cmolc dm-3) 0.86 0.80 0.00 2.00 50.82 0.44 0.36 0.16 ns

H+Al (cmolc dm-3) 5.14 5.00 3.51 6.62 13.94 0.72 0.00 -0.32 ns

SB (cmolc dm-3) 1.42 1.31 0.67 2.72 35.61 0.50 0.73 0.00 *

T (cmolc dm-3) 2.30 2.25 1.49 3.16 16.42 0.38 0.00 -0.47 ns

T (cmolc dm-3) 6.60 6.49 5.17 7.83 10.20 0.67 0.15 -0.36 ns

V (%) 20.69 20.40 9.90 31.60 7.60 1.57 0.11 -0.85 ns

M (%) 37.86 37.30 0.00 71.70 46.47 17.59 -0.20 -0.37 ns

SSI (%) 0.74 0.69 0.43 1.33 26.96 0.20 0.96 0.73 *

OM (dag kg-1) 2.85 2.83 2.21 3.70 11.88 0.34 0.21 -0.15 ns

P-rem (mg L-1) 19.67 19.60 12.20 25.70 15.40 3.03 0.00 -0.12 ns

Zn (mg dm-3) 3.70 3.60 0.80 8.40 51.33 1.90 0.40 -0.59 ns

Fe (mg dm-3) 89.02 85.15 44.10 161.20 34.45 30.67 0.71 -0.32 *

Mn (mg dm-3) 6.69 6.40 2.60 11.70 33.52 2.24 0.56 -0.43 ns

Cu (mg dm-3) 0.57 0.50 0.20 1.10 37.63 0.22 0.66 -0.31 *

B (mg dm-3) 1.11 1.14 0.56 1.51 18.35 0.20 -0.31 -0.12 ns

S (mg dm-3) 11.44 9.80 4.50 20.20 37.94 4.34 0.43 0.00 ns

s: standard deviation; CV (%): variation coefficient; Cs: asymmetry; Ck: kurtosis; w: Shapiro-Wilk’s test; * non-normal distribution 
by testing Shapiro-Wilk’s (p-valor < 0.05); ns normal distribution by testing Shapiro-Wilk’s (p-valor < 0.05).
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low for P, Ca2+, Mg2+, SB, T, V %, and Cu; medium 
for K+, Al3+, T, M, OM, Mn, and good for S; high for 
H + Al, Zn, Fe, and B.  These values show that the 
soil nutrient availability is, on average, unbalanced.  
These fertility levels represent an obstacle to the 
growth and development, indicating the need 
to replace these elements according to the plant 
requirements.  These values agree with those data 
of Silva et al. (2010b), who found low fertility in a 
Rhodic with arabica coffee.

Using principal component analysis, seven 
principal components were extracted that 
cumulatively explained 79.81  % of the total data 
variability and with an eigenvalue greater than 1 
(Table 2).  The other components had an eigenvalue 
less than 1 and were not used. Generally, the first 
components account for most of the variability 
contained in the data set (Johnson & Wichern, 2002).

According to the selection criteria applied in 
this study, the first two principal components were 
used in the analysis, mainly due to the presence 
of such correlations with the real properties, as 
shown in the circle of correlations presented in 
figure 2.  The components represent 38.14 % and 
22.01 % respectively, both of which correlated with 
a satisfactory number of soil properties.

Boruvka et al. (2005) reported that, in general, 
few components account for about 60–90 percent 
of the total variance in an analysis, which are the 
only components to be used for data representation.  
Johnson & Wichern (2002) stated that in principal 
component analysis, although reducing the data 
volume, the loss of information should be as small 
as possible, accepting a loss of less than 40  %.  
Greater losses affect the subsequent analysis and 
interpretation.

The first component correlated with 10 of the 
22 soil properties analyzed.  The properties Al and 
“m” correlated negatively with the first component, 
while pH, K+, Ca2+, Mg2+, SB, T, V, and Zn, 
positively (p  <  0.05) (Figure  2).  This component 
represents soil fertility in terms of macronutrients, 

since many of these were correlated with the first 
component According to Johnson & Wichern (2002), 
the opposition of signals indicates that when one 
variable increases, the other decreases.  The T is the 
product of SB + (H + Al), and SB represents the bases 
K+, Ca2+, Mg2+; it is to be expected that increasing 
nutrient concentrations elevate the CEC.

The second principal component represents the 
micronutrients, since, with the exception of B, all 
nutrients involved in this class were correlated with 
that component.  Zn, Fe and Cu, followed by Na and 
SSI, correlated negatively, while Mn, followed by S, 
positively.

The technique of cluster analysis by Ward´s 
method (Figure 3) allowed to efficiently complement 
the results of principal component analysis.  This 
multivariate classifying can be used to explore the 
similarities between plants or variables.

The set of 22 original properties (Figure  3a), 
with the similarity measure given by the Euclidean 
distance of 600 (cutoff), created two homogeneous 
groups.  To form two homogeneous groups with 
seven principal components (Figure 3b), explaining 
79.81 % of the data variability, a cutoff distance of 
25 was used.  A shorter distance would represent 
a considerable increase in the percentage of 
disagreement, which would hamper the comparison 
between groups.

Figure 4 represents the distribution of sampling 
points, explaining the two groups formed by 
cluster analysis with real data (4a) and principal 
components (4b).

Table 2. Summary of the main components of the 
multivariate analysis of soil properties

Figure 2. Circle of correlation of the plane formed 
by principal components 1 and 2 with the ori-
ginal variables.
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Figure  4 shows a similarity of 70  % between 
the actual set of properties and the seven principal 
components which together account for 79.81 % of 
the variability, thus validating the use of an analysis 
that reduced the number of variables, facilitating 
interpretation.

Comparatively, the cluster analysis across the 
seven principal components reduces the complexity 
of interpretation of soil properties of the analysis 
with the 22 original data.  In this case, as most of 
the variability is contained in the first and second 
components, the analysis is even simpler.

The geostatistical analysis was performed using 
the values of the first two principal components, and 
adjusted to the spherical variogram model (Table 3 
and Figure 5).

The spatial dependence increased gradually 
until the sill (range of 17–23 m), depending on the 
principal component considered.  In such cases, 
the points located in an area of radius less than or 
equal to the range are more similar; they depend 
on each other spatially and can be used to estimate 
values for unsampled locations.  The range of 
values can influence the quality of the estimates, 
since it determines the number of values used in 
interpolation, so estimates based on a greater range 
of ordinary kriging values tend to be more reliable, 
with maps that represent reality (Corá et al., 2004).

Nugget effect values (C0) were close to zero for 
the two principal components, which increased the 
accuracy of estimates by kriging in unmeasured 
areas.  C0 represents the component of spatial 
variability that cannot be related to a specific cause 
(random variability), and represents the variability 

Figure 3. Dendrogram resulting from cluster analysis of soil properties (a) and the seven main compo-
nents (b).

Figure 4. Distribution of sampling points according 
to the cluster analysis for the real variables (a) 
and seven main components (b).

at scales smaller than the shortest sampling 
distance (Vieira et al., 1983).

The spatial dependence index (SDI) shows a 
strong dependence for the two principal components, 
according to the classification proposed by 
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Cambardela et al. (1994).  According to Vieira et 
al. (1983), the higher the proportion of structural 
variance (C) for the sill (C0  + C ), the higher the 
similarity between the neighboring values, the 
continuity of the phenomenon and the smaller the 

Table 3. Models and parameters of the variograms adjusted for the two principal components

C0: nugget effect; C0+C: sill; SDI: spatial dependence index (C/C0 + C); a: range; R2: determination coefficient of the model; R2(VC): 
determination coefficient of cross validation.

Figure  5. V ariograms adjusted to the principal 
components (PC1 and PC2).

variance of the estimate, and therefore, the greater 
the confidence in estimates values in non-sampled 
areas by the interpolation method by ordinary kriging.

After defining the parameters of variogram 
models the data were interpolated by ordinary 
kriging for soil fertility mapping, based on the 
principal components (Figure 6).

The variability in macronutrients (PC1) is 
higher, as observed previously by its lower range 
of semivariance.  The presence of patches of higher 
fertility characterize this variability.  However, 
in general, fertility is high the upper portion of 
the area, despite reduced nutrient values, as 
shown in the descriptive analysis (Table 1).  For 
macronutrients, soil acidity is lowest in the upper 
part of the area. This underlies the distribution of 
acidity versus nutrient availability in the upper part 
of the area, since most nutrients (K+, Ca2+, Mg2+, S, 
B and P) are less available at higher acidity.

The availability of all micronutrients, except 
Mn, was high in the area, especially for Zn, Fe and 
B.  Higher acidity values favor the availability of 
Zn and Fe.  Therefore, the Zn and Fe distribution 
and low amplitude in the area (PC2) were related 
to these acidity values.  Higher values can result in 
phytotoxicity, resulting in multiple physiological 
disturbances.

Figure 6. Thematic maps based on the first two principal components (PC1, PC2).
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Often, low fertility is a constant in highly 
weathered soils such as Rhodic.  However, it is not 
a rule that in these soils fertility is low, CEC low, 
acidity high, Al3+ levels toxic and the capacity high 
to retain P in forms unavailable to plants (Fontes & 
Carvalho Jr., 2005).  These characteristics, according 
to Oades & Waters (1991), are usually observed 
at greater intensity in inappropriately cultivated 
soils with OM reduction which contributes to the 
reduction of T.  Among other functions, OM could 
inactivate toxic Al3+ and avoid the adsorption of 
phosphate.

CONCLUSIONS

1. The principal component analysis allowed a 
dimensional reduction of the problem, providing 
interpretable components with low information loss.

2. D espite the information loss, characteristic 
of principal component analysis, the combination 
of PCA with geostatistical analysis was efficient 
to quantify and determine the spatial dependence 
structure of soil fertility.

3. I n the soil studied, reduced availability of 
mineral nutrients and high levels of acidity and 
exchangeable Al were generally observed.
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