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ABSTRACT: Expansive clay soils are a problem for agriculture and engineering because 
they are susceptible to change in volume due to seasonal variation in water content and 
temperature. One of its morphological properties is slickensides, which result from the 
ability to contract and crack when dry and expand by wetting. The objective of this study 
was to evaluate the processes of expansion and formation and propagation of cracks due 
to the change in water content over time. The expansion process was evaluated through 
simple edometric tests with different external stress values applied to undisturbed soil 
samples. To evaluate the shrinking process, a device was developed to monitor the 
process of crack propagation. The mechanisms through which cracks begin and develop 
were studied using molded soil samples at the liquidity limit and at 1.25 times the liquidity 
limit with a drying and wetting cycle. Crack initiation conditions and development of 
geometric crack indices were measured with the water content and drying time. The 
soil presented medium to high expansion that depends on the overburden and suction 
applied, and the swelling stress was found to increase as suction increases. The changes 
in volume due to wetting and the propagation of cracks due to drying developed in three 
stages: initial, primary, and secondary. In the initial stage, few cracks or swelling occur 
with gradual variation in water content. As the water content approaches the limit of soil 
contraction (in the drying process) or the limit of soil saturation (in the wetting process), 
cracks and expansion developed slowly and approach a secondary stage. In the primary 
stage, cracks and expansion occurred rapidly with drying or wetting, respectively. Drying 
and wetting cycles showed similar crack patterns with the appearance of new micro-cracks 
during each new drying cycle.

Keywords: cracking, unsaturated soils, desertification, soil conservation, soil mechanics.

Division – Soil Processes and Properties  |  Commission – Soil Physics

https://orcid.org/0000-0002-5760-1494
https://orcid.org/0000-0003-4807-8221
https://orcid.org/0000-0002-1140-6028
https://orcid.org/0000-0003-1515-5390
https://orcid.org/0000-0003-4027-1430


Ferreira et al. Analysis of changes in volume and propagation of cracks in expansive...

2Rev Bras Cienc Solo 2020;44:e0190169

INTRODUCTION
Expansive soils have attracted the attention of scientists in many countries because of 
their unusual properties, expanding when moistened and contracting and cracking when 
dried. Investigations have been developed to understand and explain their characteristics 
and properties (Chen, 1988; Ferreira and Ferreira, 2009; Marques et al., 2014). These 
behaviors are not avoidable because there is a set of intrinsic factors inherent to the 
soil itself (clay particle distribution, structure, mineralogical orientation, cementation, 
stratigraphic profile, soil thickness, lithological discontinuity, etc.) that establish the 
potential expansive capacity and other external factors such as climate, water availability, 
biota, and anthropic action (management, use, and occupation) that determine whether 
or not the expansive potential is realized (Chen, 1988; Corrêa et al., 2003; Ferreira and 
Ferreira, 2009).

Expansive soils are developed from parent material rich in calcium and magnesium, with 
an expansive clay mineral, high activity, low drainage, and found in semi-arid, tropical, 
and temperate climates. They are found among Chernosols, Luvisols, Nitisols, Planosols, 
and Vertisols (Antunes and Salomão, 2018). The main difficulty in the use of expansive 
soil is the proper management of water in agricultural practices. These soils have 
horizons with a high level of type 2:1 clay minerals which, when moistened, increase in 
volume due to the entry of water within their structure, making them plastic and sticky. 
When dry, they have a hard consistency, forming internal clusters and surface cracks 
(Biassusi et al., 1999). In agriculture, plowing and lack of vegetation cover or dead cover 
expose the soil to more dryness. Consideration must also be given to the densification 
caused by machinery and animal trampling when grazing, in addition to surface sealing 
due to the impact of rain (Flores et al., 2007; Collares et al., 2008; Moraes et al., 2011). 
However, when this land is used for construction or requires engineering structures such 
as irrigation canals and agrovillages, special attention is required, as the implantation 
of a structure inevitably modifies the field soil water content (Al-Rawas et al., 2006; 
Al-Mukhtar et al., 2012; Liu et al., 2014; Lim and Siemens, 2016; Yuan et al., 2016).

The volume change in expansive clays due to changes in applied external stresses or 
suction is influenced by the presence of water bound to the solid part of the mineral 
clay, associated with the presence of adsorbed water and the double layer (Lambe and 
Whitman, 1969; Mitchell, 1976). The expansion mechanism can be explained by the 
attraction of clay particles, hydration of cations, and osmotic repulsion. The negative 
electrical charge on the surface of the clay particle generates attractive forces, which 
attract cations and polar molecules (for example, water) and acts as a fixing force on 
the water of the double layer. The volume of water increases until there is a sufficient 
volume variation in the soil mass, since the force of water adsorption by the particle 
decreases with increasing distance to the surface. In cation hydration, the negative 
surface of the clay particle attracts cations that cancel its negative charge. Some cations 
after neutralizing the negative charge of the clay particle remain with an amount of 
non-neutralized charge, attracting water molecules through the negative poles, which 
through their positive poles attract other water molecules. The osmotic repulsion the 
moment the clay-water-cations system is placed in contact with water in a lower ionic 
concentration, the double layer boundary acts as a semipermeable membrane. Water 
tends to pass this membrane to equalize, by osmosis, the concentrations on both sides 
of the membrane. This increases the thickness of the double layer and in the volume 
of soil mass.

The contraction and cracking mechanism of saturated clay by drying the water film on 
the surface evaporates first and the structure and the state of tension - deformation 
of the soil are practically unaffected. As the water-air interface reaches the surface of 
the soil layer, the formation of a meniscus begins, capillary suction begins to develop, 
the clay layer compresses, and contracts. The continuation of evaporation increases 
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the curvature of the capillary meniscus and thus increases the capillary suction and 
the effective tension between the clay particles. When these stresses exceed the soil’s 
tensile strength, they appear at the first cracks (Tang et al., 2011a).

The formation and propagation of cracks in the soil is a natural process caused by dryness 
that results from seasonal environmental variations, with alternating dry and wet periods. 
During the dry periods, the soil retracts, forming cracks. The presence of desiccation cracks 
in the soil alters its mechanical and hydraulic properties (Lloret et al., 1998; Nahlawi and 
Kodikara, 2006; Li and Zhang, 2011; Tang et al., 2011b; Li et al., 2012; Shi et al., 2014; 
Chaduvula et al., 2017). In addition to leachate infiltration into compacted landfills, the 
crack reduces resistance, creates preferential flow, and increases the infiltration rate 
(Albrecht and Benson, 2001; Albright et al., 2006; Tang et al., 2011a; Ghazizade and 
Safari, 2017). In civil engineering, the presence of cracks causes negative impacts on 
layers whose main purpose is waterproofing. These cracks alter the flow conditions and 
mechanical behavior, compromising layers, pavement, and canals, which can cause 
accidents and contaminate underground water systems, generating economic losses 
and damage to public health (Rodríguez et al., 2007; Cotecchia and Vitone, 2015).

Several studies have been developed to interpret the behavior of expansive clays on the 
development of cracks during drying/wetting cycles, with temperature and geometric 
variation of the sample, using digital image analysis and computational numerical modeling 
(Lakshmikantha et al., 2009; Li and Zhang, 2010; Atique and Sanchez, 2011; Tang et al., 
2010, 2011c, 2019; Sánchez et al., 2014; Shi et al., 2014; Fleureau et al., 2015; Ammour 
and Bouhanna, 2016; Chaduvula et al., 2016, 2017; Julina and Thyagaraj, 2018).

The behavior of volume change for expansive soil is influenced by the drying process, 
the wetting process, and any applied stress. The present study seeks to evaluate the 
variation in volume and propagation of cracks in expansive soil due to the increase 
or decrease in water quantity and analyze the phases of volume increase and crack 
propagation over time and with drying and wetting cycles. 

MATERIALS AND METHODS
Soil samples were taken from the municipality of Paulista (Pernambuco, Brazil) with 
coordinates: Latitude: 07.00° 55.00’ 35.00” - S; Longitude: 34.00° 50.00’ 49.00” - W. The 
soil consists of 470 g kg-1 of clay, 250 g kg-1 of silt, and 28 g kg-1 of sand. The liquidity 
limit is 76 %, plasticity limit is 30 %, and the grain density (G) of the soil is equal to 2.674. 
The soil originates from the physical-chemical weathering of clay and limestone from 
the Maria Farinha Formation (Bastos, 1994). The local climate is hot and humid tropical 
with an accentuated dry period of 7 to 8 months, being classified as As’ according to the 
criteria of Köppen and Geiger. The average annual temperature at the sampling site is 
26 °C and the average annual rainfall is 1819 mm (Climate-Data.org, 2019). The soil is 
acidic [pH(H2O) 4.93], eutrophic (V value = 56.80 %), highly active (T = 40.92 cmolc kg-1) 
and has irregular interstratification involving 2:1 minerals with micas and expansive 
minerals (smectites), as well as kaolinite (Ferreira et al., 2017). The study was developed 
in two stages. In the first stage, tests were performed to evaluate expansiveness due 
to wetting and in the second, an apparatus was developed to evaluate the process and 
propagation of cracks during wetting and drying cycles.

Tests to evaluate volume change behavior due to wetting

The volume change behavior due to wetting was analyzed considering the influence of 
vertical flooding stress. Simple edometric tests were performed on undisturbed samples 
collected at depths of 1.0 to 1.3 m, cast in thin-walled stainless steel rings with a height 
of 20.0 mm and a diameter of 71.3 mm. The specimens were loaded at a predetermined 
vertical stress and subsequently flooded, with compression or expansion deformations 
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measured. At the beginning of the test, a tension of 1.0 kPa was applied to settle the 
system and perform the initial reading for the deformation process. The tensions applied 
during the tests were increased by a value (Δσ) equal to the previously applied tension 
(Δσ/σ = 1), with the initial value being 10 kPa and the final value was 640 kPa. 

Soil swelling stress was determined using three methods: (1) loading after expansion 
with different vertical consolidation stress; (2) expansion and collapse under tension; 
and (3) constant volume in undisturbed samples, as described by Ferreira and Ferreira 
(2009). The values for swelling potential (SP) obtained by simple edometric tests were 
calculated using equation 1.

SP = Δh × 100/hi            Eq. 1

in which: SP is the swelling potential, Δh is the variation in specimen height due to 
flooding, and hi is the specimen height before flooding.

Undisturbed soil samples were also dried by placing them in vacuum desiccators containing 
sulfuric acid (H2SO4) solutions at different concentrations imposing suctions of 2.0, 8.1, 
19.9, 33.2, and 81.1 MPa. Later the samples were placed in edometric cells to determine 
the swelling stress using the constant volume method.

Tests to evaluate the process and propagation of cracks

To evaluate the propagation of cracks an apparatus was developed that considered 
the equipment produced by Fleureau et al. (2015) and Ammour and Bouhanna (2016). 
Figure 1 shows the apparatus with the devices for crack propagation tests designed by 
the Unsaturated Soil Research Group (GÑSat) at the Federal University of Pernambuco. 
The assembled apparatus is capable of monitoring ambient temperature, relative air 
water content, and water content variation of the sample subjected to drying and 
wetting cycles.

Sample preparation and test procedure

The soil was prepared without any prior air drying and without loosening, beginning from 
field gravimetric water content (W = 25 %) and handled such that the size of lumps 
was smaller than 2.00 mm. Two tests were performed. Water was added to the soil to 
reach a water content level close to the liquidity limit (76.10 % - Test 1) and 1.25 times 
the liquidity limit (94.20 % - Test 2). The samples were homogenized for uniform water 
content balance, compacted into 150 mm diameter and 15 mm high Petri dishes with 
the aid of a plastic socket, which served to spread the soil throughout the mold and 
remove air bubbles. The soil-plate assembly was placed on a 2.000 g capacity scale with 
0.01 g sensitivity. This allowed for the weight of the set to be measured in real-time, 
and therefore the soil water content could be calculated at any time. The incandescent 
lamps and laboratory air conditioner were switched on before the start of molding 
(approximately 2 h before the start of the test itself) to stabilize the initial ambient 
temperature. In Test 1, only one drying step was performed, lasting 49 h, while in Test 2, 
three drying and two wetting steps were performed, totaling about 250 h. In Test 2, the 
wetting cycles were initiated when the soil water content approached the plastic limit 
in the drying process. To monitor the cracking dynamics of the soil over time, a webcam 
connected to a notebook computer was used. The images were captured every 10 min, 
using the free Auto Screenshot Capture software.

Image processing

At the completion of the tests, images were selected that corresponded to the desired 
water content levels and times. For the drying cycles, images were chosen that 
corresponded to an approximate 5 % variation in gravimetric water content in percentile. 
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For the wetting periods, the images were separated by wetting time, with the following 
reference times adopted: 1, 12, 24, 36, 48, and 70 h. The beginning of the post-wet 
drying cycles, and consequently the selection of the first image, occurred 24 h after the 
last water replenishment. 

To obtain the most accurate visualization and characterization of the pattern and 
development of cracks, image processing tools were used. The images were cropped in 
a circular format, to view only the soil sample. The public domain free software ImageJ 
was used to perform the binarization process, i.e., transforming the colors of the original 
image into black and white. Figures 1d and 1e present the comparison between an original 
color image and a binarized image (Figure 1e), used to quantify the length, width, and 
the number of crack segments. In addition to cropping and graphical tools, this program 
can save images in a variety of file extensions. After selecting and cropping the images, 
the analysis procedure began. In this program, the scale was defined according to the 
plate diameter, resulting in a value of 2.2075 pixels mm-1.

To quantify crack patterns, the following geometric indices were calculated on each 2D 
image: (a) Crack Intensity Factor (CIF), which is the ratio of the surface area of the sample 
that suffered the cracking at any given time compared to the initial surface area of the 
sample (Equation 2); (b) average crack width, calculated by the shortest distance from 
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Figure 1. Crack propagation test apparatus. (a) Front view: measures in meters; (b) overview; (c) image selection and cropping 
process; (d) original color image; (e) binarized image. 01: MDF box; 02: light fixtures; 03: scale with 0.01 g sensitivity; 04: soil-plate 
Petri assembly; 05: webcam; 06: webcam support rod; 07: wooden base; 08: light fixture support rods; 09: wall.
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a stochastic point on one edge of a crack segment to the opposite edge; (c) the total 
crack length, calculated by counting the total number of white pixels after skeletonization 
of the image; and (d) the number of crack segments, where elements between two 
adjacent intersections are defined as a crack segment, according to Tang et al. (2019).

CIF = Af/At             Eq. 2

which: CIF is the crack intensity factor; Af is the surface area of cracks; At is the total 
initial surface area.

RESULTS
Volume change due to wetting with different overburden is presented in figure 2 showing 
the curves for specific vertical deformation vs. time (Figure 2a), specific deformation vs. 
applied vertical stress (σ) (Figure 2b), and swelling potential vs. applied vertical stress 
(Figure 2c). The values for “free” soil expansion with field water content and small 
applied stresses of 1 and 10 kPa are 8.00 and 3.49 %, respectively, classifying the soil 
as having medium expansiveness, according to the criteria of Vijayvergiya and Ghazzaly 
(1973). The average value for the swelling stress obtained by Method 1 (Loading after 
expansion with different overloads) is 145 kPa (Figure 2b) and by Method 2 (Expansion 
and collapse) is 213 kPa (Figure 2c). The value of constant volume swelling stress (Method 
3), preventing soil volume variation during the expansion process, is 150 kPa with an 
average value of 169 kPa.

Formation and propagation of cracks due to drying in Test 1, the soil with initial water 
content near the liquidity limit (76.1 %) was tested at a temperature of 36.1 ± 0.83 °C, 
with a coefficient of variation of 0.02 °C and a  relative air water content of 36 ± 2.38 %, 
with a coefficient of variation of 0.07 %. The crack formation process begins within the 
sample as the soil contracts, radiating through the interior with greater intensity (Figure 3). 
When the water content decreased from 76.1 % (Figure 3a) to 69.90 % (Figure 3b), the first 
cracks on the surface of the sample appear after 4.8 h of drying, registering a CIF of 0.6 %. 
A detachment of the soil from the Petri dish can be seen at 65.20 % water content, with 
a CIF of 3.80 % (Figure 3c). The pattern of crack that followed appeared simultaneously 
across the entire soil surface, completely subdividing the initial area. A continual gradual 
loss of water content leads to crack propagation in different directions, including the 
creation of forks at various points along the cracks (Figure 3d). The intersecting crack 
lines are predominantly X- and Y-shaped, forming geometric elements. Primary cracks 
followed by center-to-edge propagation contributed to the development of the crack 
surface network (Figures 3e and 3f). 

The soil changed color with the sharp desiccation process from 25.10 to 8.3 % water 
content. Soil color ranged from 5YR 8/4 (“Pink”) to 7YR 5/4 (“Brown”) as water content 
decreased from its initial value (76.10 %) to its final value (8.30 %), according to the 
Munsell (1992) color scale. It is important to emphasize that the identification of the soil 
color was performed in laboratory light based on the images obtained.

Formation and propagation of cracks due to drying in Test 2, the drying process was 
initiated at 94.2 % water content (equivalent to 1.25 times the liquidity limit), with 
the temperature range being 33.9 ± 0.59 °C, with a coefficient of variation of 0.02, 
and a relative air water content of 40 ± 2.47 %, with a coefficient of variation of 0.06. 
The first drying process was completed after 32.8 h, with a water content of 20.6 % 
(just above the shrinkage limit), at which point the soil was flooded to observe the 
behavior of the cracks when wetted. Initially, the crack propagation during the first 
drying process of Test 2 was compared to Test 1 that began with water content close 
to the liquidity limit (76.10 %).



Ferreira et al. Analysis of changes in volume and propagation of cracks in expansive...

7Rev Bras Cienc Solo 2020;44:e0190169

The sequence of images in figure 4 shows that the cracking process is similar to 
that of Test 1. When the water content decreased from 94.2 % (Figure 4a) to 80.1 % 
(Figure 4b). The first cracks begin to appear on the surface of the sample along 
with contraction of the soil radiating through the interior with greater intensity. The 
appearance of the first cracks occurs after 8.8 h of drying, a longer time than in 
Test 1 because of the higher initial water content. Soil detachment from the Petri 
dish becomes evident at a water content level of 70.10 %, registering a CIF of 
4.0 %, as shown in figure 4c. The sequential crack pattern was similar to that in the 
previous test, occurring simultaneously across the surface in X- and Y-shapes, forming 

Figure 2. Swelling stress (σe): (a) expansion under stress; (b) Method 1: loading after expansion 
with different vertical consolidation stresses; (c) Method 2: swelling and collapse.
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Figure 3. Process of crack development: Test 1 – Wi = 76.1 %.

(a) Time: 0 h | W: 76.10 % | CIF: 0.0 % (b) Time: 4.8 h | W: 69.9 % | CIF: 0.60 %

(c) Time: 8.0 h ǀ W: 65.20 % ǀ CIF: 3.80 % (d) Time 16.2 h: ǀ W: 50.00% ǀ CIF: 15.40 %

(e) Time: 26.9 h ǀ W: 25.10 % ǀ CIF: 26.70 % (f) Time: 48.8 h ǀ W: 8.30 % ǀ CIF: 28.10 %

(a) Time: 0 h ǀ W: 94.20 % ǀ CIF: 0.0 % (b) Time: 8.8 h ǀ W: 80.10 % ǀ CIF: 1.1 %

(c) Time: 14.3 h, W: 70.10 % ǀ CIF: 4.0 % (d) Time: 16.8 h ǀ W: 65.20 % ǀ CIF: 6.9 %

(e) Time: 30.2 h ǀ W: 30.20 % ǀ CIF: 25.1 % (f) Time: 32.8 h ǀ W: 20.6 % ǀ CIF: 26.0 %

Figure 4. Process of crack development: Test 2 – Wi = 94.20 %.
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quadrilateral geometric elements (Figures 4d and 4e). However, in this case, there 
is a greater number of crack plates than in Test 1, as seen in figure 3e. The increase 
in the CIF factor occurred gradually throughout the test, reaching a maximum value 
of 26.0 % at the end of the first drying cycle, figure 4f.

After the first drying in Test 2, two more wetting and drying cycles were performed. 
Figure 5 shows the sample images at the beginning of the test and at the end of each 
cycle. Figure 6 shows the variation in CIF and water content during the drying and 
wetting process. The soil had no cracks in its initial condition, with water content of 
94.20 % (Figure 5a). At the end of the first drying cycle (32.8 h from the beginning of 
the test), the soil had a CIF of 28.6 % and water content of 20.60 % (Figure 5b). As the 
soil is wetted, the suction decreases, the soil expands, and particles from the soil 
surface move into the cracks, partially closing them. After one hour of wetting, the CIF 
value strongly decreased, followed by continued slight decreases over time (Figure 6a). 
At the end of the wetting process, after 103 h (Figure 5c), the water content reached 
62 % and the CIF reached 14.6 % (Figure 6b). As the second drying cycle began, water 
content decreased and CIF increased. At the end of this cycle, after 131 h (Figure 
5d), water content was at 26.30 % with a CIF of 22.5 %. A final wetting cycle began, 
with the soil expanding again, surface particles moving into the cracks to partially 
close them. At the end of this process, after 200 h (Figure 5e), the water content 
reached 62 % and the CIF was at 10.6 % (Figure 6). At the end of the drying process, 
245.2 h from the beginning of the test (Figure 5f), the water content was 3.30 %, and  
the CIF 15.9 %.

Figure 5. Comparison of images of the cracking process at the beginning and end of each cycle 
– Wi: 94.20 %.

(a) Beginning of the test

Time: 0 h ǀ W: 94.20 % ǀ CIF: 0.0 %

(b) End of first drying process

Time: 32.8 h ǀ W: 20.6 % ǀ CIF: 28.6 %

(c) End of first wetting cycle (d) End of second drying process

Time: 131 h ǀ W: 26.3 % ǀ CIF: 22.5 %

(e) End of second wetting cycle (f) End of third drying process

Time: 245.2 h ǀ W: 3.3 % ǀ CIF: 15.9 %

Time: 103 h | w: 62.0 % | CIF: 14.6 %

Time: 200 h | w:62.0 % | CIF: 10.6 %
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DISCUSSIONS

Volume change behavior due to wetting

Soil swelling decreases as the applied stress increases, indicating that the expansion will be 
larger when the tension decreases, as shown in figure 2a. For stresses equal to or greater than 
160 kPa, the soil no longer expands with increased water content, but compresses instead. 
Under field water content conditions, the soil experiences a suction of 2.0 MPa and average 
swelling stress of 169 kPa. Due to the process of soil formation (sedimentary), its particles 
are oriented in the form of flakes. As water comes into contact with the soil, adsorption forces 
and osmotic stress cause double-layer plate expansion to occur, with reduced suction and 
progressive swelling as water comes into contact with the soil, changing it into a dispersed 
structure as a function of the vertical tension it was subjected to before wetting. Because 
wetting occurs in a particular direction and the soil has low permeability, the part of the soil 
in contact with the draining surface begins the expansion process first, before it spreads to 
the inner part of the sample. Already moistened soil has greater compressibility than the 
central core of the sample, whose structure is not initially altered. 

The variation in the structure during the wetting process as a function of the tension 
that it is subjected to leads to three possible situations that must be considered: (i) 
when the applied vertical stress is less than the ground swelling stress, wetting will 
cause expansion resulting in a greater expansion, the smaller the stress; (ii) when the 
applied vertical stress is greater than the ground swelling stress, the particles tend to 
orient themselves when wetted; soil compressibility progressively increases from the 
periphery to the center of the sample and, as the applied stress is greater than that 
from swelling, the soil compresses; (iii) when the applied vertical stress is almost the 
same as the swelling stress, the wetting initially causes a water content change only 
near the draining surface, altering the compressibility of the soil in this region, and the 
double layer expansion occurs partially, as in earlier cases, with the effect of applied 
stress on soil compression initially prevailing. As the wetting front advances, the volume 
of moist soil increases, and swelling begins to prevail over the effect of applied stress. 
The deformation measured in the test during the process is the result of the compression 
because of the applied stress (in the new more compressible dispersed structure) under 
the swelling stress of the double layer, or vice versa.

The soil swelling stress, obtained by Method 1 (loading after expansion with different 
overloads; figure 2b), depends on the stress trajectory before wetting, especially for 
lower values of applied vertical stress. On the other hand, if the wetting takes place 

Figure 6. Variation of the Crack Intensity Factor and Water content with Time (a) CIF vs Time, (b) Water content vs Time.
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afterward, as in Method 2 (Expansion and Collapse; Figure 2c), or simultaneously, as in 
Method 3 (Constant Volume), the swelling will only partially occur because it is under 
stress, leading to lower water content levels. Different values for swelling stress were 
also obtained in the expansive clay in the La Paz de Arahal Barrier Clay (Serilla, Spain) by 
Delgado (1986) and Petrolândia Clay (Pernambuco, Brazil) by Ferreira and Ferreira (2009).

Figure 7 shows the variation in the swelling stress obtained by the constant volume 
method and the contraction rate of undisturbed samples that are subject to different 
initial suctions. The values for swelling stress and shrink rate increased up to a suction 
of 33 MPa. For higher values, the swelling stress increased slightly, while the contraction 
rate decreased slightly, trending towards stabilization. The loss of soil water content 
increased swelling stress. Ferreira and Ferreira (2009) commented that the previous 
moistening of the soil causes a reduction in the swelling stress while drying causes an 
increase. This shows that, in the field, climatic conditions have a significant influence 
on the soil’s swelling stress.

Continuous evaporation of water produces a water-air meniscus between the clay particles 
and the capillary suction on the outer particle layer. Capillary suction and effective 
stress between clay particles increase as the soil dries, resulting in soil consolidation 
and contraction. This process raises the ground swelling stress and the contraction rate, 
as shown in figure 7. Because the soil has a heterogeneous microstructure conditioned by 
intrinsic and extrinsic factors, cracks are prone to begin at critical points on the surface, 
where tensile stress accumulation induced by suction exceeds the soil’s tensile strength. 
Water evaporation plays a significant role in the appearance and growth of cracks during 
the soil desiccation process.

Crack formation and propagation during soil drying

Figure 8 shows the variation in the mean values of the geometric crack indices, including: 
CIF, average crack width, total crack length, number of crack segments, and the crack 
area along the sample surface, as water content decreased for Test 1 (Figure 8a) and 
Test 2 (Figure 8b). These rates increased initially as water content decreased, and then 
began to drop. This implies that clay soils tend to crack more easily when the water 
content is high and that the shrinkage and cracking potential attenuates with decreasing 
water content. Similar behavior in clay soil was found by Tang et al. (2011c, 2019). For 
water content above the liquidity limit (Test 2) and above 70 % (Test 1), the geometric 

Figure 7. Variation of swelling stress, water content, and shrinkage ratio with suction.
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crack indices grow more slowly. For water content between 70 and 30 % (Test 1) and 
between 70 and 20 % (Test 2), there is a significant increase in the geometric crack 
indices. For water content lower than the lower limits mentioned above, the geometric 
crack indices tend to stabilize or decrease as the sample dries, except for the crack 
indices and crack widths in Test 2, which grew. This is due to the drying and wetting 
cycle, as will be discussed below.

Clay soil contraction and the resulting cracks are closely related to the amount of clay 
minerals present and the ease of absorbing or dissolving water. Increased clay content, 
especially montmorillonite, contributes significantly to this soil contraction behavior 
(Tay et al., 2001; Vogel et al., 2005). In the soil tested, montmorillonite and illite are 
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present, and a strong volumetric shrinkage behavior is observed during the drying process. 
The hydration film covering the surface of the clay particles becomes thinner as the soil 
dries. Increased capillary suction decreases the thickness of the film, reducing the pore 
space between the particles and rearranging the alignment of the particles, reflected in 
an overall macroscopic volume reduction.

Crack formation and propagation during drying and wetting cycles

Figure 9 shows the influence of the drying and wetting process on the geometric crack 
index values. The length and number of crack segments increase while the crack width 
and area decrease with an increasing number of drying and wetting cycles. The reduction 
in CIF during wetting is due to soil hydration with a double layer expansion that increases 
basal spacing, as well as displacement of surface particles into the cracks, as shown in 
figure 5. Particles partially fill cracks with a finer textured material pushed into the soil 

Figure 9. Variation of geometric crack indexes with drying and wetting cycles.
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matrix due to the action of high activity clay, forming papules, Brewer (1976), Bullock et al. 
(1985), and Ferreira (1995). After wetting, new cracks appear with each new drying cycle. 
These new micro cracks emerged from the existing cracks, interconnecting them. In the 
last drying cycle, there was a change of soil coloration due to water loss, becoming quite 
evident at the end of the test when soil water content passed below 15 %.

Comparison of expansion deformation curves due to wetting and CIF due to 
drying over time 

The expansion deformation process (on a logarithmic scale) due to wetting under 
constant applied external stress (to 10 kPa; Figure 10) can be divided into three stages: 
(a) initial expansion – for times shorter than three minutes, water is adsorbed by the 
clay during a wetting cycle and the soil becomes a cohesive mass with small expansion 
deformations observed in the soil; water moistens only the periphery (Figure 10a); (b) 
primary expansion – for times between three and 160 min, water percolates from the 
periphery towards the center, progressively moistening the soil and expansion occurs 
with greater intensity; the soil becomes more plastic and sticky, as in figures 10b and 
10c and in extreme cases only a very fine granular structure remains; (c) secondary 
expansion – for times longer than 160 minutes; water moistens the central core, the 
voids are almost filled with water and the rate of deformation decreases (Figure 10d). 
Similar behavior was observed by Ferreira and Ferreira (2009). Rao (2006) considered 
the initial deformations to be associated with the microstructure, and the primary and 
secondary deformations to be associated with the macrostructure.

The crack propagation process shown by the CIF versus time curve also has three 
stages: initial, primary, and secondary cracks (Figure 11). In the initial crack stage, 
up to 4.8 h, the water content loss rate is low (1.20 % h-1) and significant cracking does 
not appear (CIF = 3.8 %). The primary cracking stage begins after 4.8 h and extends 
until there the CIF stabilizes around 29.5 h, with a 26.9 % CIF and a water content loss 
rate of 2.64 % h-1. The last stage, that of secondary cracking, begins when primary 
cracking ends and extends to the completion of the test, with a water content loss 
rate of 0.37 % h-1 and a tendency for residual water content and CIF. Similar behavior 
was observed by Tang et al. (2011c).

Figure 10. Soil behavior during expansion.
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The volume variation process due to wetting and the crack propagation process due 
to drying over time has three distinct stages: initial, primary, and secondary, as shown 
in the expansion deformation vs. time curve during wetting (Figure 10) and the CIF vs. 
time curve during drying (Figure 11).

CONCLUSIONS
Swelling deformation due to wetting is a function of the suction, structure, and applied 
stress to the soil prior to wetting. Thus, the resulting measures found over time are 
expansion, expansion and compression, or just compression.

The fundamental difference between the determination of swelling stress methods is 
the order in which stress is applied and wetting. The device developed to evaluate the 
process of crack propagation using a scale, webcam, lamps, and hygrometer, in an 
environment that permits only small variations of temperature and relative air water 
content, performed adequate.

The crack propagation tests showed that X or Y shaped cracks formed initially, followed by 
other cracks originating as branches from the first ones. As the water content approached 
the soil contraction limit, the crack development slowed and approached a secondary 
stage of propagation.

Expansive clay soils tend to crack more easily at higher water contents and the crack 
attenuates with decreasing water. Increasing rates of increase in geometric crack indices 
occurred more rapidly during the primary stage of water evaporation and subsequently 
decreased with continuous water loss in the secondary stage. With each drying and 
wetting cycle, new cracks appear. The new cracks branched off from the already existing 
cracks, interconnecting them with each other.
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Figure 11. Soil behavior during crack propagation.
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