Artigos Gerais

Um enfoque didático às equações de Maxwell (A pedagogical approach to Maxwell's Equations)

G.F. Leal Ferreira

Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil Recebido em 4/9/2014; Aceito em 2/2/2015; Publicado em 30/6/2015

Mostra-se como encarar as equaçõe de Maxwell, tanto para fenômenos periódicos, reunindo emissão e o campo de radiação, como para o caso geral, mais interessante, dos aperiódicos, com as equações dependentes do tempo, e, em especial, sobre o significado daquelas independentes do tempo. Comenta-se a diferença do enfoque propiciado pela aproximação de estados quase-permanentes, em que as fontes, cargas e correntes atuais determinam completamente os campos, e o das equações exatas, em que isto, "stricto sensu", já ocorre.

Palavras-chave: equações de Maxwell, estados quase-permanentes, fenômenos periódicos, fenômenos aperiódicos.

It is shown how to regard Maxwell's equations for both periodic, putting together emission and radiation fields, and non-periodic phenomena, discussing both the time dependent equations as well as the role played by the time-independent ones. The difference in approach resulting from the quasi-permanent approximation, in which the sources feed the fields, and that of the exact equations, in which, strictly speaking, that is no longer true, is commented.

Keywords: Maxwell's equation, quasi-permanent states, periodic phenomena, aperiodic phenomena.

1. Introdução

No ensino do eletromagnetismo, grande parte do tempo é dedicada aos aspectos estáticos, tanto na eletrostática e como na magnetostática: isso permite ao aluno familiarizar-se com os entes, campo elétrico e campo magnético [1] (um bi-vetor na compacta linguagem da álgebra geométrica [2]). Os fenômenos dependentes do tempo aparecem na lei da indução de Faraday, abordando-se então, usualmente, os fenômenos quasepermanentes de indução e mesmo os de carga de condensadores, estes envolvendo correntes 'abertas'. Mas estas abordagens são realizadas na linguagem de circuitos elétricos e fluxos magnéticos e não na de campos. Quando retornamos a estes, verifica-se, como Maxwell fez, que para se obter compatibilidade entre as equações dos campos, e a equação da continuidade (conservação da carga elétrica), deve-se introduzir na equação do rotacional do campo magnético, ao lado das correntes reais, a corrente de deslocamento, alcançando-se assim o sistema completo das equações de Maxwell. Mas neste ponto, não há usualmente a preocupação de se procurar estabelecer o conjunto de equações que cobrem aqueles importantes estados quase-permanentes antes estudados. Relembraremos aqui (ver Secão 5) que nesta aproximação, construída a partir de emenda às equações estáticas, a corrente de deslocamento envolve o campo eletrostático e não o campo elétrico total [3]. Isto cinge as soluções à região próxima das cargas, omitindo a descrição de emissão de ondas eletromagnéticas. Neste trabalho, trataremos de alguns pontos relativos à apresentação didática das equações de Maxwell. De posse do seu arcabouço completo, a primeira abordagem é feita num caso muito particular, o das ondas eletromagnéticas livres, em que as fontes são ignoradas. Embora cubra o aspecto importante da transmissão, gostaríamos de mostrar que nesse tipo de problema, envolvendo soluções periódicas no tempo, as fontes podem ser mantidas sem onerar de forma significativa o cálculo, permitindo expor, em princípio, não só a transmissão como a criação de ondas eletromagnéticas pelas suas fontes. A nossa análise irá adiante, abordando o caso geral não-periódico — certamente o mais interessante —, onde, seguindo L. Jánossy [4], verificar-se-á na Seção 4 que duas são efetivamente as equações de Maxwell — somente aquelas envolvendo o tempo —, as outras duas sendo apenas equações acessórias, de definição de grandezas. Aí veremos que os campos elétrico e magnético são determinados a partir de seus valores iniciais e da densidade de corrente como fonte e gozam em relação a esta última de uma certa autonomia que viola a estreita correlação entre fontes e campos presu2301-2 Ferreira

mida da conceituação vinda da apresentação inicial da estática. Mas aquela correlação de fato existe na aproximação dos estados quase-permanentes quando cargas e correntes determinam os campos, como será examinado na Seção 5.

2. As equações de Maxwell

Tomaremos as equações de Maxwell no CGS gaussiano, com c a velocidade da luz. Elas são, no vácuo,

$$\nabla \cdot \mathbf{E} = 4\pi \rho,\tag{1}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}, \tag{2}$$

$$\nabla \cdot \mathbf{B} = 0, \tag{3}$$

$$\nabla \times \mathbf{B} = 4\pi \frac{\mathbf{J}}{c} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t},\tag{4}$$

em que ${\bf E}$ e ${\bf B}$ são os campos elétrico e magnético, ρ e ${\bf J}$, as densidades de carga e de corrente de condução, todas as grandezas em princípio funções da posição ${\bf x}$ e do tempo t.

Notemos que se achamos a divergência da Eq. (4), obtemos a equação da continuidade

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0, \tag{5}$$

que não necessita ser considerada como integrante do sistema das equações de Maxwell, mas que desempenhará seu papel na aproximação dos estados quase-permanentes.

3. Fenômenos periódicos

No caso de fenômenos periódicos, de frequência angular ω , a dependência no tempo é do tipo $e^{i\omega t}$, e as Eqs. (1)-(4) tornam-se em

$$\mathbf{\nabla \cdot E} = 4\pi\rho,\tag{6}$$

$$\nabla \times \mathbf{E} = -\frac{i\omega}{c}\mathbf{B},\tag{7}$$

$$\nabla \cdot \mathbf{B} = 0, \tag{8}$$

$$\nabla \times \mathbf{B} = 4\pi \frac{\mathbf{J}}{c} + \frac{i\omega}{c} \mathbf{E},\tag{9}$$

 \mathbf{e}

$$\nabla \cdot J = -\frac{i\omega}{c}\rho,\tag{10}$$

em que, por economia de símbolos, mantivemos as designações das grandezas embora elas agora só dependam da posição \mathbf{x} .

Substituindo o valor de ${\bf B}$ em função de ${\bf E}$ pela Eq. (7) e desenvolvendo o termo ${\bf \nabla}\times{\bf \nabla}\times E$ na Eq. (9),

$$\nabla \nabla \cdot \mathbf{E} - \nabla^2 \mathbf{E} = -\frac{i\omega}{c} \left(4\pi \frac{\mathbf{J}}{c} + \frac{i\omega}{c} \mathbf{E} \right). \tag{11}$$

Usando agora a equação de Poisson, Eq. (5), e substituindo ρ em função de **J** na Eq. (18), vem

$$\nabla^2 \mathbf{E} + \frac{\omega^2}{c^2} \mathbf{E} = \frac{4\pi i}{\omega} \left(\frac{\omega^2}{c^2} \mathbf{J} + \nabla \nabla \cdot \mathbf{J} \right), \tag{12}$$

equação que exibirá explicitamente as fontes do campo elétrico ao separarmos \mathbf{J} em uma corrente longitudinal \mathbf{J}_L e outra transversal \mathbf{J}_T , tais que $\nabla \times \mathbf{J}_L = 0$ e $\nabla \cdot \mathbf{J}_T = 0$.

A corrente longitudinal (irrotacional) contribui em ambos os termos entre parênteses no lado direito da Eq. (12), termo temporal e termo espacial, enquanto que a transversal (solenoidal), apenas no termo temporal, dependente de ω . Pela Eq. (7), \mathbf{B} é proporcional ao rotacional de \mathbf{E} . Logo, se aplicarmos o rotacional a ambos os membros da Eq. (12), obteremos uma relação mais simples — na verdade uma simples equação de onda inomogênea —, tendo em vista que o rotacional de um gradiente é nulo. Tem-se então

$$\nabla^2 \mathbf{B} + \frac{\omega^2}{c^2} \mathbf{B} = -\frac{4\pi}{c} \mathbf{\nabla} \times \mathbf{J}_T, \tag{13}$$

mostrando que as fontes do campo magnético oscilante são exclusivamente as correntes transversais.

No caso de fontes localizadas, como no caso de um fio retilíneo com corrente, ${\bf B}$ tem origem na descontinuidade transversal da corrente, gerando correntes superficiais azimutais na sua superfície. Levado esse caso ao limite do dipolo oscilante, este fato mostra que o campo magnético irradiado pelo dipolo oscilante faz formalmente papel semelhante ao do potencial vetor no tratamento usual, e é também exclusivamente azimutal.

4. Equações de Maxwell, fenômenos aperiódicos

Como gerar solução de sistema de equações envolvendo o tempo é construir o futuro, dadas as fontes e condicões iniciais adequadas em t=0 [4], vemos que as equações importantes no sistema da Seção 2 são as Eqs. (2) e (4), envolvendo o tempo, tendo a densidade de corrente $\mathbf{J}(\mathbf{x}, \mathbf{t})$ como fonte. Mas que papel têm as Eqs. (1) e (3)? Elas são equações acessórias, de definição a Eq. (1), e de condição inicial a Eq. (3). De fato, dados $\mathbf{E}(\mathbf{x},0)$ e $\mathbf{B}(\mathbf{x},0)$, este satisfazendo a condição $\nabla \cdot \mathbf{B}(\mathbf{x},0) = 0$, a Eq. (1) define a densidade inicial de carga, e as Eqs. (2) e (4) geram $\mathbf{B}(\mathbf{x},\Delta t)$ e $\mathbf{E}(\mathbf{x},\Delta t)$ no tempo Δt .

Note-se que em Δt e, *ipso facto*, em qualquer estágio de uma integração exata, a Eq. (3) continua sendo satisfeita, da mesma forma que a Eq. (1) [ou alternativamente a Eq. (5), a da continuidade] irá determinando a densidade de carga a cada tempo t. Resulta desta análise que a densidade de carga joga papel subsidiário, como grandeza derivada, a reboque da integração. Esta conclusão choca-se com a visão usual, segundo a qual os campos E e E derivam diretamente das cargas e

correntes, e que manter-se-á na aproximação dos estados quase-permanentes, que analisaremos na próxima

Concluindo, vê-se que os campos ganham autonomia em relação às fontes atuais, já que não é possível inferi-los diretamente das fontes a partir de um instante inicial: o conhecimento de $\rho(\mathbf{x},0)$ não permite o cálculo de $\mathbf{E}(\mathbf{x},0)$. E haverá uma dinâmica mesmo que $\mathbf{J}(\mathbf{x},t)$ seja nulo para t > 0, devido ao campo eletromagnético livre, agora abrangido na solução (o que não ocorrerá com as equações aproximadas). Note-se também que poderíamos transformar as duas equações, Eqs. (2) e (4), em uma única, de ordem superior, em termos de um dos campos, porém com perda de visão da mecânica da solução.

Aproximação de estados quase-permanentes

Na Eletrostática aprendemos a calcular o campo eletrostático $\mathbf{h}(\mathbf{x})$ e o campo magnetostático solenoidal $\mathbf{B}(\mathbf{x})$ a partir de sua fontes, cargas e correntes. Com a Lei da Indução, os fenômenos e os campos agora dependem do tempo e adicionamos ao campo elétrico a componente solenoidal, $S(\mathbf{x},t)$, regidos, esta e $\mathbf{h}(\mathbf{x})$, pelas equações

$$\nabla \cdot \mathbf{h} = 4\pi \rho, \qquad \nabla \times \mathbf{h} = 0,$$

$$\nabla \cdot \mathbf{S} = 0, \qquad \nabla \times \mathbf{S} = -\frac{\partial \mathbf{B}}{\partial t}, \qquad (14)$$

$$\mathbf{E} = \mathbf{h} + \mathbf{S}, \qquad (15)$$

$$\nabla \cdot \mathbf{B} = 0, \qquad \nabla \times \mathbf{B} = 4\pi \frac{\mathbf{J}}{c} + \frac{1}{c} \frac{\partial \mathbf{h}}{\partial t}, \qquad (16)$$

$$\mathbf{E} = \mathbf{h} + \mathbf{S},\tag{15}$$

$$\nabla \cdot \mathbf{B} = 0, \qquad \nabla \times \mathbf{B} = 4\pi \frac{\mathbf{J}}{c} + \frac{1}{c} \frac{\partial \mathbf{h}}{\partial t}, \qquad (16)$$

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0, \tag{17}$$

que formam um sistema consistente com a equação da continuidade, Eq. (5), como pode ser visto tomando-se a divergência dos dois lados da segunda das Eqs. (16).

A equação da continuidade, Eq. (17), deve agora ser incorporada ao sistema, o que se justifica pela presença do campo adicional, S. O sistema difere do exato pela presença, no lado direito da segunda das Eqs. (16), do campo eletrostático h no lugar do campo elétrico total E, Eq. (4). Isto confina as soluções do sistema, Eqs. (14)-(17), à região próxima às fontes, excluindo a radiação. Mais exatamente, pode-se mostrar que o sistema é correto para velocidade v das cargas tal que $v^2/c^2 \ll 1$, aceleração **a** até distâncias r tais que $ar/c^2 \ll 1$ [3].

Vamos ver como a densidade de carga inicial, $\rho(\mathbf{x},0)$, e a densidade de corrente, $\mathbf{J}(\mathbf{x},t)$, determinam os campos $\mathbf{h}(\mathbf{x},t)$, $\mathbf{S}(\mathbf{x},t)$ e $\mathbf{B}(\mathbf{x},t)$. Admite-se que, do conhecimento da densidade de carga, o campo eletrostático fica determinado, ainda que, num procedimento numérico, tal prática introduzisse infindáveis in-

tegrações espaciais. Com isto, como temos incorporado a equação da continuidade, Eq. (5), podemos calcular $\rho(\mathbf{x}, \Delta t)$ no instante Δt e daí determinar $\mathbf{h}(\mathbf{x}, \Delta t)$, em princípio, pelas primeiras das Eqs. (14). Como conhece- $\operatorname{mos} \mathbf{h}(\mathbf{x},0)$ isto permite conhecermos também $\partial \mathbf{h}/\partial t$, e com isto, $\mathbf{B}(\mathbf{x},0)$ fica determinado pelas Eqs. (16). Repetindo o procedimento para os tempos Δt e $2\Delta t$, determinamos $\mathbf{B}(\mathbf{x}, \Delta t)$, permitindo obter-se $\mathbf{S}(\mathbf{x}, 0)$ pelas últimas das Egs. (14) e o campo elétrico $\mathbf{E}(\mathbf{x},0)$ pela Eq. (15), e assim para os Δt 's seguintes. Vê-se que são os campos solenoidal **S** e elétrico $\mathbf{E}(\mathbf{x},t)$ que vêm agora a reboque do cálculo. E assim, podemos afirmar que as fontes atuais determinam os campos.

Por outro lado, é fácil de se ver que, para fenômenos periódicos, em lugar da Eq. (13), obtém-se

$$\nabla^2 \mathbf{B} = -\frac{4\pi}{c} \mathbf{\nabla} \times \mathbf{J}_L. \tag{18}$$

Considerações finais

Acreditamos ter apresentado aqui uma forma mais didática de encarar as equações de Maxwell: caso periódico, reunindo transmissão e criação; no aperiódico, discriminando o papel das equações, e no caso dos quase-permanentes, mostrando sua correlação com a visão estática de vinculação estreita entre fontes e campos.

Agradecimentos

Agradecemos a Luiz Nunes de Oliveira pela leitura crítica e sugestões incorporadas ao texto.

Nota do Editor

Esse artigo já estava praticamente aceito quando recebemos a notícia do falecimento do autor, ocorrido em São Calos, no última dia 10 de janeiro desse ano. Lastimamos a perda do professor Guilherme Fontes Leal Ferreira, que era um colaborador pioneiro e muito constante das publicações da SBF.

Referências

- [1] J.B. Marion, Classical Eletromagnetic Radiation (Academic Press, New York, 1965).
- [2] J. Vaz, Revista Brasileira de Ensino de Física 19, 234 (1997).
- [3] G.F. Leal Ferreira, Revista Brasileira de Ensino de Física **23**, 395 (2001).
- [4] L. Jánossy, Theory of Relativity based on Physical Reality (Akadémiai Kiadó, Budapest, 1971).