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We address two questions regarding square-well potentials from a didactic perspective. The first question
concerns whether or not the justification of the standard a priori omission of the potential’s vertical segments in
the analysis of the eigenvalue problem is licit. The detour we follow to find out the answer considers a trapezoidal
potential, includes the solution, analytical and numerical, of the corresponding eigenvalue problem and then
analyzes the behavior of that solution in the limit when the slope of the trapezoidal potential’s ramps becomes
vertical. The second question, obviously linked to the first one, pertains whether or not eigenfunction’s and its first
derivative’s continuity at the potential’s jump points is justified as a priori assumption to kick-off the solution
process, as it is standardly accepted in textbook approaches to the potential’s eigenvalue problem. We show
that, by following the indicated detour, the irrelevance of the potential’s vertical segments and the continuity of
eigenfunctions and their first derivatives at the potential’s jump points turn out to be proven results instead of
initial assumptions.
Keywords: Quantum mechanics, square-well potentials.

1. Introduction

A lot of quantum-mechanics textbooks [1–16]1 consider,
discuss, and solve the eigenvalue problem related to
the one-dimensional symmetrical/unsymmetrical finite
and/or infinite square-well potential. The subject has
been seemingly analyzed in a variety of substantially
similar manners, which we group together in and label as
standard textbook approaches (sta) for future reference,
and the outcome of those analyses is looked upon as
established body of knowledge to be taught routinely.
So, why would one wish to go through a reexamination?
The inspiration came from a student’s interesting and
subtle remark:

We are taught about square-well potentials
(swp), such as, say, the one shown in Fig. 1a,
as useful idealizations of practical cases;2
however, when we deal with the eigenvalue
problem, we utilize for all intents and pur-
poses the discontinuous potential (dswp)
shown in Fig. 1b which is a somewhat
different representation of the original swp
because the Heaviside’s functions ignore the

presence of the vertical segments. How do
we know beforehand that the omission of
the vertical segments, which, after all, are
legitimate portions of the potential required
by idealizations, is irrelevant for the solution
of the eigenvalue problem?

A teacher’s very probable reaction, naturally banking
on the mature body of knowledge offered by the sta,
would be to reassure the student that even if a way
could be thought of absorbing into the analysis the swp’s
vertical segments then, in the end, the same results
would be obtained and nothing new would be found;
a typical student would presumably be convinced by
such a reassurance because it conveniently minimizes the
learning process, obviously. On the other hand, there
exist a fraction, maybe small, of curious students to
whom that reassurance would prove less effective. In
the back of their mind, the wisdom delivered by that
witty master of physics that Feynman was in the last
paragraph of his incisive article [17] about science’s
meaning,

It is necessary to teach both to accept and
to reject the past with a kind of balance that
takes considerable skill. Science alone of all
the subjects contains within itself the lesson
of the danger of belief in the infallibility
of the greatest teachers of the preceding
generations.

*Correspondence email address: dg.esa.retired@gmail.com
1 Complete literature surveys are unattainable asymptotic ideals. 
The list we provide contains only the textbooks we consulted but 
we trust they constitute a sufficiently representative sample.
2 A typical example can be found at page 246 of Bohm’s textbook 
[8] where the Ramsauer effect i s described.
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Figure 1: Finite unsymmetrical potentials considered in this study; units are arbitrary.

would keep bouncing back and forth together with
other tempting reflections such as, “How do I know
beforehand that I am not going to find out anything
new? And even if that would turn out to be the case,
how do I know whether or not I will at least learn
something new by following other paths if I do not
explore them?” So, imagining such a state of mind,
we gathered encouragement and thrust from Feynman’s
advice, “So carry on. Thank you.”, concluding his cited
article and went on with the reexamination described
in the sequel. Our effort is dedicated particularly to the
students in the second camp.

Our approach confides in and complies with the natu-
ral philosophy’s famous principle Saltus natura non facit
(Nature does not make jumps)3 that so much inspired
several scientific eminences of the past in different
departments of science [18–21]. Indeed, we relinquish the
dswp, take as starting point the trapezoidal-well poten-
tial (twp) sketched in Fig. 1c, solve the corresponding
eigenvalue problem analytically and numerically, and
investigate the solution’s behavior when the slope of
the twp’s oblique segments becomes vertical (l → 0).
It seemed to us a rather straightforward conceptual
pathway to follow in order to avoid the omission of the
swp’s vertical segments. We were delighted to discover,
although only after having carried out almost completely
our study, that the same idea had been proposed and
probed by Branson [22]4 in 1979. We keep in great
regard Branson’s article because it drew our attention
towards another important issue connected with the
dswp : the presumed continuity of eigenfunctions and

3 The mentioning of this “Loi de la Continuité” (Law of Conti-
nuity), in Leibniz’s words [18], or “old canon in natural history”,
in Darwin’s words [19], may appear somewhat peculiar or, maybe,
even disturbing to the eyes of quantum-mechanics purists that
subscribe to the Copenhagen interpretation; of course, we intend
no provocation to resume bygone fierce debates and simply invoke
the principle only to justify our hesitation regarding the conceptual
applicability of the discontinuous potential of Fig. 1b.
4 We are grateful to S. De Vincenzo (Universidad Central
de Venezuela, Caracas) for bringing Branson’s article to our
attention.

their derivatives at the potential’s jump points (x = ±L
in Fig. 1b);5 we will tell our point of view about this
matter in Sec. 4. We were also pleased to discover in
Fig. 6-1 at page 237 of Tipler and Llewellyn’s text-
book [16] that those authors used the twp of Fig. 1c
with V1 = V2 to characterize the quantum dynamics of
an electron between two electrodes in a vacuum tube, a
fine schematization not so far from real-life applications.

2. Quantum-Mechanics Problem with
the Trapezoidal-Well Potential

2.1. Formulation and preliminary considerations
regarding boundary conditions

We consider a particle on the x axis subjected to the
twp

V (x) =



V1 x ≤ − (l + L)

−V1
x+ L

l
− (l + L) ≤ x ≤ −L

0 −L ≤ x ≤ +L

+V2
x− L

l
+L ≤ x ≤ + (L+ l)

V2 + (L+ l) ≤ x

(1)

shown in Fig. 1c. The particle’s hamiltonian is simply

H = − ℏ2

2m
∂2

∂x2 + V (x) (2)

and its quantum mechanics is governed by the
Schrödinger equation

i ℏ
∂Ψ
∂t

= − ℏ2

2m
∂2Ψ
∂x2 + V (x) Ψ (3)

The praxis in quantum-mechanics textbooks is to intro-
duce at this point the standard variable-separation

5 More precisely, it is not actually considered an issue in the
sta but Branson drew attention to the unsatisfactoriness of
the mathematical explanations provided in the sta to justify
the continuity’s assumption.
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technique and to launch onto the analysis of the
eigenvalue problem governed by the time-independent
Schrödinger equation; as representative example, we
mention Griffiths’ didactically remarkable textbook [14].
We believe that such a way of proceeding is somehow
incomplete because it gives the student only a partial
view inasmuch as it puts in evidence exclusively the
suitableness of the mathematical operators intervening
in the Schrödinger equation (3) for variable-separation
techniques and totally disregards the equally important
role of the boundary conditions which, we are convinced,
deserve attention already at this stage of the problem
formulation. From a mathematical point of view, equa-
tion (3) is a second-order partial differential equation
whose integration requires an initial condition

Ψ(x, 0) = F (x) (4)

and appropriate boundary conditions. In the one-
dimensional case we are considering, there are two
boundaries (x = ±∞) and, therefore, we need two condi-
tions involving wavefunction and its first derivative; we
may write them formally as follows

G1[Ψ(−∞, t),Ψx(−∞, t),Ψ(+∞, t),Ψx(+∞, t)] = 0
(5.1)

G2[Ψ(−∞, t),Ψx(−∞, t),Ψ(+∞, t),Ψx(+∞, t)] = 0
(5.2)

Explicit examples of mathematical nature embedded in
equations (5) are: the prescription of the wavefunction

Ψ(−∞, t) − Θ1(t) = 0 (6.1)
Ψ(+∞, t) − Θ2(t) = 0 (6.2)

by means of supposedly known functions, or the period-
icity condition

Ψ(−∞, t) − Ψ(+∞, t) = 0 (7.1)
Ψx(−∞, t) − Ψx(+∞, t) = 0 (7.2)

or conditions of the Sturm-Liouville type

µ1Ψ(−∞, t) + µ2Ψx(−∞, t) = 0 (8.1)
ν1Ψ(+∞, t) + ν2Ψx(+∞, t) = 0 (8.2)

in which µ, ν are given constants. Of course, equa-
tions (5) must encode in mathematical terms informa-
tion about what is physically going on at the boundaries.
It may happen sometimes that an explicit and crystal
clear grasp of the boundary conditions is not in our
possession but that occurrence does not either entitle
us to ignore or exempt us from keeping in mind their
conceptual necessity, at least formally. Now, within
a mere mathematical context, there is really nothing
particularly special about the above differential-equation
problem [(3), (4), (5)]: if initial (F ) and boundary
(G1, G2) conditions are explicitly specified then the

set of the mentioned equations is a ready intake to
feed numerical-solution machineries. In this regard, an
analogy comes quickly to mind: heat-transfer engineers
solve routinely a similar set either numerically or via
variable separation when possible. Their unknown is the
temperature and, obviously, the terms in their equa-
tion (3) have different physical meanings; the imaginary
unit does not appear but its appearance in our case is an
almost irrelevant computational preoccupation because
modern6 programming languages handle complex num-
bers smoothly. Within a physical context, quantum
mechanics casts a peculiar nuance on the differential-
equation problem we are considering. From a quantum-
mechanical point of view, the acceptable solutions to
equation (3) must conform to a very strict requirement:
the wavefunction must be normalizable∫ +∞

−∞
Ψ∗(x, t) · Ψ(x, t) dx = 1 (9)

otherwise the energy operator E = i ℏ ∂/∂t is not her-
mitean and the macroscopic observable energy does not
turn out to be real [23]

⟨E⟩ ≠ ⟨E⟩∗ (10)

Non-compliant solutions have, therefore, no physical
significance. Incisive statements emphasizing this aspect
were expressed, for example, by Bohm [8, pag. 178],

If this requirement [our equation (9)] is not
satisfied, then we cannot even normalize the
probability, so that it is impossible to give
the wave function a meaning in terms of
physically observable averages.

and Griffiths [14, pag. 13 (his emphasis)],

... non-normalizable solutions cannot
represent particles, and must be rejected.
Physically realizable states correspond
to the square-integrable solutions to
Schrödinger’s equation.

The normalization condition (9) has twofold repercus-
sions on the boundary conditions. If the energy operator
is hermitean then so must be the hamiltonian

⟨H⟩∗ = ⟨E⟩∗ = ⟨E⟩ = ⟨H⟩ (11)

or equivalently∫ +∞

−∞
[(HΨ)∗ Ψ − Ψ∗ HΨ] dx = 0 (12)

The submission of our hamiltonian (2) to the hermiticity
test represented by equation (12) yields the following

6 And even not so modern such as the old good fortran.
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constraint (
Ψ∗ ∂Ψ

∂x
− Ψ∂Ψ∗

∂x

)
x=+∞

−
(

Ψ∗ ∂Ψ
∂x

− Ψ∂Ψ∗

∂x

)
x=−∞

= 0 (13)

on the boundary conditions. Of the explicit examples
listed after equations (5), the periodicity conditions (7)
are the only ones that always comply with equation (13);
the Sturm-Liouville conditions (8) do only if the coeffi-
cients’ ratios are real(

µ1

µ2

)∗

= µ1

µ2

(
ν1

ν2

)∗

= ν1

ν2
(14)

Nothing can be said a priori about the wavefunction-
prescription conditions (6) for arbitrary functions Θk(t).
A more severe constraint is levied by the boundaries’
locations being situated at x = ±∞. These locations
are a bit hostile in view of normalization operations;
they restrict the boundary conditions even more than
equation (13) because they require the vanishing of the
wavefunction [8, 14, 15]7

Ψ(−∞, t) = Ψ(+∞, t) = 0 (15)

Equations (15) are a particular case of wavefunction-
prescription condition [(6) with Θk(t) = 0], comply with
equation (13) and, in so doing, safeguard the hermiticity
(12) of the hamiltonian (2); de facto, they also imply
the vanishing of the wavefunction’s corresponding first
derivatives.

2.2. Boundary conditions with variable
separation

We rejoin now the beaten path of the literature by
applying the standard variable-separation technique

Ψ(x, t) = Φ(t) · ψ(x) (16)

which splits the Schrödinger equation (3) in two sepa-
rated and independent differential-equation problems

i ℏ
∂Φ
∂t

= ϵΦ (17.1)

− ℏ2

2m
∂2ψ

∂x2 + V (x)ψ = ϵψ (17.2)

The temporal one (17.1) is easily integrated

Φ(t) = Φ(0) · exp
(

−i ϵt
ℏ

)
(18)

7 On the necessity of wavefunction vanishing at (±) infinity
as required by the normalization condition, Griffiths wrote in
footnote 12 at page 14 of his textbook [14]: “A good mathematician
can supply you with pathological counterexamples,...”. Hilariously,
his prophecy came perfectly true when one of us (FI) engaged in
such a mathematically refined, somehow even amusing, task.

but we put its integral on hold for the time being
because the exploitation of the initial condition (4) is
premature at this moment. The integration of the time-
independent Schrödinger equation (17.2) involves more
elaboration. It definitely requires two boundary condi-
tions that, obviously, we should derive from the general
ones (5) by substituting in them the variable-separated
wavefunction (16). This move calls for due attention
because it leads us to face a crucial conceptual filter that
reveals the importance of giving the boundary conditions
the deserved attention: if equations (5) transform to

G1[ψ(−∞), ψx(−∞), ψ(+∞), ψx(+∞)] = 0 (19.1)
G2[ψ(−∞), ψx(−∞), ψ(+∞), ψx(+∞)] = 0 (19.2)

then we have permission to proceed with separated vari-
ables; otherwise our solution-technique attempt stops
here because the boundary conditions do not permit the
existence of variable-separated solutions, the receptive
mathematical structure of the Schrödinger equation (3)
towards variable separation (16) notwithstanding. We
are on safe ground with the wavefunction vanishing
at (±) infinity because, after the substitution of equa-
tion (16), equations (15) go smoothly into the eigenfunc-
tions’ vanishing

ψ(−∞) = ψ(+∞) = 0 (20)

Although these considerations may appear a bit formal,
they deliver, we believe, an important didactical message
that was best expressed in a generalized manner by
Tanner [24] in 1991:

Although the Schrödinger equation might be
separable in some coordinates, the boundary
conditions can recouple the variables.

The applicability extent of such a statement is really
wide. It is true, for example, in the case of spatially
confined molecules whose time-independent Schrödinger
equation cannot be separated in terms of center-of-mass
and internal coordinates due to the variable recoupling
imposed by the confinement boundary conditions. Tan-
ner also complained that:

A representative sample of relevant sections
(on the hydrogen atom, center of mass,
etc.) of introductory textbooks on quantum
mechanics revealed no discussion of this
difficulty.

We tend to side with him. Textbooks invariably focus on
the separation of the mathematical operators appearing
in the Schrödinger equation, be it either time-dependent
or -independent. Exceptions paying due attention to
boundary conditions are rare; among them, Persico’s
great textbook [1, 2] shines through.8

8 The textbook in Italian [1] received a very positive review in
Nature 139, 394 (1937). The not better identified reviewer, who
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The time-independent Schrödinger equation (17.2)
with the twp (1) and the eigenfunction-vanishing
boundary conditions (20) constitute the eigenvalue prob-
lem we wish to solve. Before launching onto the solution
process, however, we wish to spend a few more words
to emphasize further the importance of the boundary
conditions. In this regard, we ask: how do we know
if an eigenfunction ψ corresponding to a determined
eigenvalue ϵ is a unique solution9 to equation (17.2)? Let
us suppose that two eigenfunctions ψ1, ψ2 exist for the
same eigenvalue; if they are linearly independent then
their Wronskian [25]

W [ψ1, ψ2] =

∣∣∣∣∣∣
ψ1 ψ2
∂ψ1

∂x

∂ψ2

∂x

∣∣∣∣∣∣ = ψ1
∂ψ2

∂x
− ∂ψ1

∂x
ψ2 (21)

never vanishes. Both eigenfunctions must verify differ-
ential equation (17.2)

− ℏ2

2m
∂2ψ1

∂x2 + V (x)ψ1 = ϵψ1 (22.1)

− ℏ2

2m
∂2ψ2

∂x2 + V (x)ψ2 = ϵψ2 (22.2)

and boundary conditions (20)

ψ1(−∞) = ψ1(+∞) = 0 (22.3)

ψ2(−∞) = ψ2(+∞) = 0 (22.4)

simultaneously by definition. The potential in equa-
tions (22) can be any and needs not necessarily be the
twp of equation (1). We can multiply equation (22.1)
by ψ2, equation (22.2) by ψ1, and subtract to obtain a
vanishing expression

ψ1
∂2ψ2

∂x2 − ψ2
∂2ψ1

∂x2 = 0 (22.5)

which we can transform, through a simple game of
derivative regrouping and expanding, into a form

∂

∂x

(
ψ1
∂ψ2

∂x
− ∂ψ1

∂x
ψ2

)
= ∂W

∂x
= 0 (22.6)

that proves the Wronskian’s invariance; thus, if the
Wronskian is continuous in (−∞,+∞), and we plant

enigmatically signed as H. T. H. P., valued Persico’s efforts as “We
owe a deep debt of gratitude to Dr. Persico for undertaking the
useful task of presenting, in a single volume of reasonable size, a
unified account of all aspects of the subjects.” and concluded with
“... the only serious defect of the book is that it is in Italian. Will
some publisher consider the possibility of an English translation?”
His exhortation was fulfilled 13 years later by Prentice-Hall which
published the English translation [2] by G. Temmer; the English
translation was then reviewed, again positively, by M. Lax in
American Journal of Physics 19, 478 (1951).
9 Griffiths dedicated problem 2.45 at page 87 of his textbook [14]
to this matter but his emphasis was more on the absence of non-
degenerate states.

here a flag to which we will need to return during the
discussion of Sec. 4, then it is constant and we can
conveniently evaluate it at the boundaries

W = ψ1(−∞)
(
∂ψ2

∂x

)
x=−∞

−
(
∂ψ1

∂x

)
x=−∞

ψ2(−∞)

= ψ1(+∞)
(
∂ψ2

∂x

)
x=+∞

−
(
∂ψ1

∂x

)
x=+∞

ψ2(+∞)

(22.7)

We understand at once from equation (22.7) how the
eigenfunctions’ uniqueness is crucially hanging on the
knowledge of the boundary conditions. Those [(22.3)
and (22.4)] we have adopted in our eigenvalue problem
reassuringly make the Wronskian vanish (W = 0), imply
the linear dependence of ψ1, ψ2 and, in so doing, enforce
unambiguously the uniqueness of the eigenfunctions.
So, the eigenstates are not degenerate: for a specified
eigenvalue there is one and only one eigenfunction. This
conclusion goes hand in hand with two other important
properties whose proofs are disseminated throughout the
majority of the textbooks cited in the beginning of Sec. 1:
the eigenvalues are real ϵ∗ = ϵ and the eigenfunctions are
orthogonal ∫ +∞

−∞
ψ∗

ϵ′(x) · ψϵ′′(x) dx = 0 (23)

with ϵ′, ϵ′′ being two distinct eigenvalues. An interesting
consequence of the eigenfunction-uniqueness proof is
that we are given the freedom to choose the eigenfunc-
tions to be either real or pure imaginary. Indeed, if we
break down the eigenfunction explicitly into its real and
complex parts

ψ = u+ iv (24)

and substitute into differential equation (17.2) and
boundary conditions (20) then we reach again the same
structure of equations (22.1)-(22.4) with ψ1, ψ2 replaced
by u, v and the vanishing Wronskian

W = u(−∞)
(
∂v

∂x

)
x=−∞

−
(
∂u

∂x

)
x=−∞

v(−∞)

= u(+∞)
(
∂v

∂x

)
x=+∞

−
(
∂u

∂x

)
x=+∞

v(+∞) = 0

(25)

Thus, u, v are linearly dependent and the eigenfunction
ψ is proportional to anyone of them through an inessen-
tial proportionality constant that we can choose either
real or imaginary as it pleases us.

We imagine the reader to be sufficiently sensitized
about the importance of the boundary conditions and,
therefore, move on with the analysis of the eigenvalue
problem.
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2.3. The eigenvalue problem

2.3.1. Nondimensional formulation

We begin by formulating the eigenvalue problem in
nondimensional form. We scale the x coordinate with
the semi-extension of the potential well (Fig. 1c)

x = ξ · L (26.1)

and the eigenfunction with the inverse squared root of
the total extension

ψ = ϕ√
2L

(26.2)

In this way, the time-independent Schrödinger equation
[(17.2)] and the wavefunction-vanishing boundary con-
ditions [(20)] turn into the nondimensional forms

−∂2ϕ

∂ξ2 + v(ξ)ϕ = β ϕ (27.1)

ϕ(−∞) = ϕ(+∞) = 0 (27.2)

The nondimensional eigenvalue in equation (27.1) is
defined as

β = 2mL2ϵ

ℏ2 (27.3)

while the nondimensional twp

v(ξ) = 2mL2

ℏ2 V (x) =



v1 ξ ≤ − (λ+ 1)

−v1
ξ + 1
λ

− (λ+ 1) ≤ ξ ≤ −1

0 −1 ≤ ξ ≤ +1

+v2
ξ − 1
λ

+1 ≤ ξ ≤ + (1 + λ)

v2 + (1 + λ) ≤ ξ

(27.4)
descends from equation (1) and includes three solution-
controlling characteristic numbers

vs = 2mL2Vs

ℏ2 s = 1, 2 (27.5)

λ = l

L
(27.6)

We assume v2 ≤ v1 for a mere reason of conve-
nience; obviously, the limitation does not restrict the
results in any way. We have graphically illustrated
the nondimensional twp [(27.4)] in Fig. 2 in view of
the forthcoming analysis. The potential subdivides the
x axis in five zones, in each of which the nondimensional
time-independent Schrödinger equation (27.1) must be
integrated separately. The zonal solutions can be joined
by imposing the continuity of the eigenfunction and
of its first derivative at the junction points, that is,
the points at which the twp’s slope is discontinuous;
the unquestionable legitimacy of the claimed continu-
ity conditions is guaranteed by the twp’s continuity.

Figure 2: Nondimensional twp.

In turn, the continuity of the eigenfunction’s second
derivative at the junction points is guaranteed by equa-
tion (27.1). The analytical integration is described in the
following sections. In parallel, we have carried out the
integration also numerically by a method based on high-
order finite differences [26–28] implemented in the code
HOFiD_MSP that can solve multiparameter spectral
BV-ODE problems. In our numerical calculations, we
transform the integration interval (−∞,∞) into a finite
interval by means of a simple variable change and we
utilize 6th-order formulae on a grid whose resolution
consists of 2505 points, distributed in groups of 501
equispaced points in each zone.

2.3.2. Analytical integration in the zones with
constant potential

If we introduce the dummy parameter v0 = 0 and set for
brevity

βs = β − vs s = 1, 0, 2 (28)

in the zones where the twp is constant [(27.4) top,
central, bottom] then the nondimensional differential
equation (27.1) becomes

∂2ϕs

∂ξ2 + βs ϕs = 0 (29)

and, from that, we obtain the general integral

ϕs(ξ) = As sin(ξ
√
βs) +Bs cos(ξ

√
βs) (30)

The imposition of the boundary conditions (27.2) in the
left- and right-most zones yields

ϕ1(−∞) = lim
ξ→−∞

[
A1 sin(ξ

√
β1) +B1 cos(ξ

√
β1)
]

= 0

(31.1)

ϕ2(+∞) = lim
ξ→+∞

[
A2 sin(ξ

√
β2) +B2 cos(ξ

√
β2)
]

= 0

(31.2)
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Physically meaningful solutions can be extracted from
equations (31) only if the arguments of the trigonometric
functions are complex; that, in turn, implies the negativ-
ity of the parameters βs. This occurrence produces the
limitation (28)

β ≤ vs s = 1, 2 (32)

and bounds the eigenvalues to lie below the lowest
potential level, v2 in our case. In accordance with
equation (32), we rearrange equation (28) as

βs = −(vs − β) = −ks (33)

and transform the trigonometric functions of equa-
tions (31) into exponential functions

ϕ1(−∞) = 1
2i lim

ξ→−∞

[
(A1 + iB1) exp(−ξ

√
k1)

− (A1 − iB1)�����
exp(ξ

√
k1)
]

= 0 (34.1)

ϕ2(+∞) = 1
2i lim

ξ→+∞

[
(A2 + iB2)������exp(−ξ

√
k2)

− (A2 − iB2) exp(ξ
√
k2)
]

= 0 (34.2)

The crossed terms in equations (34) vanish in the limit;
thus, boundary-condition compliance requires

A1 = −iB1 (35.1)
A2 = +iB2 (35.2)

Taking into account equation (33) and equation (35.1),
we obtain the solution

ϕ1(ξ) = B1 exp(+ξ
√
k1) (36)

in zone 1; similarly but from equation (35.2), we deduce
the solution

ϕ2(ξ) = B2 exp(−ξ
√
k2) (37)

in zone 2.
It is interesting to wonder what happens if β is forced

by deliberate assignment to infringe the limitation in
equation (32). Obviously, the general integral (30) stands
valid and

√
βs becomes real but the imposition of the

boundary conditions (31) remains idle because the limits
for ξ → ±∞ of the trigonometric functions are inde-
terminate. Thus, rewinding to equations (9) and (12)
through the sequence equation (26.2), equations (20),
equation (16), equation (15), equation (13), we reach
an unavoidable impasse: the hamiltonian’s hermiticity
test fails and the wavefunction cannot be coerced into
normalization. There is nothing else left to do than
to enforce Griffiths’ verdict quoted just before equa-
tion (11): non-normalizable solutions must be rejected
because they correspond to physically irrealizable states.
Does this mean that we should throw those solutions

away? No, they can still be of service as mathematical
ingredients to compose physically acceptable solutions
but this angle of the subject is somewhat tangential
to our main theme focused on the bound states and,
therefore, we refer the interested reader to the lucid
explanations provided by Griffiths in Sec. 2.4 at page
59 of his textbook [14].

In the central zone, the twp vanishes [(27.4) central]
so that β0 = β − v0 = β and the general integral (30)
becomes

ϕ0(ξ) = A0 sin(ξ
√
β) +B0 cos(ξ

√
β) (38)

With regard to the argument of the trigonometric func-
tions in equation (38), it is worth noticing that, as far
as the imposed boundary conditions (31) are concerned,
there is really nothing in them preventing the existence
of negative eigenvalues. The latter occurrence should not
be ruled out simply on the basis of the presence of

√
β in

equation (38). Indeed, assuming hypothetically β < 0,
we could write √

β = i
√

−β (39)

and transform the trigonometric functions with complex
argument iξ

√
−β into exponential functions

ϕ0(ξ) = B0 + iA0

2 exp(ξ
√

−β)+B0 − iA0

2 exp(−ξ
√

−β)
(40)

with real argument ξ
√

−β. The exponential functions
in equation (40) would be harmless and well behaved
because the continuity conditions for the determination
of the coefficients have to be imposed at the boundaries
of the central zone located at ξ = ∓1. Yet, we will
discover soon the reason for eigenvalue positivity; for
now, we just have to wait patiently a little bit longer.

2.3.3. Analytical integration in the zones with
linear potential

The integration of the nondimensional differential equa-
tion (27.1) in the zones with linear potential requires
familiarity with the Airy’s differential equation and
functions [29, 30] but it is very straightforward. Let us
begin with the left zone. The twp decreases linearly
[(27.4), 2nd line from top] from the level v1 down to the
bottom of the well and the differential equation (27.1)
becomes

∂2ϕ1′

∂ξ2 +
(
β + v1

ξ + 1
λ

)
ϕ1′ = 0 (41)

The independent-variable linear transformation

ξ = −η
(
λ

v1

)1/3
−
(
λ

v1
β + 1

)
(42)

converts equation (41) into the Airy differential equation

∂2ϕ1′

∂η2 − η ϕ1′ = 0 (43)
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whose general integral is a linear combination of the Airy
functions

ϕ1′(η) = A1′ Ai(η) +B1′ Bi(η) (44)

Things are pretty much similar in the right zone. The
twp increases linearly [(27.4), 2nd line from bottom]
from the bottom of the well up to the level v2 and the
differential equation (27.1) becomes

∂2ϕ2′

∂ξ2 +
(
β − v2

ξ − 1
λ

)
ϕ2′ = 0 (45)

The independent-variable linear transformation

ξ = +ζ
(
λ

v2

)1/3
+
(
λ

v2
β + 1

)
(46)

converts equation (45) into another Airy differential
equation

∂2ϕ2′

∂ζ2 − ζ ϕ2′ = 0 (47)

with general integral

ϕ2′(ζ) = A2′ Ai(ζ) +B2′ Bi(ζ) (48)

With the obtainment of equations (44) and (48), our task
is quickly completed. However, it is useful to introduce
here for future reference some characteristics and con-
sequences of the independent-variable transformations
[(42) and (46)], we took advantage of to carry out
the integration, in view of their recurrent use in the
forthcoming sections.

The differentials

dξ = −dη
(
λ

v1

)1/3
(49.1)

dξ = +dζ
(
λ

v2

)1/3
(49.2)

help to derive transformations between derivatives with
respect to old and new variables

∂

∂ξ
= −

(v1

λ

)1/3 ∂

∂η
(50.1)

∂

∂ξ
= +

(v2

λ

)1/3 ∂

∂ζ
(50.2)

The inverse transformations

η = −
(v1

λ

)1/3
(
ξ + 1 + λ

v1
β

)
(51.1)

ζ = +
(v2

λ

)1/3
(
ξ − 1 − λ

v2
β

)
(51.2)

are also useful because they allow to obtain the char-
acteristic values of the new variables η and ζ at
the junction points 1–1’, 1’–0, located respectively at

ξ = −(1 + λ) and ξ = −1, that belong to the left zone
and 0–2’, 2’–2, located respectively at ξ = +1 and
ξ = +(1 + λ), that belong to the right zone; we find
respectively

η̄ = +
(
λ

v1

)2/3
k1 > 0 1–1’ (52.1)

η̂ = −
(
λ

v1

)2/3
β 1’–0 (52.2)

in the left zone and

ζ̂ = −
(
λ

v2

)2/3
β 0–2’ (53.1)

ζ̄ = +
(
λ

v2

)2/3
k2 > 0 2’–2 (53.2)

in the right zone. The overlined values are always
positive; the circumflexed values’ sign depends on that
of the eigenvalue. They conform to the following, easily
demonstrable, limitations

η̂ ≤ η̄ = η̂ + (λ
√
v1)2/3 (54.1)

ζ̂ ≤ ζ̄ = ζ̂ + (λ
√
v2)2/3 (54.2)

and, expectedly, they fix the ranges of the new
variables

η̂ ≤ η ≤ η̄ (55.1)

ζ̂ ≤ ζ ≤ ζ̄ (55.2)

2.3.4. Eigenfunction’s and its first derivative’s
continuity at junction points

The eigenfunction’s components [(36)-(38), (44) and
(48)] we obtained by analytical integration involve the
presence and require the determination of the eight
coefficients B1, A1′ , B1′ , A0, B0, A2′ , B2′ , B2 and of the
eigenvalue β; nine unknowns in total. They can be found
by imposing the continuity of the eigenfunction and of
its first derivative, two conditions therefore, in the four
zone-junction points; accordingly, this imposition per-
mits the formulation of eight equations. The additional
equation needed to balance the number of unknowns
descends from the reformulation of the wavefunction’s
normalization condition equation (9) in terms of the
eigenfunctions; as well known, the most convenient
choice is the normalization of the eigenfunctions∫ +∞

−∞
ψ∗(x)ψ(x) dx = 1 (56)

which, according to the adopted variable scaling (26),
goes into the nondimensional form

1
2

∫ +∞

−∞
ϕ∗(ξ)ϕ(ξ) dξ = 1 (57)

Revista Brasileira de Ensino de Física, vol. 45, e20220303, 2023 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0303



Giordano et al. e20220303-9

Let us begin with the junction point 1–1’ located at
ξ = −(1 + λ) and in correspondence of which η = η̄ > 0
(52.1). The eigenfunction’s components [(36) and (44)]
can be soldered mathematically with the continuity
joint

ϕ1 (−(1 + λ)) = ϕ1′(η̄) (58.1)[
∂ϕ1

∂ξ

]
ξ=−(1+λ)

= −
(v1

λ

)1/3
[
∂ϕ1′

∂η

]
η=η̄

(58.2)

The right-hand side of equation (58.2) descends from the
derivative transformation indicated in equation (50.1).
After derivatives are done and all necessary substitutions
are in place, equations (58) evolve into the algebraic
system

B1 exp[−(1 + λ)
√
k1] = A1′ Ai(η̄) +B1′ Bi(η̄) (59.1)

B1 exp[−(1 + λ)
√
k1] = − 1√

η̄

[
A1′ Ai′(η̄) +B1′ Bi′(η̄)

]
(59.2)

On the right-hand side of equation (59.2), we have
complied with the standard notation [29, 30] reserved for
the first derivatives of the Airy functions. Equations (59)
fix two coefficients in terms of a third one; to that aim,
they can be subtracted and rearranged as

A1′ Ai(η̄) +B1′ Bi(η̄) = − 1√
η̄

[
A1′ Ai′(η̄) +B1′ Bi′(η̄)

]
(60)

to extract, for example, the coefficient A1′

A1′ = −B1′ · f1′ (61)

The factor f1′ in equation (61) is conveniently set to

f1′ =
√
η̄ Bi(η̄) + Bi′(η̄)√
η̄ Ai(η̄) + Ai′(η̄)

(62)

to simplify the notation; it is always real because
η̄ > 0. The coefficient B1 can then be obtained from
equations (59) in two different but, obviously, equivalent
ways

B1 = B1′ [Bi(η̄) − f1′ Ai(η̄)] exp[(1 + λ)
√
k1]

= −B1′
√
η̄

[
Bi′(η̄) − f1′ Ai′(η̄)

]
exp[(1 + λ)

√
k1]

(63)

from which we also extract, as collateral result, a useful
identity

Bi(η̄) − f1′ Ai(η̄) = −Bi′(η̄) − f1′ Ai′(η̄)√
η̄

(64)

that permits to interchange Airy’s functions with their
first derivatives and viceversa; we can also deduce
equation (64) from appropriate rearrangement of equa-
tion (62); after proper generalization, it will prove useful
in Sec. 3.2.

Basically, we must apply repeatedly the procedure
followed for the junction point 1–1’ to the other junction
points. Let us see where it leads to for junction point 1’–0
located at ξ = −1 and for which η = η̂. The continuity
requirement

ϕ1′(η̂) = ϕ0(−1) (65.1)

−
(v1

λ

)1/3
[
∂ϕ1′

∂η

]
η=η̂

=
[
∂ϕ0

∂ξ

]
ξ=−1

(65.2)

generates the algebraic system

B1′ [Bi(η̂) − f1′ Ai(η̂)] = −A0 sin(
√
β) +B0 cos(

√
β)

(66.1)

− B1′
√

−η̂
[Bi′(η̂) − f1′ Ai′(η̂)] = A0 cos(

√
β) +B0 sin(

√
β)

(66.2)

in which only the coefficient B1′ appears because we
exclude the coefficient A1′ with the aid of equation (61).
Member-to-member division of equations (66) eliminates
the former coefficient

−A0 sin(
√
β) +B0 cos(

√
β)

A0 cos(
√
β) +B0 sin(

√
β)

= g1′ (67)

The factor g1′ in equation (67) is set to

g1′ = −
√

−η̂ Bi(η̂) − f1′ Ai(η̂)
Bi′(η̂) − f1′ Ai′(η̂)

(68)

again to simplify the notation; it is either real or
pure imaginary according to the sign of the eigenvalue
(52.2). We hold on equation (67) as it stands instead
of proceeding to solve for one of the two coefficients
appearing in it; the reason behind this decision will
surface in Sec. 2.3.7. The coefficient B1′ follows from
equations (66) in either of the two equivalent forms

B1′ = −A0 sin(
√
β) +B0 cos(

√
β)

Bi(η̂) − f1′ Ai(η̂)

= −
√

−η̂ A0 cos(
√
β) +B0 sin(

√
β)

Bi′(η̂) − f1′ Ai′(η̂)
(69)

We trust the continuity-implementation recipe to be
sufficiently clear by now. Its application to the junction
points 0–2’ and 2’–2 is nothing else than the conceptual
mirroring of what we have done so far with the junction
points 1–1’ and 1’–0. Therefore, we believe we can
confidently skip the details and list only the final output.
The continuity requirement at the junction point 2’–2
located at ξ = 1 + λ and for which ζ = ζ̄ > 0

ϕ2′(ζ̄) = ϕ2(1 + λ) (70.1)(v2

λ

)1/3
[
∂ϕ2′

∂ζ

]
ζ=ζ̄

=
[
∂ϕ2

∂ξ

]
ξ=1+λ

(70.2)
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leads to

A2′ = −B2′ · f2′ (71)

with

f2′ =
√
ζ̄ Bi(ζ̄) + Bi′(ζ̄)√
ζ̄ Ai(ζ̄) + Ai′(ζ̄)

(72)

and

B2 = B2′
[
Bi(ζ̄) − f2′ Ai(ζ̄)

]
exp[(1 + λ)

√
k2]

= −B2′√
ζ̄

[
Bi′(ζ̄) − f2′ Ai′(ζ̄)

]
exp[(1 + λ)

√
k2] (73)

The continuity requirement at the junction point 0–2’
located at ξ = 1 and for which ζ = ζ̂

ϕ0(1) = ϕ2′(ζ̂) (74.1)[
∂ϕ0

∂ξ

]
ξ=1

= +
(v2

λ

)1/3
[
∂ϕ2′

∂ζ

]
ζ=ζ̂

(74.2)

produces a second equation involving the coefficients A0
and B0

A0 sin(
√
β) +B0 cos(

√
β)

A0 cos(
√
β) −B0 sin(

√
β)

= g2′ (75)

with

g2′ = +
√

−ζ̂ Bi(ζ̂) − f2′ Ai(ζ̂)
Bi′(ζ̂) − f2′ Ai′(ζ̂)

(76)

and fixes the coefficient B2′

B2′ = A0 sin(
√
β) +B0 cos(

√
β)

Bi(ζ̂) − f2′ Ai(ζ̂)

=
√

−ζ̂ A0 cos(
√
β) −B0 sin(

√
β)

Bi′(ζ̂) − f2′ Ai′(ζ̂)
(77)

The factor f2′ is always real because ζ̄ > 0 (53.2); the
factor g2′ is either real or pure imaginary according to
the sign of the eigenvalue (53.1).

As anticipated in the beginning of this section, we
have obtained eight equations [(61), (63), (67), (69),
(71), (73), (75), (77)] to determine the eight coefficients
and the eigenvalue; we still have equation (57) in reserve
but, right now, its exploitation is not required yet.
Equations (67) and (75) are those of utmost importance
and deserve particular attention because they generate
the eigenvalues. We take up their study in next section.

We wish to conclude with a reassurance to the reader
concerned with the listed equations’ seeming mathe-
matical cumbersomeness, perhaps particularly perceived
from the presence of Airy functions and their first deriva-
tives. We did the coding in octave, a programming
language within which Airy functions and derivatives
are built-in intrinsic functions, and the calculations went
smooth and flawless.

2.3.5. Eigenvalues

Let us rewrite equations (67) and (75) in a slightly
rearranged but more convenient form

A0[sin(
√
β) + g1′ cos(

√
β)]

+ B0[g1′ sin(
√
β) − cos(

√
β)] = 0 (67)1

A0[sin(
√
β) − g2′ cos(

√
β)]

+ B0[g2′ sin(
√
β) + cos(

√
β)] = 0 (75)1

and let us look at it as a homogeneous algebraic system[
sin(

√
β) + g1′ cos(

√
β) g1′ sin(

√
β) − cos(

√
β)

sin(
√
β) − g2′ cos(

√
β) g2′ sin(

√
β) + cos(

√
β)

]
·
[
A0

B0

]
= 0 (78)

for the coefficients A0, B0. The vanishing of its determi-
nant leads to the transcendental equation

D(β) = (1 + g1′g2′) sin(2
√
β)+(g1′ − g2′) cos(2

√
β) = 0

(79)
that generates the eigenvalues. Basically, all eigenvalue-
generating equations encountered in the literature we
consulted, textbooks [1–16] as well as specialized papers
[31–44], are particular cases embedded in equation (79),
all with λ = 0 obviously, most of them with symmetrical
potential (v1 = v2) and just a few [3, 4, 7] with unsym-
metrical potential (v1 ̸= v2). Very ingenious analytical as
well as graphical ways have been proposed and exploited
to extract the roots of those transcendental equations;
however, the exploitability of these options, although
sometimes still rather elaborated mathematically, is
possible only for relatively simplified situations, such as
the one involving symmetrical potentials for example.
The mathematical transcendence of equation (79) with
respect to the variable β is extreme in our case with
λ ̸= 0 because it concatenates the complexity of equa-
tions (52) and (53), equations (62) and (72), equations
(68) and (76). Therefore, we had no other option than
to follow a numerical approach based on the Newton-
Raphson method, a fruitful idea proposed by Mem-
ory [45] already in 1977. Of course, Barsan’s warning
[43, bottom of page 3023]:

... the eigenvalue equations ... are transcen-
dental equations, whose analytical solutions
are difficult to obtain. Of course, they can
be calculated numerically, with high preci-
sion, but their dependence on the physical
parameters of the problem is totally lost.

did not escape our attention but we believe that the fear
of the loss mentioned in his last sentence is unfounded
if one works with nondimensional variables.

The first question we may wish to settle regarding
equation (79) concerns whether or not it can produce
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negative eigenvalues. Usually, approaches in the litera-
ture [4, 5, 11, 14, 16, 31, 39, 43, 44] deduce the answer
a posteriori within the search of the eigenvalues with
graphical methods; but we feel more comfortable with
an approach helped by analytical support. The path
to follow consists in assuming hypothetically β < 0,
applying the switch of equation (39) and working out
the consequences on the function D(β). The expression
found at the end of the mathematical manipulations
turns out to be a pure imaginary non-linear combination
of hyperbolic functions

D(β) = i[(1 + g1′ g2′) sinh(+2
√

−β)

− i (g1′ − g2′) cosh(2
√

−β)] (80)

The quantity in square brackets is real and, therefore,
represents Im [D(β)] because the factors g1′ , g2′ are pure
imaginary [(52.2), (53.1), (68) and (76)]. The hyperbolic
functions are always positive; therefore, the responsibil-
ity for the sign of Im [D(β)] falls on their coefficients,
which, let us not forget, also depend on β. Given
the mathematical cumbersomeness of the coefficients,
what we need to do is to draw their graphs versus β
to understand their behavior. Figure 3 provides two
examples: a twp with v1 = 1, v2 = 0.5, λ = 1 in Fig. 3a
and a virtual10 swp with v1 = 1, v2 = 0.5, λ = 10−9 in
Fig. 3b.
They indicate that the coefficients of the hyperbolic
functions are monotonic and positive and the function
Im [D(β)] never vanishes on the left of β = 0. We have
tested several combinations of the characteristic num-
bers v1, v2, λ and found out that the curves expectedly
shift a bit but their monotonicity is never compromised
and the general picture remains similar to those shown in
Fig. 3. So, we can rest assured that negative eigenvalues
do not exist and conclude that the eigenvalues are also

Figure 3: The function Im [D(β)] and the coefficients of the
hyperbolic functions in equation (80) versus β/v2 in the interval
[−1,0].

10 We trust the reader would agree with the assertion that a twp
with a steepness characterized by λ = 10−9 can be considered
square for all practical purposes.

bounded from below; then, equation (32) upgrades to
the final form

0 < β ≤ v2 (81.1)

or even better

0 < β

v2
≤ 1 (81.2)

Thus, all eigenvalues reside within the potential well;
accordingly, we can forget equation (40) and retain
exclusively equation (38) as eigenfunction’s component
in the central zone.

We return now to the original transcendental equa-
tion (79) and concentrate on the determination of its
roots. The strategy consists in plotting the function
D(β) versus β/v2, detecting visually the intersections
with the horizontal axis in order to extract initial-
guess values for β/v2 and then launching the numerical
algorithm based on the Newton-Raphson method. The
latter involves the derivative dD/dβ whose determina-
tion requires a bit of careful attention to mathematical
details but, in general, it works very well with conver-
gence residuals of the order 10−10 achieved in just a few
iterations. We have discovered that the coefficients of the
trigonometric functions in equation (79) and, by reflec-
tion, the function D(β) may present vertical asymptotes
for some specific triplets of v1, v2, λ, as shown in the
example of Fig. 4, but, fortunately, such occurrences do
not hamper the convergence of the method’s iteration
procedure if the initial value of β/v2 is appropriately
chosen. Nevertheless, we have probed equation (79) from
different angles in order to obtain alternative forms freed
from unaesthetic infinities inside the interval [0,1]. An
effective cure, we found out, consists in introducing the
reciprocal factors

γs = 1
gs

s = 1′, 2′ (82)

Figure 4: The coefficients of the trigonometric functions in
equation (79) and the function D(β) versus β/v2 in the interval
[0,1] featuring one eigenvalue in [0.62, 0.63] and a vertical
asymptote at ∼ 0.9.
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Figure 5: The coefficients of the trigonometric functions in
equation (83) and the function D◦(β) versus β/v2 in the interval
[0,1].

whose substitution in equation (79) leads to another
transcendental equation

D◦(β) = (γ1′γ2′ + 1) sin(2
√
β) + (γ2′ − γ1′) cos(2

√
β)

= 0 (83)

on the basis of which the graphs of Fig. 4 evolve
into those of Fig. 5 that give evidence of how the
curves acquire a beneficent monotonicity and are better
behaved; true, there is still a vertical asymptote at β = 0
but it is innocuous because its position is frozen with
respect to the values of the triplet v1, v2, λ. Further
improvement is possible and can be achieved by follow-
ing the guidelines of the smart idea proposed by Sprung
and coauthors [35] in 1992. Let us write for brevity

C = γ1′γ2′ + 1 (84.1)
S = γ2′ − γ1′ (84.2)

and define the normalization factor

R =
√
C2 + S2 =

√
(1 + γ2

1′) (1 + γ2
2′) (84.3)

Then the ratios C/R and S/R are bound within the
interval [−1,+1] and permit the introduction of the
angle φ defined by

cosφ = −C

R
(85.1)

sinφ = −S

R
(85.2)

The minus-sign choice in equations (85) counteracts the
negativity of the ratio C/R which tends to -1 when
β approaches zero and compels the convenient initial
condition φ(β → 0) = 0.11 In the sequel, we will imply
the dependence of φ on β, v1, v2, λ and will explicit it

11 The positive-sign alternative leads to the initial condition
φ(β → 0) = π, an unnecessary complication that may introduce a
risk of confusion when we need to invert equations (85) to obtain
the angle φ.

only if and as required by the context. The division of
equation (83) by the normalization factor R produces
an ulterior version of transcendental equation

D∗(β) = 1
R
D◦(β) = − cosφ sin(2

√
β) − sinφ cos(2

√
β)

= − sin
(

2
√
β + φ(β)

)
= 0 (86)

We can obviously go one step further and pull out from
equation (86) the solution in terms of angles

2
√
β + φ(β) = nπ n = 1, 2, . . . (87.1)

or

θ(β) = 2
√
β + φ(β)
π

= n n = 1, 2, . . . (87.2)

after a slightly more convenient rearrangement. Typical
graphs of the functions D∗(β) and θ(β) are shown in
Fig. 6; we believe that they are definitely more visually
representative and elegant than those of the functions
D(β) and D◦(β) illustrated in Figs. 4b and 5b, respec-
tively; nevertheless, in our experience, the Newton-
Raphson method works well with each one of the
mentioned functions. We believe appropriate to remark
two important aspects. First, we have to keep in mind
that equations (86) and (87.2) are still transcendental
equations, although they look apparently simpler with
respect to equations (79) and (83); the complexity is
hidden behind the angle φ and involves all the formulae,
encountered previously, which we need to navigate
through to obtain it. Second, equation (87.1) tells us that
the angle φ can be interpreted as a quantitative measure
of the conceptual difference between the eigenvalue
spectrum of our twp (Fig. 2) and that of the infinite
swp, for which we are led to anticipate that φ → 0
from the visual inspection of equation (87.1), in terms
of well’s finiteness, asymmetry and trapezoidal shape.

We selected two test cases to validate both the
Newton-Raphson algorithm to find the roots of the
described transcendental equations and the finite-
difference numerical method that solves equations (27)
and produces collaterally the eigenvalues; Reed [34] con-
sidered an electron (m = 9.1093837015 · 10−31 kg) in a
finite symmetrical swp of depth V0 = V1 = V2 = 100 eV
and semi-width L = 1A

◦
; the four eigenvalues

he found by utilizing a bisection method are
listed at page 504 (bottom of the left column)
of his article. From equation (27.5), with the
recommended12 values ℏ = 1.054571817 · 10−34 J·s,
1 J = 6.24150907446076 · 1018 eV and 1 A

◦
= 10−10 m,

we obtained v1 = v2 ≃ 26.2468 and set λ = 10−9 to
simulate the potential’s squareness. The eigenvalue-
detection graph shown in Fig. 7a confirms the existence
of four eigenvalues; the D∗(β) curve is a stretched

12 https://www.nist.gov/pml/fundamental-physical-constants
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Figure 6: The functions D∗(β) and θ(β) versus β/v2 in the
interval [0,1]; in correspondence to the eigenvalue, the former
function vanishes (86) and the latter function attains the integer
value n = 1 (87.2).

sinusoid similar to the one provided by Reed in his
Fig. 1 at page 504 of [34]. The dashed lines empha-
size graphically how the zeros of D∗(β) correspond
systematically to integer values of θ(β) in compliance
with equation (87.2). Our results are tabulated in the
upper section of Table 1; columns 4 and 5 from left
contain those obtained, respectively, with the Newton-
Raphson algorithm via equation (86) and with the
finite-difference numerical method. Columns 6 and 7
contain the data generated from those of columns 3 and
4 post-processed to match Reed’s format. De Alcantara
and Griffiths [39] also considered a generic particle in
a finite symmetrical swp and specified directly the
characteristic numbers √

v1 = √
v2 = 15 (z0 in their

notation); the ten eigenvalues they found are tabulated
in Table I at page 44 (bottom of left column) of their
article. The eigenvalue-detection graph shown in Fig. 7b
confirms the existence of ten eigenvalues and the values
we found are listed in the lower section of Table 1,
again in columns 4 and 5; the data of columns 3 and 6
correspond to de Alcantara and Griffiths’ format. For
both test cases, the Newton-Raphson algorithm and the
finite-difference numerical method are in full agreement
and our eigenvalues match all the significant digits of
the eigenvalues reported in the original articles.

2.3.6. Existence of eigenvalues

It is well evidenced in the literature [3, 7] that eigenval-
ues may not exist for unsymmetrical SWPs with suffi-
ciently deep gap (v1 −v2). The transcendental equations
involving the angle φ [(86) and (87.2)] suggest that such
an occurrence can happen also for TWPs. Indeed, there
can be triplets of the characteristic numbers v1, v2, λ in
correspondence to which

− sin
(

2
√
β + φ(β)

)
< 0 (88.1)

Figure 7: Eigenvalue-detection graphs for the selected test
cases.

Table 1: Test cases for the validation of the algorithm based
on the Newton-Raphson method applied to equation (86) and
of the finite-difference numerical method. The main header
contains our notation; the sub-headers contain (in parentheses)
the original notation adopted in the indicated references. All our
calculations were carried out with λ = 10−9.

and

θ(β) = 2
√
β + φ(β)
π

< 1 (88.2)

when β/v2 ranges in the interval [0,1]; if these conditions
are fulfilled then, again, eigenvalues do not exist. The
inequalities indicated in equations (88) are exemplified
in Fig. 8 for the triplet v1 = 1, v2 = 0.15, λ = 1; an
increase of either the well’s gap (v1 − v2) by lowering
v2 from 0.2 to 0.15 (Fig. 8a) or the well’s steepness
by reducing λ from 1.5 to 1.0 (Fig. 8b) expels the
intersection points outside the interval [0,1] and makes
the eigenvalue disappear. Which physical interpretation
should we attach to the absence of eigenvalues? A simple
and straightforward one: that, notwithstanding both
the receptive mathematical structure of the Schrödinger
equation (3) towards variable separation (16) and the
benevolent imprimatur of the boundary conditions (19),
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Figure 8: Graphical evidence of the possibility that eigenvalues
do not exist for some triplets of the characteristic numbers
v1, v2, λ.

still separated-variable solutions are not allowed by the
potential. The condition for the absence of eigenvalues
can be formulated by noticing from Figs. 6 and 7 that the
function θ(β) is monotonically increasing with respect to
the ratio β/v2 in [0,1]

θ(β) = 2
√
β + φ(β)
π

≤
2√

v2 + [φ(β, v1, v2, λ)]β=v2

π
(89)

Therefore, if

2√
v2 + [φ(β, v1, v2, λ)]β=v2

π
< 1 (90)

then the inequality indicated in equation (88.2) is
verified a fortiori. Equation (90) is the condition
whose fulfillment entails the absence of eigenvalues.
Unfortunately, its exploitation is not feasible in any
analytical fashion in the general case of arbitrary triplets
of the characteristic numbers v1, v2, λ due to the math-
ematical cumbersomeness of the factors f1′ , g1′ , f2′ , g2′

[(62), (68), (72), (76)] that constitute the input to the
algorithm to extract the angle [φ(β, v1, v2, λ)]β=v2

based
on equations (84) and equations (85); a numerical
treatment is always implied and necessary. This
inconvenience notwithstanding, it is possible to show
that also for symmetrical TWPs at least one eigenvalue
always exists, precisely as it happens for symmetrical
SWPs [4, 7, 14]. Indeed, if we set v1 = v2 = v, λ ̸= 0
and β = v2 = v as required by equation (90) then the
following cascade of simplifications takes place. The
overlined values [(52.1) and (53.2)] vanish (η̄ = ζ̄ = 0)
and the circumflexed values [(52.2) and (53.1)] coincide

η̂ = ζ̂ = −
(
λ

√
v
)2/3 (91)

We deduce right away from equation (91) that the angle
[φ(β, v, λ)]β=v we are looking for is not going to depend
on λ and v separately but on the product appearing
on the right-hand side of equation (91), product that
defines formally the new characteristic number

u =
(
λ

√
v
)2/3 (92)

Figure 9: Graphical evidence that at least one eigenvalue always
exists for symmetrical twps.

Its usefulness will become apparent in a few lines from
here. Further coincidence takes place for the factors
f1′ , f2′ [(62) and (72)]

f1′ = f2′ = Bi′(0)
Ai′(0)

= f(0) ≃ −1.73205 (93)

for the factors g1′ ,−g2′ [(68) and (76)]

g1′ = −g2′ = −
√
u

Bi(−u) − f(0) Ai(−u)
Bi′(−u) − f(0) Ai′(−u)

(94)

and, consequently, for their reciprocals (82)

γ1′ = −γ2′ (95)

With these simplifications, the algorithm based on equa-
tions (84) and equations (85) becomes somewhat lighter
computationally and furnishes the angle [φ(β, v, λ)]β=v

required in the eigenvalue-absence condition [(90)]
adapted to the present case

2
√
v + [φ(β, v, λ)]β=v

π
< 1 (96)

The nice feature of the angle [φ(β, v, λ)]β=v being depen-
dent only on the lately defined characteristic number
u (92) suggests the clever move to extract

√
v from

equation (92)

√
v = u3/2

λ
(97)

to substitute it into equation (96) and rearrange the
condition into the separated form

2
λ

+
[φ(β, v, λ)]β=v − π

u3/2 < 0 (98)

The first term on the left-hand side of equation (98)
depends only on the potential’s steepness and is uncon-
ditionally positive. The responsibility for positivity or
negativity falls on the second term; this term, however,
turns out to be a universal function

H(u) =
[φ(β, v, λ)]β=v − π

u3/2 (99)

Revista Brasileira de Ensino de Física, vol. 45, e20220303, 2023 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0303



Giordano et al. e20220303-15

of the characteristic number u whose graph, illustrated
in Fig. 9a, reveals to be also positive and monotonic.
These valuable features of the function H(u) ensure the
falseness of the inequality in equation (98) and sanction
the conclusion that eigenvalues certainly exist for sym-
metrical TWPs. More graphical evidence supporting this
conclusion is illustrated in Fig. 9b. The rightmost curve
(λ = 10−9) corresponds essentially to a symmetrical swp
and, therefore, it has always at least one intersection
with the level θ(β) = 1, no matter how shallow the
well’s depth is. If the well’s steepness decreases then
the potential becomes a symmetrical twp; the curve
shifts leftward, so does the intersection, and, again, we
can conclude a fortiori that also a symmetrical twp
possesses at least one eigenvalue.

2.3.7. Eigenfunction’s coefficients

The successive step, after the calculation of the eigen-
values, consists in the determination of the eigenfunc-
tion’s coefficients. On account of the determinant’s
vanishing (79), the algebraic system composed by equa-
tions (67)1 and (75)1 coalesce into one single equa-
tion connecting the coefficients A0, B0. Accordingly, an
instinctive manner to proceed could comprise the follow-
ing sequence of operations: (a) decide which of the two
coefficients should be assumed independent and solve
either equation (67)1 or equation (75)1 for the dependent
one; (b) determine the other coefficients in terms of the
independent one from the group of equations listed in
the beginning of the paragraph following equation (77),
after setting aside equations (67) and (75), of course; (c)
obtain the independent coefficient from the exploitation
of the eigenfunction’s normalization condition (57). And,
indeed, this sequence would work smoothly and swiftly
for unsymmetrical wells; yet, we found out that failure
is lurking behind operation (a) if the potential well
is symmetrical. This is the particular case in which
eigenfunction’s parity, even and odd, must be explic-
itly contemplated; it is thoroughly discussed in the
literature for symmetrical SWPs but it turns up also
for symmetrical TWPs. Let us see the details. The
well symmetry implies the following simplifications. The
overlined and the circumflexed values [(52) and (53)]
come, respectively, to coincide

η̄ = ζ̄ (100.1)

η̂ = ζ̂ (100.2)

and so do the factors f1′ and f2′ [(62) and (72)]

f1′ = f2′ (101)

The factors g1′ and g2′ [(68) and (76)] become mathe-
matically opposite

g1′ = −g2′ → g (102)

The algebraic system in equation (78) simplifies to the
form[

sin(
√
β) + g cos(

√
β) g sin(

√
β) − cos(

√
β)

sin(
√
β) − g cos(

√
β) g sin(

√
β) + cos(

√
β)

]
·

[
A0

B0

]
= 0

(103.1)
and its determinant provides the factorized transcenden-
tal equation13

[D(β)]sw = −2
[
sin(

√
β) + g cos(

√
β)
]

·
[
g sin(

√
β) − cos(

√
β)
]

= 0 (103.2)

Equations (103) generate the even-parity solution

A0 = 0 (104.1)

g tan(
√
β) = 1 (104.2)

and the odd-parity solution

B0 = 0 (105.1)

g cot(
√
β) = −1 (105.2)

Equations (104.1) and (105.1) tell how unwise the oper-
ation (a) mentioned in the beginning of this section
would be without knowing beforehand which parity
situation we are dealing with.14 The coefficient-vanishing
possibility is the reason, mentioned just below equa-
tion (68), behind our decision to keep equation (67)
in that form instead of solving it for one of the two
coefficients. This turn of events is particularly critical
when a numerical method, such as the Newton-Raphson
method we used, is adopted to calculate the eigenvalues
because the necessity of parity distinction is basically
invisible to the numerical algorithm that operates on
the transcendental equation, that being any of equa-
tion (79) or equation (86) or equation (87.2). The three
characteristic numbers v1, v2, λ constitute all that the
numerical algorithm needs to know to grind out the
eigenvalue and the circumstance of symmetrical well
is handled as mechanically as that of unsymmetrical
well. There is no automatic mechanism built in the
algorithm that, in the former circumstance, raises a

13 Equation (103.2) is obviously the simplified form which equa-
tion (79) reduces to with the help of the trigonometric formulae

sin(2
√

β) =
2 tan(

√
β)

1 + tan2(
√

β)
cos(2

√
β) =

1 − tan2(
√

β)

1 + tan2(
√

β)

and if the identity indicated in equation (102) is enforced.
14 This is precisely the trap which one of us (DG) walked
head-on into. An unexpected and mystifying sign change of the
eigenfunction at the junction point 0–2’ for the second excited
eigenstate shown in Fig. 11c was the unequivocal omen that some-
thing had gone wrong with the calculation of the eigenfunction’s
coefficients and triggered the debugging investigation that lead to
the understanding of the details explained in the text. A good
lesson learned from a mistake.
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parity-distinction flag to be remembered and taken into
account at the moment of calculating the eigenfunction
coefficients. The if-then-else situation created by the
necessity of parity distinction for symmetrical wells must
be programmed in the algorithm. It is doable and is not
a serious preoccupation, of course, but it is a perhaps
rather tedious inconvenience. Luckily, there is a simple
stratagem to circumvent it.15 Let us introduce two new
coefficients defined as

[
C0
D0

]
= 1

2

[
1 1
1 −1

]
·
[
A0
B0

]
=


A0 +B0

2
A0 −B0

2

 (106)

These coefficients never vanish, even if the well is
symmetric; in that case, they are either opposite (C0 =
−D0) or equal (C0 = D0) if the parity is even (A0 = 0)
or odd (B0 = 0), respectively. Therefore, one of them can
always be expressed in term of the other one without fear
of disrupting the coefficient-calculation procedure. Now,
we can invert equation (106)[

A0
B0

]
=
[

1 1
1 −1

]
·
[
C0
D0

]
=
[
C0 +D0

C0 −D0

]
(107)

and substitute equation (107) into the algebraic system
in equation (78) to derive an analogous system but in
terms of the new coefficients[

sin(
√
β) + g1′ cos(

√
β) g1′ sin(

√
β) − cos(

√
β)

sin(
√
β) − g2′ cos(

√
β) g2′ sin(

√
β) + cos(

√
β)

]

·

[
1 1

1 −1

]
·

[
C0

D0

]
= 0 (108)

It is a straightforward consequence of matrix algebra,
and an easy exercise to verify, that the determinant of
this new algebraic system is proportional16 to that of
the old one [(78)] and, therefore they share the same
transcendental equation (79). If we select the coefficient
C0 as independent then equation (108) gives

D0 = −C0
(1 + g1′) sin(

√
β) − (1 − g1′) cos(

√
β)

(1 − g1′) sin(
√
β) + (1 + g1′) cos(

√
β)

= −C0
(1 + g2′) sin(

√
β) + (1 − g2′) cos(

√
β)

(1 − g2′) sin(
√
β) − (1 + g2′) cos(

√
β)

(109)

15 This is a bright example of how knowledge in one department
of science, tensor algebra in this case, can help to inspire ideas in
another one. A second-order tensor Aij can always be separated in
a symmetric part As

ij = (Aij + Aji)/2 and an antisymmetric part
Aa

ij = (Aij −Aji)/2; then, addition of the parts returns the tensor
Aij = As

ij + Aa
ij while subtraction returns the tensor’s transpose

Aji = As
ij − Aa

ij . Alright, it is not exactly the same situation we
are dealing with because the coefficients A0, B0 are independent
but it is the spark that inspired equation (106).
16 The determinant of the product of matrices is the product of
the determinants of the matrices and

det

[
1 1
1 −1

]
= −2

In the case of symmetrical wells, the simplifications
in equation (102), equation (104.2), equation (105.2)
apply and the fractions in equation (109) reduce to −1
for even parity or +1 for odd parity. The coefficients
A0, B0 follow from equation (107), harmlessly in case of
symmetrical wells, and then the formulae discussed in
Sec. 2.3.4 become operative to determine the remaining
required coefficients. We summarize them here for con-
venience:

A1′ = −B1′ · f1′ (61)1

B1 =B1′ [Bi(η̄) − f1′ Ai(η̄)] exp[(1 + λ)
√
k1]

= − B1′
√
η̄

[
Bi′(η̄) − f1′ Ai′(η̄)

]
exp[(1 + λ)

√
k1]

(63)1

B1′ = −A0 sin(
√
β) +B0 cos(

√
β)

Bi(η̂) − f1′ Ai(η̂)

= −
√

−η̂ A0 cos(
√
β) +B0 sin(

√
β)

Bi′(η̂) − f1′ Ai′(η̂)
(69)1

A2′ = −B2′ · f2′ (71)1

B2 =B2′
[
Bi(ζ̄) − f2′ Ai(ζ̄)

]
exp[(1 + λ)

√
k2]

= − B2′√
ζ̄

[
Bi′(ζ̄) − f2′ Ai′(ζ̄)

]
exp[(1 + λ)

√
k2]

(73)1

B2′ = A0 sin(
√
β) +B0 cos(

√
β)

Bi(ζ̂) − f2′ Ai(ζ̂)

=
√

−ζ̂ A0 cos(
√
β) −B0 sin(

√
β)

Bi′(ζ̂) − f2′ Ai′(ζ̂)
(77)1

Two remarks are in order with a view to carry out
calculations with these equations. First, the exponentials
in equations (63)1 and (73)1 call for attention; they
are latent numerical troublemakers because they can
definitely overflow calculations when the characteristic
numbers v1, v2 are sufficiently great (33). A good cure
to make the exponentials harmless is to merge them with
the exponentials of the corresponding eigenfunction’s
components [(36) and (37)]; as preparatory work, we
define the auxiliary coefficients

B̃1 = B1′ [Bi(η̄) − f1′ Ai(η̄)] = −B1′
√
η̄

[
Bi′(η̄) − f1′ Ai′(η̄)

]
(110)

B̃2 = B2′ [Bi(ζ̄) − f2′ Ai(ζ̄)] = −B2′√
ζ̄

[Bi′(ζ̄) − f2′ Ai′(ζ̄)]

(111)
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and rewrite equations (63)1 and (73)1 as

B1 = B̃1 exp[(1 + λ)
√
k1] (63)2

B2 = B̃2 exp[(1 + λ)
√
k2] (73)2

Second, the double expressions in most of the equations
between equation (109) and equation (111) are obvi-
ously analytically equivalent; yet, numerical operations
are always burdened with round-off errors and expect-
edly the numerical outputs from corresponding double
expressions differ slightly. In order to contain somehow
the impact of round-off errors and to make both expres-
sions count, we calculated the corresponding coefficient
as arithmetic average of the numerical outputs from
the double expressions; for example, the coefficient B̃1

defined in equation (110) was actually calculated as

B̃1 = B1′

2

{
[Bi(η̄) − f1′ Ai(η̄)] − 1√

η̄
[Bi′(η̄) − f1′ Ai′(η̄)]

}
(110)1

Likewise for the other concerned coefficients.
The linear dependence on C0 originated in equa-

tion (109) propagates to all the other coefficients; the
completion of the task of this section, therefore, requires
the determination of this last coefficient. In order to
achieve that, we must assemble the global eigenfunction
from the zonal components [respectively: equation (36)
with equation (63)2; equation (44) with equation (61)1;
equation (38); equation (48) with equation (71)1; equa-
tion (37) with equation (73)2]

ϕ(ξ) =



B̃1 exp
[
(ξ + 1 + λ)

√
k1
]

zone 1

B1′ [Bi(η) − f1′ Ai(η)]
[
η = −

(v1

λ

)1/3
(
ξ + 1 + λ

v1
β

)]
zone 1’

A0 sin(ξ
√
β) +B0 cos(ξ

√
β) zone 0

B2′ [Bi(ζ) − f2′ Ai(ζ)]
[
ζ = +

(v2

λ

)1/3
(
ξ − 1 − λ

v2
β

)]
zone 2’

B̃2 exp
[
(−ξ + 1 + λ)

√
k2
]

zone 2

(112)

and pass its square through the integral of the eigenfunc-
tion’s normalization condition (57). The integral splits in
five contributions, one for each zone. The contributions
of the zones with constant potential can be easily
obtained analytically; instead, the contributions of the
zones with linear potential are refractory to analytical
handling and require recourse to numerical integration,
a minor formality with modern programming languages.
The integration-operation algebra calls for moderate
skills and particular attention to the differentials’ trans-
formations (49) in the zones s = 1′, 2′ but it is rather
straightforward; so, we skip the details and jump directly
to the final result
B̃2

1
2
√
k1

+B2
1′

√
η̄

k1
· J1′(η̂, η̄) +A2

0

[
1 − sin(2

√
β)

2
√
β

]

+B2
0

[
1 + sin(2

√
β)

2
√
β

]
+B2

2′

√
ζ̄

k2
· J2′(ζ̂, ζ̄) + B̃2

2
2
√
k2

= 2

(113)
in which

J1′(η̂, η̄) =
∫ η̄

η̂

[Bi(η) − f1′Ai(η)]2 dη (114.1)

J2′(ζ̂, ζ̄) =
∫ ζ̄

ζ̂

[Bi(ζ) − f2′Ai(ζ)]2 dζ (114.2)

are the integrals that require numerical evaluation.
Equation (113) balances the number of equations with
the number of coefficients and, in so doing, fixes the
coefficient C0.

2.3.8. Eigenfunctions

With the coefficients in hand, the analytical eigenfunc-
tions can be calculated straightforwardly from equa-
tion (112); the numerical eigenfunctions are provided
by the finite-difference method briefly described at the
end of Sec. 2.3.1. We show two validation examples. The
first one, in Fig. 10, illustrates the eigenfunction of the
single eigenstate belonging to the unsymmetrical well

Figure 10: Eigenfunction of the single eigenstate belonging to
the unsymmetrical well v1 = 1, v2 = 0.5, λ = 1; the eigenvalue-
detection graph is displayed in Fig. 6.
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v1 = 1, v2 = 0.5, λ = 1 whose eigenvalue-detection graph
is displayed in Fig. 6. Numerical results (solid circles)
superpose to analytical results (lines) very satisfactorily.
We adopted a thinner line for the analytical eigenfunc-
tion’s curves in the zones with linear potential in order
to emphasize the smooth transition among the zones
with constant potential and to appreciate graphically
eigenfunction’s and its first derivative’s continuity at
the junction points; we have systematically used the
data-representation style adopted in Fig. 10 in all forth-
coming figures related to eigenfunctions. Analytical and
numerical approaches concur also about the eigenvalue:
they both give β = 0.31447. The second example is
relative to the symmetrical well v1 = v2 = 10, λ = 0.5
and is illustrated in Fig. 11. The eigenvalue-detection
graph (Fig. 11) reveals the existence of three eigen-
states whose eigenfunctions are shown in Figs. 11b–d.
The expected continuity of the eigenfunction’s second
derivative at the junction points, an aspect which will
become of full relevance in the upcoming Sec. 3.4,
is hardly verifiable visually from the graphs but this
graphical limitation is of little concern because it can
be surmounted analytically by repeatedly differentiating

equation (112) to obtain first derivative

∂ϕ

∂ξ
=



+
√
k1B̃1 exp

[
(ξ + 1 + λ)

√
k1
]

zone 1

−
√
k1B1′

Bi′(η) − f1′ Ai′(η)√
η̄

zone 1’
√
β
[
A0 cos(ξ

√
β) −B0 sin(ξ

√
β)
]

zone 0

+
√
k2B2′

Bi′(ζ) − f2′ Ai′(ζ)√
ζ̄

zone 2’

−
√
k2B̃2 exp

[
(−ξ + 1 + λ)

√
k2
]

zone 2
(115)

and second derivative

∂2ϕ

∂ξ2 =



+k1B̃1 exp
[
(ξ + 1 + λ)

√
k1
]

zone 1

+k1
η

η̄
B1′ [Bi(η) − f1′ Ai(η)] zone 1’

−β
[
A0 sin(ξ

√
β) +B0 cos(ξ

√
β)
]

zone 0

+k2
ζ

ζ̄
B2′ [Bi(ζ) − f2′ Ai(ζ)] zone 2’

+k2B̃2 exp
[
(−ξ + 1 + λ)

√
k2
]

zone 2
(116)

Figure 11: Eigenvalue-detection graph and eigenfunctions of the three eigenstates belonging to the symmetrical well v1 = v2 =
10, λ = 0.5.
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and by evaluating equation (116) at the junction points.
In equations (115) and (116) and for the zones 1’ and 2’,
we have used the derivatives transformations indicated
in equations (50) and replaced the terms vs/λ (s = 1, 2)
by inverting equations (52.1) and (53.2); additionally in
equation (116), we have expressed the second derivatives
of the Airy functions according to the corresponding dif-
ferential equations [(43) and (47)]. Let us see now what
happens, for example, at the junction point 1–1’ whereat
ξ = −(1 + λ) and η = η̄ : equation (116) (zones 1 and 1’)
gives[
∂2ϕ

∂ξ2

]
ξ=−(1+λ)

=

+k1B̃1 zone 1

+k1B1′ [Bi(η̄) − f1′ Ai(η̄)] zone 1’
(117)

which, with due account of equation (110) (left equality),
confirms the continuity of the eigenfunction’s second
derivative at the junction point under consideration.
Similar processes apply to and same confirmations are
reached for the other junction points.

2.4. Wavefunction’s general solution

The determination of the eigenfunctions completes the
study of the eigenvalue problem and we can concentrate
again on the time-dependent problem [(3) and (4)].
The standard paradigm requires to assemble a specific
solution

Ψn(x, t) = Φn(0) · exp
(

−i ϵnt
ℏ

)
· ψn(x) (118)

for each eigenstate according to wavefunction’s variable
separation (16), based on the integral (18) of the tem-
poral problem and the eigenfunction ψn(x), and then to
build up the wavefunction’s general solution as a linear
combination of the eigenstates’ contributions

Ψ(x, t) =
N∑

n=1
Ψn(x, t) =

N∑
n=1

cn · exp
(

−i ϵnt
ℏ

)
· ψn(x)

(119)
In equation (119), N represents the total number of
eigenstates permitted by the potential. We consider
appropriate to recall here the discussion centered around
equations (88) and the conclusion drawn from it: the
absence (N = 0) of eigenstates is a possibility (Fig. 8)
and, correspondingly, the quantum-mechanical problem
does not entail separated-variable solutions; thus, the
significance of equations (118) and (119) fades away. The
existence of eigenstates (N > 0) grants the applicability
of equations (118) and (119) and the determination of
the coefficients cn, which have absorbed the constants
Φn(0), constitutes our next task. For that purpose,
we have at our disposal the initial-wavefunction condi-
tion (4) and the moment has come to exploit it.

In principle, the initial wavefunction F (x) should
be looked at as arbitrary to some extent although, in
spite of its presumed arbitrariness, it cannot escape

two important constraints attached to the initial time
(t = 0): it has to be consistent with both the normaliza-
tion condition (9)∫ +∞

−∞
Ψ∗(x, 0) · Ψ(x, 0) dx =

∫ +∞

−∞
F ∗(x) · F (x) dx = 1

(120)
and the boundary conditions (5)

G1[F (−∞), Fx(−∞), F (+∞), Fx(+∞, )] = 0 (121.1)
G2[F (−∞), Fx(−∞), F (+∞), Fx(+∞, )] = 0 (121.2)

which, more specifically for our problem (15), reduce to

F (−∞) = F (+∞) = 0 (122)

The substitution of the general solution (119) into the
initial condition (4) gives

N∑
n=1

cnψn(x) = F (x) (123)

It is then seemingly rather straightforward from a
mathematical point of view to take advantage of eigen-
functions’ orthonormality [(23) and (56)] to invert equa-
tion (123) and to obtain the coefficients

cm =
∫ +∞

−∞
ψ∗

m(x) · F (x) dx m = 1, . . . , N (124)

And that is fine, of course. However, we wish to look
at equation (123) from a slightly different angle with
respect to the standard one of the literature and point
out an aspect that, we believe, is hardly emphasized in
quantum-mechanics textbooks, at least in those we have
consulted.17 If the number N of eigenstates is finite then
equation (123) must be read from right to left: the initial
wavefunction cannot be arbitrary but must conform to
the mathematical structure of a linear combination of
eigenfunctions, say

F (x) =
N∑

r=1
αrψr(x) r = 1, . . . , N (125)

with
N∑

r=1
α∗

rαr = 1 (126)

in compliance with equation (120), as necessary con-
dition for the existence of separated-variable solutions
(119). Then

cm = αm m = 1, . . . , N (127)

17 For example, Griffiths [14] dealt with the method, that he
colorfully called “Fourier’s trick”, to obtain the coefficients cn in
Sec. 2.2, at page 30 of his textbook, dedicated to the infinite swp,
a potential with an infinite number of eigenstates; but there is
no mention to the “Fourier’s trick” in Sec. 2.6 at page 78 where
the finite swp is considered, a potential that gives rise to a finite
number of eigenstates (Fig. 7). A similar situation can be found
also in Bransden and Joachain’s textbook [11].
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and

Ψ(x, t) =
N∑

n=1
αn · exp

(
−i ϵnt

ℏ

)
· ψn(x) (128)

These considerations are brought forth with dramatic
evidence by the potential of Fig. 10 which produces only
N = 1 eigenstate (Fig. 6). In that case, c1 = α1 = 1;
if the particle occupies initially the unique eigenstate
shown in Fig. 10 [F (x) = ψ1(x)] then its wavefunction
is simply

Ψ(x, t) = Ψ1(x, t) = exp
(

−i ϵ1t
ℏ

)
· ψ1(x) (129)

and the particle will continue to occupy that unique
eigenstate forever. Otherwise [F (x) ̸= ψ1(x)] there
are no other separated-variable solutions and the
differential-equation problem [(3), (4), (15)] requires
numerical integration. In general, separated-variable
solutions to the Schrödinger equation with finite-well
potentials do not exist for arbitrary initial wavefunc-
tions; they do exist only for properly structured initial
wavefunctions (125). We believe it is even more instruc-
tive didactically to press the argument into graphical
evidence by considering the triangular-shaped function

F (x) =
√

3
2L ·


0 ξ ≤ −1
ξ + 1 −1 ≤ ξ ≤ 0
1 − ξ 0 ≤ ξ ≤ +1
0 +1 ≤ ξ

(130)

This is a perfectly legitimate initial wavefunction
because it complies with both normalization (120) and
boundary conditions (122). It generates the coefficients

cn =
√

3B0n
1 − cos(

√
βn)

βn
n = 1, . . . , N (131)

from equation (124) with due account of the adopted
variable scaling (26) and eigenfunction’s analytical
expression (112). We have carried out calculations of
the initial condition (123) for the twp of Fig. 11 which
includes N = 3 eigenstates and for the swp consid-
ered by de Alcantara and Griffiths [39] which includes
N = 10 eigenstates (Fig. 7b). Figure 12a refers to the
former potential and illustrates how poorly the left-
hand side of equation (123) approximates the triangular-
shaped initial wavefunction; in particular, the sum of
the quantum-state probabilities Pn = c2

n, tabulated in
the figure, differs appreciably from unity. The situation
corresponding to the latter potential is shown in Fig. 12b
and reveals a noticeable improvement in accuracy due
to the existence of more eigenstates but the match
is not rigorously exact. The inversion operation from
equation (123) to equation (124) to obtain the coeffi-
cients cn if the initial wavefunction F (x) is arbitrary
acquires physical significance and works exactly only if

Figure 12: Numerical test of accuracy of equation (123) with
a triangular-shaped initial wavefunction for two potentials with
finite number of eigenstates.

the number of eigenstates is infinite (N → ∞),18 and
that happens only to infinite-well potentials. Then the
separated-variable wavefunction

Ψ(x, t) =
∞∑

n=1
Ψn(x, t) =

∞∑
n=1

cn · exp
(

−i ϵnt
ℏ

)
· ψn(x)

(132)
is truly a general solution built as a series expansion
based on infinite eigenfunctions that constitute a com-
plete set in the sense explained by Griffith [14].

3. The Square-Well Potential as Limit
When λ → 0

3.1. Introductory remarks

With the completion of the study of the twp, we
have acquired all the elements necessary to deal with
the implications of a vanishing λ and we are ready to
explore the circumstances under which the twp (Fig. 2)
turns into a swp (Fig. 13). If λ → 0, geometrically the
potential’s ramps become vertical and the zones with
linear potential shrink to points; analytically, overlined
and circumflexed values [(52) and (53)] coincide and
vanish (η̂ = η̄ = 0; ζ̂ = ζ̄ = 0), the variables η and ζ
freeze at η = ζ = 0 (55), the original variable ξ gets
nailed down at the fixed values ξ = ∓1 [(42) and
(46)], and the potential’s functional definitions (27.4),
second and fourth line from top] go into mathematical
indeterminate forms of the kind 0/0, which is another
way of saying that the potential turns into a multi-
valued function spanning all values comprised in [0, v1]

18 Persico [1] is the only author we found who touched upon
this matter. In Sec. 9 at page 105 of his textbook, he clearly
explained the necessity of N → ∞ to confer physical significance
to equation (123) if the initial wavefunction F (x) is arbitrary
and, in the footnote (1) of the mentioned page, he referred the
reader to Courant and Hilbert [46, 47] who treated the subject
of series expansions of arbitrary functions in all its mathematical
splendor in chapter II of their referenced textbooks. In the English
translation [2] of Persico’s textbook, Sec. 9 is at page 98 and the
footnote is number 5 at page 99.
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Figure 13: Nondimensional swp.

at ξ = −1 and in [0, v2] at ξ = +1. The task ahead of
us consists mainly in finding out how the collapse of
the zones s = 1′, 2′ affects the eigenvalue spectrum
and the eigenfunctions obtained for the twp (Sec. 2.3),
particularly its repercussions on the solutions in the
collapsed zones (Sec. 2.3.3). The main questions whose
answers are of particular interest to us regard whether
or not the collapsed eigenvalue spectrum checks with
the one ensuing from the sta (Sec. 3.3), and what
happens to the continuity property of eigenfunction and
its derivatives if the potential’s junction points become
jump points (Sec. 3.4).

Before embarking in the accomplishment of the
described task, it is convenient to forge briefly a few
preparatory tools meant to facilitate the forthcoming
mathematical operations.

3.2. Mathematical tools

The factors f1′ and f2′ [(62) and (72)] can be both
collected into the generic function

f(z) =
√
z Bi(z) + Bi′(z)√
z Ai(z) + Ai′(z)

(133)

whose dummy variable z represents the overlined values
η̄ , ζ̄ [(52.1) and (53.2)]. Similarly to what we did already
with equation (64), we rearrange equation (133) into the
convenient identity

Bi(z) − f(z) Ai(z) = −Bi′(z) − f(z) Ai′(z)√
z

(134)

The factors g1′ and −g2′ [(68) and (76)] can also be
absorbed into the generic function

g(w, z) = −
√

−w Bi(w) − f(z) Ai(w)
Bi′(w) − f(z) Ai′(w)

(135)

whose dummy variable w represents the circumflexed
values η̂ , ζ̂ [(52.2) and (53.1)].

The ratio of the dummy variables is not affected by λ,
as it is easily verified by member-to-member division of
equations (52) and (53) respectively

w

z
≡ η̂

η̄
or ζ̂
ζ̄

→ − β

ks
s = 1, 2 (136)

so, with the shrinking λ → 0, the dummy variables
are forced to vanish (z, w → 0), because of what they
represent, but their ratio stays finite. The function
f(z) goes into the numerical constant that we have
already met in equation (93). The left-hand side of
equation (134) attains the numerical constant

Λ = lim
λ→0

[Bi(z) − f(z) Ai(z)]

= Bi(0) − f(0) Ai(0) ≃ 1.22985 (137)

and so must do the apparently indeterminate form on
the right-hand side

lim
λ→0

[
−Bi′(z) − f(z) Ai′(z)√

z

]
= Λ (138)

A corroborating check, perhaps more convincing and
certainly more elegant from a mathematical point of
view, of the trueness of equation (138) consists in
processing the limit according to de L’Hôpital’s theorem,
an exercise that we did for the sake of completeness19

and were pleased to see its outcome to fall inline with
equation (138). Other recurrent limits are similar to
equations (137) and (138) but the dummy variables are
mixed, as in the numerator and denominator of the
function g(w, z) for example. The limit of the numerator
of equation (135) is easy

lim
λ→0

[Bi(w) − f(z) Ai(w)] = Bi(0) − f(0) Ai(0) = Λ
(139)

The limit of the other one

lim
λ→0

[
−Bi′(w) − f(z) Ai′(w)√

−w

]
(140.1)

requires a bit of attention. We must first adapt the
square root by taking advantage of equation (136)

√
−w =

√
z

√
β

ks
(140.2)

so that we can preliminarily transform equation (140.1)

lim
λ→0

[
−Bi′(w) − f(z) Ai′(w)√

−w

]
=

√
ks

β
lim
λ→0

[
−Bi′(w) − f(z) Ai′(w)√

z

]
(140.3)

19 We admit that mathematical curiosity pushed as well to some
extent.
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and then proceed with the limit on the right-hand side
of equation (140.3)

lim
λ→0

[
−Bi′(w) − f(z) Ai′(w)√

z

]
= lim

λ→0

[
−Bi′(z) − f(z) Ai′(z)√

z
· Bi′(w) − f(z) Ai′(w)

Bi′(z) − f(z) Ai′(z)

]
= Λ · 1 = Λ (140.4)

which leads to the final result

lim
λ→0

[
−Bi′(w) − f(z) Ai′(w)√

−w

]
=

√
ks

β
Λ (140.5)

With the mixed-variable limits [(139) and (140.5)] in
hand, the important limit of the function g(w, z) follows
easily

lim
λ→0

g(w, z) = lim
λ→0

Bi(w) − f(z)Ai(w)

−Bi′(w) − f(z)Ai′(w)√
−w

=
√
β

ks
s = 1, 2 (141)

3.3. Eigenvalues

Our first check consists in the verification of the retrieval
of the same spectrum produced by the sta. If λ → 0,
according to the limit indicated in equation (141), the
factors g1′ and g2′ become

g1′ = +
√
β

k1
(142.1)

g2′ = −
√
β

k2
(142.2)

and the transcendental equation (79) that produces the
eigenvalues goes into the slightly simpler form

[D(β)]swp = lim
λ→0

D(β) =
(

1 − β√
k1k2

)
sin(2

√
β)

+
(√

β

k1
+
√
β

k2

)
cos(2

√
β) = 0 (143)

As example to verify that equation (143) is indeed in
line with the transcendental equations proposed in the
literature, we take the swp considered by Reed [34];
in his case, v1 = v2 = v ; k1 = k2 = k = v − β and the
simplified transcendental equation (143) reduces even
further to

[D(β)]Reed =
(

1 − β

k

)
sin(2

√
β) + 2

√
β

k
cos(2

√
β) = 0

(144)
By taking into account the notation conversions based
on Reed’s definitions and collected in Table 2, it is

Table 2: Notation conversions relative to Reed’s transcendental
equation (15) in [34].

straightforward to prove that equation (144) coincides
exactly with Reed’s Eq. (15) that we reproduce here

1
k

[D(β)]Reed ≡ f(ξ,K)

= (K2 − 2ξ2) sin(2ξ) + 2ξ
√
K2 − ξ2 cos(2ξ) = 0

for the reader’s convenience.
Further verification can be achieved with regard to the

determination of the angle φ needed in equations (87).
We start again from equations (142); then, in cascade,
we evaluate the reciprocal factors [(33), (82)]

γ1′ = +

√
k1

β
= +

√
v1

β
− 1 (145.1)

γ2′ = −

√
k2

β
= −

√
v2

β
− 1 (145.2)

and determine coefficients C, S and normalization factor
R (84)

C = 1 −

√(
v1

β
− 1
)(

v2

β
− 1
)

(146.1)

S = −
√
v1

β
− 1 −

√
v2

β
− 1 (146.2)

R =
√
v1

β

v2

β
(146.3)

With these simplifications, the equations (85) that fix
the angle φ acquire the interesting structure

cosφ =
√

1 − β

v1

√
1 − β

v2
−
√
β

v1

√
β

v2
(147.1)

sinφ =
√
β

v2

√
1 − β

v1
+
√
β

v1

√
1 − β

v2
(147.2)

The square-root terms
√
β/vs and

√
1 − β/vs (s =

1, 2) are both contained in [0, 1] and the sum of their
squares adds up to unity; therefore, they uniquely
identify an angle ωs in [0, π/2] which can be extracted
by setting

cosωs =
√

1 − β

vs
(148.1)

sinωs =
√
β

vs
(148.2)
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Table 3: Notation conversions relative to Messiah’s, ter Haar’s, and Landau and Lifchitz’s transcendental equations [3, 4, 7]; see
footnote 20.

We can now take advantage of equations (148) to make
the angles ω1, ω2 appear in equations (147) and carry on
with their manipulation

cosφ = cosω1 cosω2 − sinω1 sinω2 = cos (ω1 + ω2)
(149.1)

sinφ = sinω2 cosω1 + sinω1 cosω2 = sin (ω1 + ω2)
(149.2)

to reach the simple result

φ = ω1 + ω2 (150)

If we now invert equation (148.2)

ωs = arcsin
√
β

vs
(151)

then the angle φ becomes

φ = arcsin
√
β

v1
+ arcsin

√
β

v2
(152)

and, by substituting equation (152) into equation (87.1),
we reach the transcendental equation

2
√
β + arcsin

√
β

v1
+ arcsin

√
β

v2
= nπ (153)

n = 1, 2, . . .

that matches exactly those proposed by Messiah [3], ter
Haar [4] and Landau and Lifchitz [7];20 verification is
straightforward via the notation conversions collected in
Table 3 for the reader’s convenience.

Another verification, that deserves mentioning, con-
cerns the eigenvalue-absence condition (90) which
becomes formally

2√
v2 + [φ(β, v1, v2, λ → 0)]β=v2

π
< 1 (154)

20 The transcendental equations appear respectively: Messiah’s in
Sec. 6 of chapter III, just above Fig. III.4 at page 90 of [3], ter
Haar’s at the bottom of page 66 of [4], and Landau and Lifchitz’s
in the discussion relative to problem 2, equation (1) at page 66
of [7].

The angle φ appearing in equation (154) descends from
equation (152) with β = v2

[φ(β, v1, v2, λ → 0)]β=v2
= arcsin

√
v2

v1
+ π

2 (155)

The substitution of equation (155) into the eigenvalue-
absence condition (154) leads to the final form

2
√
v2 <

π

2 − arcsin
√
v2

v1
(156)

in full agreement with the Landau and Lifchitz’s condi-
tion21 given in their equation (2) at page 66 of [7]. More-
over, by taking into account the angular equivalence

arccos
√
v2

v1
= π

2 − arcsin
√
v2

v1
(157)

we can reformulate equation (156) in the form

2
√
v2 < arccos

√
v2

v1
(158)

which coincides with Messiah’s condition indicated at
page 91 of [3]. In the case of a symmetrical swp
(v1 = v2 = v), equations (156) and (158) reduce to the
simple inequality

2
√
v < 0 (159)

which reconfirms the unconditional existence of eigen-
values because it is never verified.

3.4. Eigenfunctions and derivatives

The successful verifications we have carried out in
Sec. 3.3 on transcendental equations imply reassurance
regarding the eigenvalue spectrum: we retrieve exactly
the same spectrum of the sta. With a comfortable
sensation of being on the right track, we turn to next
investigation which involves the eigenfunctions and their
derivatives.

21 Landau and Lifchitz give the condition for eigenvalues’ existence
rather than absence; therefore, their equation (2) contains the
operator ≥ instead of the operator <, as in our equation (156).
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The simplification of the factors g1′ and g2′ (142) has
a modest impact on the formulae for the calculation of
the coefficients A0, B0, D0 [(107), (109)] but affects more
markedly the other coefficients. The most important are
B1′ and B2′ ; with due account of the limits indicated
in equations (139) and (140.5), they follow from equa-
tions (69)1 and (77)1

B1′ = −A0 sin(
√
β) +B0 cos(

√
β)

Λ

= +
√
β

k1

A0 cos(
√
β) +B0 sin(

√
β)

Λ (160)

B2′ = A0 sin(
√
β) +B0 cos(

√
β)

Λ

= −
√
β

k2

A0 cos(
√
β) −B0 sin(

√
β)

Λ (161)

After them, the coefficients B̃1 and B̃2 follow from
equations (110) and (111)

B̃1 = B1′Λ = −A0 sin(
√
β) +B0 cos(

√
β)

= +
√
β

k1

[
A0 cos(

√
β) +B0 sin(

√
β)
]

(162)

B̃2 = B2′Λ = A0 sin(
√
β) +B0 cos(

√
β)

= −
√
β

k2

[
A0 cos(

√
β) −B0 sin(

√
β)
]

(163)

Finally, the equation (113) meant to fix the coefficient C0
generated by the eigenfunction’s normalization condition
(57) simplifies to

B̃2
1

2
√
k1

+A2
0

[
1 − sin(2

√
β)

2
√
β

]
+B2

0

[
1 + sin(2

√
β)

2
√
β

]
+ B̃2

2
2
√
k2

= 2 (164)

because the terms involving the integrals (114) corre-
sponding to the zones with linear potential vanish and
do not contribute.

The mathematically coherent step to deduce the
eigenfunction and its first and second derivatives for the
swp consists in passing to the limit for λ → 0 those
of the twp. The passage to the limit is smooth and
unambiguous for eigenfunction (112)

ϕ(ξ) =



B̃1 · exp
[
(ξ + 1)

√
k1
]

zone 1

B1′Λ 1–1’ ≡ 1’–0

A0 sin(ξ
√
β) +B0 cos(ξ

√
β) zone 0

B2′Λ 0–2’ ≡ 2’–2

B̃2 · exp
[
(−ξ + 1)

√
k2
]

zone 2
(165)

and first derivative (115)

∂ϕ

∂ξ
=



+
√
k1B̃1 exp

[
(ξ + 1)

√
k1
]

zone 1

+
√
k1B1′Λ 1–1’ ≡ 1’–0

√
β
[
A0 cos(ξ

√
β) −B0 sin(ξ

√
β)
]

zone 0

−
√
k2B2′Λ 0–2’ ≡ 2’–2

−
√
k2B̃2 exp

[
(−ξ + 1)

√
k2
]

zone 2
(166)

Their continuity is preserved through the shrunk zones
at ξ ∓ 1 with the endorsement of equations (162)
and (163). The passage to the limit for the second
derivative (116) is still smooth in the zones 1,0,2 but
becomes indeterminate in the zones 1’ and 2’ due to
the presence of the ratios η/η̄ and ζ/ζ̄; different limits
may be reached according to whether the variables η
and ζ approach either the overlined or the circumflexed
values in the limit. There is a simple way to circumvent
this ambiguity. Let us begin with the left zone. From
equation (116), we evaluate the second derivative first at
the junction point 1–1’ where ξ = −(1 + λ) and η = η̄[

∂2ϕ

∂ξ2

]
ξ=−(1+λ)

= +k1B1′ [Bi(η̄) − f1′ Ai(η̄)] (167.1)

and then at the junction point 1’–0 where ξ = −1 and
η = η̂[

∂2ϕ

∂ξ2

]
ξ=−1

= +k1
η̂

η̄
B1′ [Bi(η̂) − f1′ Ai(η̂)]

= −β B1′ [Bi(η̂) − f1′ Ai(η̂)] (167.2)

If λ → 0 then the junction point 1–1’ shifts rightward
and goes to superpose on the junction point 1’–0 at
ξ = −1; both η̄, η̂ vanish so that equation (167.1) gives[

∂2ϕ

∂ξ2

]
ξ=−1

= k1B1′Λ (168.1)

but equation (167.2) yields instead[
∂2ϕ

∂ξ2

]
ξ=−1

= −βB1′Λ (168.2)

The comparison between equations (168) tells that the
zone shrinking introduces a discontinuity in the second
derivative

∆
[
∂2ϕ

∂ξ2

]
ξ=−1

= −βB1′Λ−k1B1′Λ = −v1B1′Λ = −v1B̃1

(169)
obtained by subtracting equation (168.1) from equa-
tion (168.2) and taking into account the definition of
equation (33) with s = 1. The procedure for the right
zone resembles in all aspects the one we followed for
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the left zone and leads to a similar result: the shrinking
introduces the second-derivative discontinuity

∆
[
∂2ϕ2′

∂ξ2

]
ξ=+1

= +v2B2′Λ = +v2B̃2 (170)

Inspection of equations (169) and (170) reveals that the
second-derivative discontinuities are proportional only
to the characteristic numbers v1, v2; the other values
of the potential belonging to the vertical segments do
not play any role and, therefore, presence or omission
of those segments are irrelevant. For all purposes and
intents, the dswp obtained from the swp of Fig. 13 by
removing the vertical segments is equivalent; in other
words, nothing new with respect to the sta, exactly
as predicted by the teacher’s reassurance mentioned in
Sec. 1. So, where is the difference? The difference is that
both eigenfunction’s and first derivative’s continuity
and irrelevance of the potential’s vertical segments are
unproven working assumptions in the sta which the
standard teacher’s reassurance is based upon whereas
they are proven results obtained in a physically as well
as mathematically consistent manner in the study path
we have followed. A perspicacious reader may wonder
whether or not our, admittedly long, detour via the
twp’s study is maybe unjustified, if not even pedantic,
mathematical sophistry. We concede that there could
be some legitimacy in such a reflection were it not for
the existence of claims [22] that sta’s explanations of
eigenfunction’s and its first derivative’s continuity at
swp’s jump points are unsatisfactory from a mathe-
matical point of view. The potential trueness of those
claims would confer worthiness to our detour with the
twp because, within its context, the debated continuity
is a proven result. Thus, if the textbook explanations
are really unsatisfactory then there must exist other
justifying reasons within the sta’s context awaiting for
discovery. We deal with these issues in Sec. 4.

4. On the Continuity Conditions at the
Square-Well Potential’s Jump Points

Let us consider again the swp of Fig. 13 and suppose
we have solved the eigenvalue problem just from a
mathematical point of view. The eigenfunction we would
obtain is formally equation (165) without the second and
fourth rows

ϕ(ξ) =


B̃1 · exp

[
(ξ + 1)

√
k1
]

zone 1

A0 sin(ξ
√
β) +B0 cos(ξ

√
β) zone 0

B̃2 · exp
[
(−ξ + 1)

√
k2
]

zone 2

(171)

Of course, all the body of knowledge existing behind
the coefficients B̃1, B̃2 that we acquired by studying
the twp (Sec. 2) and what happens when λ → 0
(Sec. 3) would be absolutely invisible to us, particularly

the existence of equations (162) and (163). We would
look at equation (171) with the awareness that it
contains four coefficients that must be fixed by assigning
four conditions at the potential’s jump points. In this
regard, the literature offers contrasting opinions. We
take Bohm’s words [8, page 232] to formulate the opinion
overwhelmingly accepted in the sta:

Because the differential equation is of second
order in x, it is necessary that both ψ
and its first derivative be continuous at the
boundaries. This follows from the fact that
ψ,E, and V are all assumed to be finite.
ψ must be finite if its physical interpretation
in terms of probability is to have meaning,
whereas E and V must be finite, because
infinite energies do not occur in nature. From
the differential eq. (2), we then conclude that
d2ψ/dx2 is everywhere finite (but not nec-
essarily continuous). d2ψ/dx2 can be finite,
however, only if dψ/dx is continuous. Thus,
we obtain the first boundary condition. In
order that dψ/dx exist everywhere, however,
as is implied by the mere use of a differential
equation, it is also necessary that ψ be con-
tinuous. This gives us the second boundary
condition.

Bohm’s equation (2) appears at page 230 and coincides
with our equation (17.2) save for the energy notation
(E → ϵ). We take Branson’s words [22] to represent the
objection to the above opinion:

The boundary conditions imposed on the
Schrödinger wave function at the edges of
the well are: (a) the wave function vanishes,
if the potential jump is infinite, (b) the
wave function and its first derivative are
continuous, if the potential jump is finite.
. . .
In Sec. II we describe why most textbook
explanations of conditions (b) are, in our
view, unsatisfactory, and in the remaining
sections we present arguments which are, we
hope, more acceptable.

We definitely recommend the reader to familiarize with
the mathematical arguments expounded by Branson
in Sec. II of his paper; one of the “more acceptable
arguments”, proposed in his Sec. V, is indeed the idea to
consider the limit of a continuous potential such as our
twp. Confronted with such an unsettled situation, we
take a pragmatic stance: we listen to Branson’s warning
and assume eigenfunction’s and its first derivative’s
differences formally prescribed at the jump points

ϕ0(−1) − ϕ1(−1) = ∆ϕ(−1)

= −A0 sin(
√
β) +B0 cos(

√
β) − B̃1 (172.1)
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ϕ′
0(−1) − ϕ′

1(−1) = ∆ϕ′(−1)

=
√
β
[
A0 cos(

√
β) +B0 sin(

√
β)
]

−
√
k1B̃1

(172.2)

ϕ2(+1) − ϕ0(+1) = ∆ϕ(+1)

= B̃2 −A0 sin(
√
β) −B0 cos(

√
β) (172.3)

ϕ′
2(+1) − ϕ′

0(+1) = ∆ϕ′(+1)

= −
√
k2B̃2 −

√
β
[
A0 cos(

√
β) −B0 sin(

√
β)
]

(172.4)

but without necessarily committing to Bohm’s opinion
of a priori continuity

∆ϕ(−1) = ∆ϕ′(−1) = ∆ϕ(+1) = ∆ϕ′(+1) = 0 (173)

Then, we proceed to the determination of the four
coefficients by exploiting equations (172) with the hope
to encounter down the road a compelling physical reason
to enforce mathematical continuity in order to save
physical consistency. Let us see what happens.

The first logical step consists in solving the system
composed by equations (172) for the four coefficients
B̃1, A0, B0, B̃2. For the sake of notation simplification,
first we conveniently predefine the auxiliary coefficients

B̃1e = −A0 sin(
√
β) +B0 cos(

√
β) (174.1)

B̃1d =
√
β

k1

[
A0 cos(

√
β) +B0 sin(

√
β)
]

(174.2)

B̃2e = A0 sin(
√
β) +B0 cos(

√
β) (174.3)

B̃2d = −
√
β

k2

[
A0 cos(

√
β) −B0 sin(

√
β)
]

(174.4)

and subsequently proceed to solve the system. The
coefficients B̃1, B̃2 are easily extracted

B̃1 = B̃1e − ∆ϕ(−1) = B̃1d − ∆ϕ′(−1)√
k1

(175.1)

B̃2 = B̃2e + ∆ϕ(+1) = B̃2d − ∆ϕ′(+1)√
k2

(175.2)

in terms of the coefficients A0, B0 hidden inside the
auxiliary coefficients; in turn, the coefficients A0, B0
have to be determined from the algebraic system
sin(

√
β) +

√
β

k1
cos(

√
β)

√
β

k1
sin(

√
β) − cos(

√
β)

sin(
√
β) +

√
β

k2
cos(

√
β) −

√
β

k2
sin(

√
β) + cos(

√
β)



·

A0

B0

 =


−∆ϕ(−1) + ∆ϕ′(−1)√

k1

−∆ϕ(+1) − ∆ϕ′(+1)√
k2

 (175.3)

and here we already encounter the first surprise: equa-
tion (175.3) indicates that the eigenvalue spectrum

is continuous [compare with equation (78) with due
account of equations (142)] because the algebraic system
is not homogeneous due to the presence of the discon-
tinuities on the right-hand side. We concede that the
expectation of a discrete eigenvalue spectrum qualifies as
sufficiently physical motivation pushing in the direction
of equations (173). However, the rejoicing in the conti-
nuity camp is short lived because the push is not strong
enough: the physical necessity for a discrete eigenvalue
spectrum only requires the vanishing of the global
terms

−∆ϕ(−1) + ∆ϕ′(−1)√
k1

= 0 (176.1)

−∆ϕ(+1) − ∆ϕ′(+1)√
k2

= 0 (176.2)

with respect to which the continuity conditions (173)
are just a particular case. With the admission of
equations (176), the algebraic system (175.3) becomes
homogeneous, its determinant coincides with the one
we found for the twp with λ → 0 and, obviously, its
vanishing (143) generates the same discrete eigenvalue
spectrum. As a side note, we wish to point out that this
occurrence clearly implies that the eigenvalues are real
but we are forbidden to use this information within the
perspective of this section to respect self-inclusiveness;
however, we can certainly keep this expectation in mind
for later in order to eventually check whether or not we
are on the right track. Thus, to continue, the requirement
of a discrete eigenvalue spectrum does not rule out
discontinuous eigenfunctions. Nevertheless, it leads at
least to a first improvement by reducing the number
of independent differences (172) from four to two via
the imposition of equations (176); if, in this regard, we
privilege the eigenfunction’s discontinuities then we can
write

∆ϕ′(−1) = +
√
k1∆ϕ(−1) (177.1)

∆ϕ′(+1) = −
√
k2∆ϕ(+1) (177.2)

The expressions of the coefficients [(175.1) and (175.2)]
also simplify with the aid of equations (177); first of all,
the auxiliary coefficients become

B̃1e = B̃1d = B̃1e + B̃1d

2 → B̃1a (178.1)

B̃2e = B̃2d = B̃2e + B̃2d

2 → B̃2a (178.2)

and then

B̃1 = B̃1a − ∆ϕ(−1) (178.3)

B̃2 = B̃2a + ∆ϕ(+1) (178.4)

The calculation of the coefficients A0, B0 from the homo-
geneous version of equation (175.3) follows unaltered the
description already given in Sec. 2.3.7, including the trick
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involving the coefficients C0, D0. Again, the coefficient
C0 is fixed by the eigenfunction’s normalization condi-
tion (57) whose application on equation (171) leads to
the algebraic quadratic equation [compare with equa-
tion (164), with account of equations (178.3) and (178.4),
for vanishing discontinuities]{

B̃2
1a

2
√
k1

+A2
0

[
1 − sin(2

√
β)

2
√
β

]
+B2

0

[
1 + sin(2

√
β)

2
√
β

]
+ B̃2

2a

2
√
k2

}
−
[
B̃1a√
k1

∆ϕ(−1) − B̃2a√
k2

∆ϕ(+1)
]

+
[

∆ϕ(−1)2

2
√
k1

+ ∆ϕ(+1)2

2
√
k2

]
= 2 (179)

As numerical example, we have chosen the ground
state of the symmetrical swp considered by Reed [34]
(n = 1 in Fig. 7a; Table 1). A comparison between
the continuous eigenfunction (hollow squares) and the
discontinuous eigenfunction (solid line) corresponding to
∆ϕ(+1) = −∆ϕ(−1) = 0.5 is shown in Fig. 14a; the
squared eigenfunctions are shown in Fig. 14b to illustrate
the conservation of the geometrical area in compliance
with the eigenfunction-normalization condition (57).
Figure 14a seemingly leaves no doubt that, at least
within a mathematical perspective, the discontinuous
eigenfunction is as acceptable as the continuous one
because they both satisfy same differential equation and
boundary conditions. In the same figure, we also see
portrayed the flagrant groundlessness of Bohm’s state-
ment “d2ψ/dx2 can be finite, however, only if dψ/dx is
continuous” and the veracity of Branson’s concern “most
textbook explanations of conditions (b) are, in our view,
unsatisfactory”: the discontinuous eigenfunction (solid
line) has everywhere a finite second derivative but the
first derivative is discontinuous (177) at the jump points.
As a matter of fact, we can easily calculate the second-
derivative discontinuities

∆ϕ′′(−1) = ϕ′′
0(−1) − ϕ′′

1(−1) = −v1B̃1 − β∆ϕ(−1)
(180.1)

∆ϕ′′(+1) = ϕ′′
2(+1) − ϕ′′

0(+1) = +v2B̃2 − β∆ϕ(+1)
(180.2)

[compare with equations (169) and (170)]. Well, there
is not much to argue: the continuous eigenfunction
comes accompanied by a ballast of infinite discontinuous
eigenfunctions each one of which possesses the status
of mathematical solution as legitimate as that of the
continuous eigenfunction and we should be prepared to
consider the wavefunction’s general solution

Ψ(x, t) =
N∑

n=1

∞∑
r=1

cnr · exp
(

−i ϵnt
ℏ

)
· ψnr(x) (181)

The index r enumerates the infinite eigenfunctions that
belong to the eigenvalue ϵn, or its nondimensional
counterpart βn; we reserve the first place (r = 1) for

Figure 14: Comparison between continuous and discontinuous
eigenfunctions for the ground state of the symmetrical swp
considered by Reed (n = 1 in Fig. 7a; Table 1).

the continuous one. In our opinion, the latter’s selection
and the others’ disregard on the basis of unsatisfactory
mathematical arguments, whether it may be seen either
as an educated guess by an optimist who sticks to the sta
or a sheer hit of luck by a pessimist who decides to go
through the detour of the limit with λ → 0 of a twp, for
the purpose of shortcutting the teaching effort is not a
didactically honest pass. Yet, the probable desperation
generated by equation (181) in the continuity camp is
once again short lived because a more attentive look
at Fig. 14a reveals the second surprise: the blatant
infringement of the conclusion, “So, the eigenstates are
not degenerate: for a specified eigenvalue there is one and
only one eigenfunction”, that we drew when elaborating
the proof of eigenfunction’s uniqueness involving the
Wronskian in the middle of Sec. 2.2 from equation (21)
until just before equation (23). Indeed, in Fig. 14a we
see two independent eigenfunctions corresponding to the
same eigenvalue; as a matter fact, we can produce infinite
independent eigenfunctions for the same eigenvalue by
arbitrarily varying the discontinuities ∆ϕ(−1),∆ϕ(+1).
Can this infinite degeneracy be reconciled with the
eigenfunction-uniqueness proof? No, it cannot! A quick
reexamination of the proof shows unequivocally that it
breaks down with discontinuous eigenfunctions. We must
remember the flag planted near equation (22.6), rewind
the discourse to that equation, switch to nondimensional
mode and adapt the notation ψ1, ψ2 → ϕ, ϑ to the case
of the swp in Fig. 13; then we have

∂

∂ξ

(
ϕ
∂ϑ

∂ξ
− ∂ϕ

∂ξ
ϑ

)
= ∂W

∂ξ
= 0 (22.6)1

The Wronskian’s discontinuities at the jump points
implies that the integration of equation (22.6)1 must
now take place separately in the three zones and, con-
sequently, the Wronskian turns out to be only piecewise
constant. In zone 1, the integration yields a vanishing
Wronskian

W1 = W1(−∞) = W1(−1) = 0 (182.1)
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Indeed, the boundary condition [(27.2), left] does away
with the asymptotic value

W1(−∞) = ϕ1(−∞)
(
∂ϑ1

∂ξ

)
ξ=−∞

−
(
∂ϕ1

∂ξ

)
ξ=−∞

ϑ1(−∞) = 0 (182.2)

while the eigenfunctions’ exponential [(171), zone 1] duly
marshals the value at the left jump point to be consistent
with the asymptotic value

W1(−1) = ϕ1(−1)
(
∂ϑ1

∂ξ

)
ξ=−1

−
(
∂ϕ1

∂ξ

)
ξ=−1

ϑ1(−1)

= ϕ1(−1)
√
k1ϑ1(−1) −

√
k1ϕ1(−1)ϑ1(−1)

= 0 (182.3)

So, ϕ1 and ϑ1 are not independent and one can be
expressed in terms of the other

ϑ1(ξ) = a1 ϕ1(ξ) (183)

via a constant a1 that we are free to choose either real
or complex. Expectedly by symmetry, the same situation
occurs in zone 2

W2 = W2(+1) = W2(+∞) = 0 (184)

ϑ2(ξ) = a2 ϕ2(ξ) (185)

Perhaps a bit unexpectedly, that happens in zone 0 too

W0 = W0(−1) = W0(+1) = 0 (186)

ϑ0(ξ) = a0 ϕ0(ξ) (187)

discontinuities notwithstanding. The verification of
equation (186) requires involvement, and wise manipu-
lation, of the discontinuity definitions in equations (172)
and the utilization of equations (177) which play an
absolutely crucial role to enforce the validity of equa-
tion (186). Now, eigenfunction’s uniqueness requires

a1 = a0 = a2 (188)

but here, unfortunately, we hit an insurmountable math-
ematical barrier. Let us write equation (187) at the left
jump point

ϑ0(−1) = a0 ϕ0(−1) (189)

and then introduce the corresponding discontinuities
(172.1)

ϑ1(−1) + ∆ϑ(−1) = a0 ϕ1(−1) + a0 ∆ϕ(−1) (190)

The substitution of equation (183) evaluated at the left
jump point into equation (190) and the requirement a1 =
a0 allow to extract the value

a0 = ∆ϑ(−1)
∆ϕ(−1) (191)

for the constant a0. If we repeat specularly the same
procedure for the right jump point then we reach another
value

a0 = ∆ϑ(+1)
∆ϕ(+1) (192)

irreconcilable with the former one because the eigenfunc-
tion’s discontinuities at the jump points can be chosen
arbitrarily. Thus, the requirement for eigenfunction’s
uniqueness (188) cannot be met, in full agreement with
the graphical situation portrayed in Fig. 14a.

The loss of eigenfunction’s uniqueness may seem not
having helped us much to advance our investigation
regarding acceptability or inacceptability of discontin-
uous eigenfunctions; nevertheless, maybe it has put us
on the right track if we listen to the good lesson it
teaches: we move on shaky territory when dealing with
discontinuous potentials and proofs of properties we are
accustomed to with continuous potentials deserve careful
reconsideration. For example, what about eigenvalues’
realness and eigenfunctions’ orthogonality? We already
encountered these properties in Sec. 2.2, near equa-
tion (23), and referred the reader to the proofs given in
the textbooks cited in the beginning of Sec. 1. The well
known standard proofing strategy leads to the basic step

(ϵn − ϵ∗m)
∫ +∞

−∞
ψ∗

mj ψnr dx

= ℏ2

2m

∫ +∞

−∞

∂

∂x

(
ψnr

∂ψ∗
mj

∂x
− ψ∗

mj

∂ψnr

∂x

)
dx (193)

which we conveniently put in nondimensional form [(26)
and (27.3)]

(βn − β∗
m)
∫ +∞

−∞
ϕ∗

mj ϕnr dξ

=
∫ +∞

−∞

∂

∂ξ

(
ϕnr

∂ϕ∗
mj

∂ξ
− ϕ∗

mj

∂ϕnr

∂ξ

)
dξ (194)

The integral on the right-hand side of equation (194) is
the sum of three zonal contributions∫ +∞

−∞
(· · · ) dξ =

∫ −1

−∞
(· · · )1 dξ +

∫ +1

−1
(· · · )0 dξ +

∫ +∞

+1
(· · · )2 dξ

(195)
in the case of the swp in Fig. 13. Their integration
requires patience and a bit of mathematical dexterity.
The necessary ingredients’ list that makes the integra-
tion possible includes the boundary conditions (27.2),
the discontinuity definitions (172), the constraints (177)
levied on the first derivatives’ discontinuities to have a
discrete eigenvalue spectrum and the proper manipula-
tion of the definitions indicated in equation (33). We skip
the details and present directly the final result∫ +∞

−∞

∂

∂ξ

(
ϕnr

∂ϕ∗
mj

∂ξ
− ϕ∗

mj

∂ϕnr

∂ξ

)
dξ

= (βn − β∗
m) [T1(n, r,m, j; −1) + T2(n, r,m, j; +1)]

(196)
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in which for brevity

T1(n, r,m, j; −1)

=

[
ϕ1nrϕ

∗
1mj − (ϕ1nr + ∆ϕnr)

(
ϕ∗

1mj + ∆ϕ∗
mj

)]
ξ=−1√

v1 − β∗
m +

√
v1 − βn

(197.1)

T2(n, r,m, j; +1)

=

[
ϕ2nrϕ

∗
2mj − (ϕ2nr − ∆ϕnr)

(
ϕ∗

2mj − ∆ϕ∗
mj

)]
ξ=+1√

v2 − β∗
m +

√
v2 − βn

(197.2)

It is important to notice that the terms T1, T2 van-
ish identically for continuous eigenfunctions (r = j = 1)
because (∆ϕn1)ξ=±1 = (∆ϕ∗

m1)ξ=±1 = 0 by definition.
The substitution of equation (196) into equation (194)
and a subsequent slight rearrangement lead to the
generalization

(βn − β∗
m)
[∫ +∞

−∞
ϕ∗

mj ϕnr dξ

− T1(n, r,m, j; −1) − T2(n, r,m, j; +1)
]

= 0

(198)

of the condition commonly found in textbooks and
from which we can draw new interesting conclusions. If
n ̸= m then we are looking at different eigenstates, the
eigenvalues are different

βn − β∗
m ̸= 0 (199)

and it is the quantity in squared brackets that must
obligatorily vanish; from that, we obtain∫ +∞

−∞
ϕ∗

mj ϕnr dξ = T1(n, r,m, j; −1) + T2(n, r,m, j; +1)

(200)
If r = j = 1 then, as we already noted just after
equations (197), the right-hand side of equation (200)
vanishes identically and we retrieve the familiar orthog-
onality ∫ +∞

−∞
ϕ∗

m1 ϕn1 dξ = 0 (201)

of the continuous eigenfunctions; otherwise, that is if
r ̸= j, the right-hand side of equation (200) does not
vanish and, in so doing, it brings in the lack of orthog-
onality among discontinuous eigenfunctions belonging
to different eigenvalues. If n = m then equation (198)
simplifies to

(βn − β∗
n)
[∫ +∞

−∞
ϕ∗

nj ϕnr dξ

− T1(n, r, n, j; −1) − T2(n, r, n, j; +1)
]

= 0 (202)

Now, equation (202) is applicable regardless of the values
assumed by the subscripts r, j. In the case of continuous
eigenfunctions (r = j = 1, T1 = T2 = 0), equation (202)
reduces even further to the form

(βn − β∗
n)
∫ +∞

−∞
ϕ∗

n1 ϕn1 dξ = 0 (203)

which, by taking into account that the integral never
vanishes, reveals the realness of the eigenvalues

βn − β∗
n = 0 (204)

Equation (204) represents a very comforting result
because it arises self-consistently and checks with the
expectation we spoke of in between equations (176) and
equations (177). With the eigenvalues’ realness assured
by equation (204), equation (202) becomes inconclusive
with respect to its term in square brackets in the case of
discontinuous eigenfunctions (r ̸= 1, j ̸= 1), even when
r = j, but that is an occurrence of no further relevance.

The sequence of conclusions drawn from the dis-
cussion hinged on equation (198) should sharpen our
discernment of the matter we are investigating because
they raise two severe warnings: the first is related to
the integral appearing in equation (193), and evaluated
in equation (196), because it intervenes also in, and
obviously affects, the crucial hermiticity test of the
hamiltonian (2) mentioned in connection with equa-
tions (11)–(13); the second is related to the lack of
orthogonality among the discontinuous eigenfunctions.
The severity of these warnings ensues from the realiza-
tion that the normalization of the wavefunction (9) may
be endangered. Well, finally a dim light at the end of the
tunnel. For the hamiltonian’s hermiticity test, we must
rewind to equation (12) and undo it to the unsimplified
form

⟨H⟩∗ − ⟨H⟩ =
∫ +∞

−∞
[(HΨ)∗ Ψ − Ψ∗ HΨ] dx

= ℏ2

2m

∫ +∞

−∞

∂

∂x

(
Ψ∗ ∂Ψ

∂x
− Ψ∂Ψ∗

∂x

)
dx

(205)

The integral in equation (193) appears after the sub-
stitution of the wavefunction’s general solution (181) in
equation (205)∫ +∞

−∞

∂

∂x

(
Ψ∗ ∂Ψ

∂x
− Ψ∂Ψ∗

∂x

)
dx

=
N∑

n=1

∞∑
r=1

N∑
m=1

∞∑
j=1

cnrc
∗
mj exp

(
i
ϵ∗m − ϵn

ℏ
t

)
∫ +∞

−∞

∂

∂x

(
ψnr

∂ψ∗
mj

∂x
− ψ∗

mj

∂ψnr

∂x

)
dx (206)

Equation (196) taught us that the integral does not van-
ish if n ̸= m in the presence of discontinuous eigenfunc-
tions; thus, in sequence, the hamiltonian’s hermiticity
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test fails

⟨H⟩∗ − ⟨H⟩ ≠ 0 (207)

equation (12) breaks down, equation (10) prevails and
the wavefunction’s normalization becomes inhibited.
The latter occurrence can be seen more directly by
substituting the wavefunction’s general solution (181)
into equation (9)∫ +∞

−∞
Ψ∗(x, t) · Ψ(x, t) dx

=
N∑

n=1

∞∑
r=1

N∑
m=1

∞∑
j=1

cnrc
∗
mj exp

(
i
ϵ∗m − ϵn

ℏ
t

)
∫ +∞

−∞
ψ∗

mjψnr dx (208)

and by noticing that the lack of eigenfunctions’ orthog-
onality prevents the disappearance of the temporal
terms inside the series and kills the wavefunction’s
normalization ∫ +∞

−∞
Ψ∗(x, t) · Ψ(x, t) dx ̸= 1 (209)

Equations (207) and (209) end our quest: they consti-
tute the lethal blow to discontinuous eigenfunctions
and provide the physical justification for their rejec-
tion, consistently with Bohm’s and Griffiths’ teachings
quoted between equations (10) and (11). Both equations
authorize us to set eigenfunctions’ discontinuities to zero
everywhere in this section and to retrieve comfortably all
the familiar results presented in textbooks.

We reconnect with the reader’s doubt expressed at
the end of Sec. 3.4: is the detour via the twp’s study
didactically justified and worth undertaking? In the light
of what we have discussed and the results achieved
in this section, we believe the answer to be in the
affirmative because the fact that, within the perspective
of the twp’s study, eigenfunction’s and first derivative’s
continuity are proven results pushes to question their
role as initial assumptions of the sta, to consider claims
that they are based on unsatisfactory mathematical
arguments, to believe that there must exist a more phys-
ically consistent manner to invoke their applicability
within the sta’s context and to engage in the detective
work to discover such a manner. The process is certainly
longer but definitely more enriching from both a teaching
as well as a learning point of view.

5. Conclusions

Did we find any new results with respect to those
already offered by the sta? The honest answer is no;
we reached the top of the mountain and enjoyed the

same view. But we climbed along an unexplored path:
did we learn something new? We feel confident to give
a positive answer to such a question. We had the
opportunity to bring forth and discuss the importance
of the boundary conditions in an insightful manner that
puts in clear perspective how essential their impact on
normalization condition (9), hamiltonian’s hermiticity
(12) and wavefunction’s separability [(16) and (19)]
is; and, if the crucial conceptual test represented by
equations (19) is passed, how that impact propagates
to eigenfunctions’ uniqueness (22.7). We detoured the
boundary conditions’ effect on eigenfunctions’ orthog-
onality (23) and eigenvalues’ realness because we took
for granted the details of the proofs provided in the
literature; but we have learnt in a straightforward
manner how those properties are in jeopardy if the
boundary conditions do not make vanish the right-hand
side of equation (193). We have engaged in the didactic
exercise to find analytical and numerical solutions of
the eigenvalue problem for the twp, a task we have
accomplished by a thorough analysis and validated
with the application of our findings to particular test
cases taken from the literature. An interesting product
from the imposition of the initial wavefunction (123)
was the recognition of some important mathematical
characteristics, or perhaps limitations hardly discussed
in textbooks, of the wavefunction’s general solution if
the number of eigenvalues is finite. We deduced the
solution of the swp’s quantum mechanical problem as
limit of that of the twp when the slope of the potential’s
ramps becomes vertical and obtained as proven results
the otherwise initial working assumptions of the sta,
particularly eigenfunction’s and first derivative’s conti-
nuity at the swp’s jump points. That score encouraged
and propelled us to attempt to fix their conceptual
shakiness within the sta’s context and we were rewarded
by discovering a sound physical fix: discontinuous eigen-
functions, although mathematically admissible, must be
rejected because they are incompatible with wavefunc-
tion’s normalization and hamiltonian’s hermiticity.

In conclusion, we trust we have provided a peda-
gogically worthy and sufficiently elaborated answer to
the question ending the student’s remark quoted in
the beginning of Sec. 1 by climbing along an unbeaten
course. We hope our contribution will help students on
the educational part of their world line to acquire the
equilibrium between how to take into proper consid-
eration established knowledge but, at the same time,
to gain strong confidence in their capabilities of free
thinking and independent dexterity in undertaking sci-
entific research. In that regard, we believe it would be
an interesting didactic exercise to spend a couple of
hours in the classroom by accompanying the students
along the detour presented in this article after they have
been exposed to the sta and, then, ask their feedback
regarding the learning experience.
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In line with the mountaineering analogy introduced
in the beginning of this section, it seems appropriate to
exit by quoting an experienced mountain climber:22

The summit is what drives us but the climb
itself is what matters.
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