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In this paper, we present a detailed deduction of the Cahn-Hilliard equation. It is a non-linear partial differential
equation that continuously describes the dynamics of spinodal decomposition, i.e., spontaneous phase separation,
of a binary mixture. From such an equation we can model systems that undergo phase separation toward the
equilibrium, i.e., passive systems, and systems that are kept out of the equilibrium by the presence of either
external forces or chemical reactions, i.e., active systems. To accomplish our main goal, we present the main
concepts of non-equilibrium thermodynamics and from that, we obtain the Cahn-Hilliard equation by defining
a general equation for the transport of matter and calculating the free energy for a homogeneous and non-
homogeneous mixture of real fluids. By the end, we perform simulations of the Cahn-Hilliard equation and
present two examples of passive and active systems that (quasi) suppress Ostwald ripening.
Keywords: Non-equilibrium thermodynamics, liquid-liquid phase separation, passive and active systems.

1. Introduction

Phase separation refers to the transient, non-equilibrium
process by which a homogeneous mixture spontaneously
separates into a multiphase mixture as a consequence
of appropriate changes in thermodynamic variables,
such as temperature, chemical concentration, pressure,
etc. [1]. Our daily life provides examples of this phe-
nomenon, e.g., the condensation in the shower due to
the supersaturation of the air with gaseous water and the
formation of oil droplets in water in a vinaigrette [2–4].
These well-demixed mixtures have distinct functions and
occur in different environments, ranging from industrial
processes, e.g., medicine, food, energy, cosmetics, and
agrochemicals; [5, 6] to nature, e.g., giving rise to
colors in birds and forming biomolecular condensates
in cells [7–10]. This last example, i.e., the biomolecular
condensates, represents a novel class of physical systems
and, because of that, it has been the main subject of
scientific investigation by many physicists over the past
decades.

Biomolecular condensates are membrane-less micro-
compartments, or organelles, in the interior of eukary-
otic and procaryote cells [11, 12]. These structures
concentrate biomolecules, creating a distinct chemical
setting from their surroundings and aiding spatiotem-
poral regulation of biological reactions [1, 11–15]. They
participate in diverse intracellular processes, such as
RNA metabolism, ribosome biogenesis, DNA damage
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response, signal transduction, nucleation of micro-
tubules, production of spliceosomes, etc [11]. A well-
characterized example of biomolecular condensates is
the P granules first observed in the 1980s and found
in Caenorhabditis elegans embryos [13, 16, 17]. Recent
studies with P granules have shown they present liquid-
like properties, i.e., they exchange material with the
cytoplasm, exhibit a well-defined contact angle, present
a round morphology that deforms in the presence
of flows, and have an analogous viscosity to runny
honey [1, 13]. These facts suggest that biomolecular
condensates are liquid droplets formed by phase separa-
tion [3]. However, differently from oil-in-water droplets,
i.e., passive droplets, biomolecular condensates exist in
a non-equilibrium environment of living cells, so that
their material can chemically react and interact with
external forces [3, 13]. In such conditions, these droplets
present different stability properties than the passive
ones, configuring a novel class of physical systems,
named active droplets/emulsions [3].

Active emulsions represent a subset of a broad class
called active matter. Active matter is a class of natural
or artificial systems driven out of the thermodynamic
equilibrium by a constant supply of energy at the single
particle level, which can convert the energy consumed
into a form of mechanical work [18]. Differently from
passive systems, which evolve toward the state that
corresponds to the free energy minimum, active sys-
tems exhibit exciting new dynamical properties includ-
ing collective behavior, non-equilibrium order/disorder
transitions, pattern formation on mesoscopic scales,
unusual mechanical and rheological properties, among
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others [19]. In living entities, active behavior emerges
in the cytoskeleton biopolymers, bacterial suspensions,
and terrestrial, aerial, and aquatic flocks [19]. On the
other hand, in nonliving systems active matter arises in
layers of vibrated granular rods, self-propelled particles
(Janus particles), arrays of coupled synthetic chemical
cells, and reconfigurable, self-propelled sheets [19–22].
In particular, biomolecular condensate is an example
of active matter originating from the interplay between
phase separation and chemical reactions [2, 3]. It has
been shown that such condensates may perform self-
propulsion, suppress Ostwald ripening, and stimulate
growth and droplet division [15, 23, 24]. These intriguing
behaviors can be described through physical models
based on non-equilibrium thermodynamics, polymer,
and soft matter physics [13].

Based on the crucial role of phase separation for the
well-functioning of non-living and living systems, well-
exemplified by the biomolecular condensates, we present
in this paper the physical derivation of the Cahn-Hilliard
(CH) equation,

∂ϕ(r, t)
∂t

= ∇ · (M∇µ̄),

where ϕ(r, t) is the local volume fraction of a chemical,
M is the mobility coefficient, µ̄ = δF [ϕ]/δϕ is the local
exchange chemical potential, and F [ϕ] is the free energy
functional. The CH equation provides a continuous
description of the phase separation for binary mixtures
and it is the starting point to address more complex
problems, e.g., active emulsions. To accomplish that, we
begin introducing in section 2 the main concepts of the
theory of non-equilibrium thermodynamics. From such
a theoretical ground, we obtain in section 3 a general
dynamical equation for the transport of matter in an
incompressible, isothermal, and non-reactive mixture.
To proceed with our main task, we seek to calculate the
exchange chemical potential through the determination
of the free energy density for non-ideal fluids from an
Ising-like Hamiltonian in Section 4. In section 5, we
provide corrections to the free energy defined in section 4
to include the energetic effects of the presence of internal
interfaces, resulting in a free energy functional. Finally,
in section 6, we obtain the exchange chemical potential,
determine the CH equation, carry out simulations of
passive phase separation, and discuss two possible ways
to (quasi) suppress Ostwald ripening from a passive and
active system.

2. Theoretical Foundation of
Non-equilibrium Thermodynamics

The classical thermodynamics (CT), as it was formu-
lated in the nineteenth century, has its foundation in
the concept of “equilibrium”. In general, such a theory
assumes that a system evolves from one state to another
reversibly, as a succession of equilibrium states [25].

From that approach, it is possible to compute changes
in thermodynamic quantities but not their evolution
during the process [25–27]. This is because at the
idealized equilibrium scenario there is no dissipation, the
physical properties are time-invariant, and homogeneous
throughout the system [25, 28]. However, most of the
natural phenomena take place out of equilibrium, i.e.,
the situation where the system dissipates energy and
inhomogeneities induce internal flows [29]. This fact
required an extension of the CT to handle more realistic
problems, resulting in the Non-equilibrium Thermody-
namics theory.

Non-equilibrium Thermodynamics (NT) aims to
describe irreversible processes such as transport phe-
nomena and rates of chemical reactions [25]. It is built
upon the first and second laws of thermodynamics, i.e.,
the conservation of energy and the entropy laws, respec-
tively [28, 29]. These fundamental laws are formulated
for irreversible processes based on the Local Equilibrium
Hypothesis [25, 28, 29]. According to such a hypothesis,
“the local and instantaneous relations between thermody-
namic quantities in a system out of equilibrium are the
same as for a uniform system in equilibrium” [25]. In
other words, it assumes that a system can be viewed
as composed of subsystems, which are large enough
for microscopic fluctuations to be negligible, but small
enough for equilibrium to be a good approximation
[25, 30]. The local equilibrium assumption results in
two immediate consequences: (1) All physical-chemical
variables defined in CT are valid in NT, but they
are replaced by their respective densities, which are
continuous functions of space coordinates and time; (2)
The equations that relate state variables in equilibrium
are locally valid for non-equilibrium processes, e.g.,
Gibbs’ relation [25, 28, 29]:

TdS = dU + pdV −
n∑

k=1
µkdNk. (1)

It is worth mentioning that the Local Equilibrium
Hypothesis is valid for systems where the Maxwellian
distribution is maintained, otherwise, generalizations
should be made [25].

Considering the information exposed previously, we
can provide a local formulation for the laws of thermo-
dynamics [28]. Let us initially address the conservation
law. To describe irreversible processes, such as mass
diffusion, thermal conduction, and chemical reactions,
it is convenient to define macroscopic conservation laws
of mass, energy, and momentum in a differential form
[25, 26, 28, 29]. Following that, assuming a multi-
component system with the presence of conserved exter-
nal forces and chemical reactions, the conservation of
these physical quantities is locally rewritten as a balance
equation (also known as continuity equation), given in
the following general form [25, 26, 28],

dz(r, t)
dt

= −∇ · Jz + σz. (2)
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A deduction of the equation above can be found in
Appendix A.

In Eq. (2), z is the density of a generic physical
quantity (z per unit volume), Jz is the flux term
expressing the exchange of z between the system and
surroundings, and σz is the internal production of z.
Note that, to obtain an explicit expression for z we shall
identify Jz and σz, which are particular to each problem.
This is done with the aid of the second law.

In the NT formalism, the changes in entropy are
expressed as the sum of two parts [25, 26, 28, 29]:

dS = deS + diS. (3)

Where deS accounts for the entropy change due to
reversible processes and diS is the entropy change of
irreversible processes. To be a valid local formulation
Eq. (3) must fulfill the requirements of the second law.
Following Clausius’s statement, such a law asserts that
an isolated system can only evolve from an initial state to
a final state if the variation of entropy is greater or equal
to zero [27, 31, 32]. Therefore, as long as deS = 0 for an
isolated system, the variation of entropy of irreversible
processes must be [25, 28, 29]

diS ≥ 0. (4)

Notice that, such inequality holds for any process,
whereas deS may be positive, zero, or negative [25, 26,
28]. Upon the assumption that in non-equilibrium condi-
tions the densities of extensive variables are continuous
functions of space and time, entropy shall be given as
S =

∫
sdV , with s the entropy density [28]. Following

that statement, we may rewrite Eq. (3) as the rate of
variation of entropy [25, 28, 29]

dS

dt
= deS

dt
+ diS

dt
. (5)

Basically, the equation above tells that the entropy
of a material body with fixed mass, and volume and
bounded by a surface is given as the sum of the exchange
with the surroundings, i.e., deS

dt , and the internal produc-
tion, i.e., diS

dt [25]. Owing to the physical interpretation
of such quantities, it is advantageous to write them in
terms of the entropy flux Js, i.e., the entropy crossing
the boundary surface per unit of area and unit of time,
and the rate of entropy production σs, i.e., the entropy
produced per unit of volume and unit of time inside the
system [25, 28, 29]

deS

dt
= −

∫
A

(Js · n)dA and
diS

dt
=

∫
V

σsdV. (6)

One can realize that Eqs. (6) give a precise general
form to compute the entropy of reversible and irre-
versible processes. Moreover, using Eqs. (6) in Eq. (5)
and applying Gauss’ theorem, we also obtain a balance
equation, as Eq. (2), for entropy density [28].

To complete our description of the second law and
to be able to obtain explicit governing equations of
irreversible processes, we have to relate diS with the
various irreversible phenomena that may take place
inside the system [28]. To this end, further consideration
of the rate of entropy production, σs, must be done.
Such a term is expressed as a sum of products of
thermodynamic fluxes, Ji, and thermodynamic forces,
Xi [25, 28, 29, 33, 34]:

σs =
∑

i

JiXi. (7)

We can determine Eq. (7) by comparing the entropy
balance equation with the resulting entropy evolution
equation obtained from substituting Eq. (2) into Gibbs’s
relation, Eq. (1), see Appendix B [25, 28]. We highlight
that Xi are not forces in the mechanical sense, they are
associated to the gradients of intensive variables [25].

Moreover, it is also known, from empirical observa-
tions of a large class of irreversible processes, that fluxes
are linear functions of forces. Such a relationship is given
by Eq. (8) and is named phenomenological relations
[25, 28, 29]:

Ji =
∑

k

LikXk. (8)

Where Lik are the phenomenological coefficients and
they were introduced by Lars Onsager [33, 34]. Introduc-
ing Eq. (8) into Eq. (7), one gets a quadratic expression
in the thermodynamic forces, i.e., σs =

∑
ik LikXiXk.

Therefore, considering σs > 0, as a consequence of the
second law, the entropy production must be positive
definite. To hold such a property, the phenomenological
coefficients shall satisfy the following conditions: Lii ≥ 0
and LiiLkk ≥ 1

4 (Lik + Lki)2 [25, 26, 28, 29, 33, 34].
It is important to call the reader’s attention to a

particularity of Eq. (7). In principle, one is allowed to
couple any flux to any force from Eq. (7). However,
material symmetry, also known as the Curie symmetry
principle, restricts some of them. Such a principle asserts
that for an isotropic system, thermodynamic fluxes and
forces of different tensorial characters do not couple.
This prevents macroscopic causes from having more
elements of symmetry than the effects they generate [25,
28, 35, 36]. The consequences of material symmetry are
very important to the understanding of Soret, Dufour,
Seebeck, Peltier, and Thomson effects, for example
[25, 28].

Now we are capable of obtaining explicit evolution
equations from the combination of Gibbs’ relation and
the non-equilibrium equations. This is carefully done in
the next section.

3. Transport of Matter

From the NT theory, we begin with the physical deriva-
tion of the CH equation. The first step is to determine a
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general dynamical equation for describing the transport
of matter in a binary, incompressible, and non-reactive
mixture. To achieve such a task, we consider a closed and
isothermal system with a total volume V . From these
considerations, let cα(r, t) and cβ(r, t) denote the local
chemical concentrations, i.e., ck = Nk/V with Nk the
number of particles of the k−component, with k = α, β.
Following the assumptions imposed on the system, the
chemical concentrations obey cα +cβ = C, with C ∈ R+,
thus ∂cα

∂t = − ∂cβ

∂t . With that, we can write from Eq. (2)
the continuity equations of α and β:

∂ck

∂t
= −∇ · Jk, k = α, β. (9)

Note that, σsk
= 0 because α and β do not chemically

react and the flux Jk can be split in advected and
diffusive parts [2],

Jk = ckv + jk. (10)

Where v is the volume flow velocity, which obeys the
incompressibility condition, i.e., ∇ · v = 0. To ensure
the matter is conserved we have that

∑
k mkjk = 0,

with mk the molecular mass of k-component [2, 3].
This implies that jα + jβ = 0, see the Appendix C.
Therefore, using the information presented previously
and restricting ourselves to a reference frame where
v = 0 [25], we can write the time evolution of the
chemical concentration of component α as

∂c

∂t
= −∇ · j, (11)

where we have abbreviated c = cα for simplicity.
Now, our goal is to derive an expression for j. From

Gibbs’ relation for the present problem, we can write the
entropy as [25]

T
ds

dt
= −(µα − µβ)dc

dt
. (12)

However, we also know from Eq. (2) that

σs = ds

dt
+ ∇ · Js ≥ 0. (13)

So, using Eqs. (11) and (12) into Eq. (13) we have

Tσs = µ̄∇ · j + ∇ · Js ≥ 0. (14)

In Eq. (14) µ̄ = µα − µβ is the exchange chemical
potential [3]. Continuing, rearranging the last equation
we obtain,

σs = −j · ∇
(

µ̄

T

)
+ ∇ ·

[
Js + j

(
µ̄

T

)]
. (15)

Since σs represents the entropy production inside the
system, such an expression cannot have a flux term as
∇ · [Js + j (µ̄/T )], which describes the rate of exchange

with the neighborhood. Therefore, this term must be
zero [25], requiring

Js = −j
(

µ̄

T

)
. (16)

As a consequence of that, we have the rate of entropy
production given as

σs = −j · ∇
(

µ̄

T

)
. (17)

From Eq. (7), we know the σs is given as a product
of a thermodynamic flux j and a thermodynamic force
X = −∇µ̄/T . Moreover, it follows from Eq. (8) that the
flux in the linear response regime is proportional to the
thermodynamic force, implying

j = −λ(c)∇
(

µ̄

T

)
. (18)

This is an important result. We conclude from the
equation above that the flow of matter in an isothermal
system with the absence of advection is driven by
the gradient of the chemical potential [26]. Here, λ(c)
denotes a mobility coefficient and it is positive to ensure
σs ≥ 0 [3, 25, 26, 28]. Now, using Eq. (18) into Eq. (11),
we get the general dynamic equation for the transport
of matter

∂c

∂t
= ∇ · (Λ(c)∇µ̄), (19)

where Λ(c) = λ(c)/T [3, 25]. As we can realize from
Eq. (19), to determine a dynamical equation for the
transport of matter to a specific problem, we just
have to find out µ̄. For example, let us assume the
mixture is ideal, then the chemical potential can be
written as µ(p, T, c) = µ(p, T ) + kBT ln(c), where kB

is the Boltzmann constant [31, 32, 37]. Substituting the
chemical potential in Eq. (19) and taking Λ(c) = Λ0c we
obtain the famous diffusion equation [25]:

∂c

∂t
= D∇2c. (20)

With D = Λ0kBT . The solution of such an equation
describes the mixing process of two fluids; however,
it is incapable of representing the process of phase
separation. The reason is that the model is based on
ideal fluids, which by definition lack internal struc-
ture. In other words, the particle-particle interaction
is neglected. In this scenario, the chemical potential is
only composed of entropic contributions, which push the
system to the mixed state. In conclusion, ideal fluids
do not separate. Therefore, to observe phase separation
or, equivalently, to obtain the CH equation, we have to
determine an exchange chemical potential for a mixture
of real fluids.
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4. Free Energy of Homogeneous Systems

As we argued in the last section, Eq. (19) dictates
the spatiotemporal dynamics of a binary mixture of
incompressible and non-reactive fluids in a closed and
isothermal system. We also showed that, if the fluids are
ideal, i.e., the interparticle interactions are equal to zero,
we obtain the diffusion equation, Eq. (20). However, here
we are interested in the dynamics of phase separation,
which can only happen to real fluids. Therefore, the next
step in the derivation of the CH equation is to determine
the free energy of a binary homogeneous mixture of
real fluids in a system with N , V , and T constants.
We proceed with that in this section.

We begin by assuming the system can be discretized
in a lattice of M sites, in a way that Nα + Nβ = M .
From this assumption, we may write the total vol-
ume as V = νM , where ν is the molecular volume,
and the chemical concentrations as ck = Nk/V =
Nk/νM = ϕk/ν, where ϕk is the volume fraction of the
k−component. Moreover, for simplicity, we take να =
νβ = ν, in other words, the components α and β occupy
the same volume in the lattice. Here, we use the binary
variable σi to represent the occupancy of a particular
site [3]. (Please, note that σi is different from the entropy
production, σs, mentioned in the last sections. We keep
this notation because it is usual in the treatment of Ising-
like Hamiltonians.) More precisely, if σi = 1 then the
i-site is occupied by α, and if σi = 0 it is occupied
by β. From that construction, the energy of a specific
configuration is given by the following Hamiltonian [2, 3]

H({σ}) =1
2

∑
⟨i,j⟩

(ϵαασiσj + ϵββ(1 − σi)(1 − σj)

+ ϵαβ [σi(1 − σj) + σj(1 − σi)]).
(21)

Notice that, the Hamiltonian only accounts for short-
range interactions such that the summation in Eq. (21) is
over the nearest pairs ⟨i, j⟩ on the lattice and the factor 1

2
avoids double counting [3]. The terms ϵαα, ϵββ , and ϵαβ

are the interaction parameters of α−α, β −β, and α−β
bonds, respectively; such that, if ϵαα < 0, for example,
the total energy of the system is reduced when molecules
of α are neighbors, making these arrangements more
probable [3, 38]. We highlight that these parameters
represent physical interactions of different nature, e.g.,
dipolar and van der Waals interactions, screened electro-
static interactions between charged molecular groups, or
entropy-driven hydrophobic interactions [3].

Continuing, we want to obtain the exchange chemical
potential (µ̄), which for a (N, V, T ) system is given by

µ̄ = ∂F

∂Nα

∣∣∣∣
T,V

= − ∂F

∂Nβ

∣∣∣∣
T,V

= ∂f

∂c

∣∣∣∣
T

= ν
∂f

∂ϕ

∣∣∣∣
T

, (22)

where F is the free energy of Helmholtz [31, 32, 37]. It is
known from the CT that in the conditions established

here, this free energy is expressed as

F (Nα,β , V, T ) = −kBT ln Z(Nα,β , V, T ). (23)

In the equation above, Z is the canonical partition
function and it can be written as follows [3, 31, 37]

Z =
∑

Ω
exp

[
−H(σ1, . . . , σM )

kBT

]
, (24)

where Ω is the set of all possible configurations, assuming
the molecules of the same type are indistinguishable
from each other [3]. Therefore, to determine µ̄ we
shall evaluate the free energy F and the partition
function Z. However, defining the exact solution for Z
and, consequently, F is a difficult task in most cases.
Thus, to overcome this problem, we use a mean-field
approximation. Essentially, such an approach is based
on the reduction of an N -body interaction system to a
1-body system with an average or effective interaction
field [39]. It results from that the probability of any site
being occupied by a molecule α (⟨σi⟩) is equal to the
average of molecules of α in the entire system, i.e., ⟨σi⟩ =
Nα/M = ϕ. Moreover, following such approximation
the spatial correlations are neglected, in a way that,
⟨σiσj⟩ ≈ ⟨σi⟩⟨σj⟩ = ϕ2 [3, 37]. Making use of the mean-
field theory, we can conclude that the internal energy
can be written as

E(ϕ) ≈ ⟨H⟩ = zM

2 [ϵααϕ2 + ϵββ(1 − ϕ)2 + 2ϵαβϕ(1 − ϕ)],
(25)

where z is the coordination number per lattice site, and
zM/2 is the number of nearest neighbors [3]. From the
same perspective, the partition function is given by

Z ≈ |Ω|exp

[
−E(ϕ)

kBT

]
. (26)

In the equation above, |Ω| = M !
Nα!Nβ ! is the num-

ber of all possible arrangements on the lattice. From
Eqs. (25) and (26), and using Stirling’s approximation,
i.e., ln N ! ≈ N ln N − N , we can calculate the following
total free energy density:

F(ϕ) ≈ z

2ν

[
ϵααϕ2 + ϵββ(1 − ϕ)2 + 2ϵαβϕ(1 − ϕ)

]
+ kBT

ν
[ϕ ln ϕ + (1 − ϕ) ln(1 − ϕ)] .

(27)

Bear in mind that, F(ϕ) = F/Mν, once V = Mν.
Moreover, we may realize that the total free energy
density is expressed as F(ϕ) = f0(ϕ) + f(ϕ), where
f0(ϕ) is the free energy density of the non-interactive
system, i.e., f0(ϕ) = ϕf(1)+(1−ϕ)f(0), and f(ϕ) is the
free energy density of mixing, which we can explicitly
write as

f(ϕ) = kBT

ν
[ϕ ln ϕ + (1 − ϕ) ln(1 − ϕ) + χϕ(1 − ϕ)] .

(28)
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In the Eq. (28), χ = (z/2kBT )(2ϵαβ − ϵαα − ϵββ)
is the interaction parameter [3, 40, 41]. We can go a
step further and realize that it is possible to deter-
mine the entropy of mixing using S = kB ln |Ω| =
−kBM [ϕ ln ϕ + (1 − ϕ) ln(1 − ϕ)]. Therefore, from this
last result, we conclude that f(ϕ) is composed of an
entropic term related to the demixing process, and
an energetic term, i.e., χϕ(1 − ϕ), representing the
interactions between the molecules [3].

Now, before we proceed to the study of the dynamics
driven by f(ϕ), let us analyze the physical characteristics
of such a thermodynamic potential in terms of the
stability of the equilibrium state. By definition, an
equilibrium state is locally stable if it corresponds to a
minimum of the free energy. In other words, the stability
condition requires the free energy to be a locally convex
function [31, 42]. Such a criterion can be written in
terms of the second derivative of the f(ϕ) (assuming the
free energy is a continuous and smooth function), i.e.,
d2f(ϕ)/dϕ2 > 0.

From the definition of stability of the equilibrium
state, let us analyze f(ϕ) as a function of ϕ for different χ
presented in Figure 1. It is evident from this Figure that
when χ is lower than a critical value χc, which indicates
that the energetic interaction between particles of the
same composition is weak, the free energy is a convex
function of ϕ and, therefore, the mixed equilibrium
state is favored. However, as χ is increased, meaning
stronger energetic interaction between particles of the
same composition, a local maximum appears in the free
energy from χ > χc, forming a double-well potential. For
the range of ϕ that the local maximum lies on, the mixed
state is unstable. Therefore, to minimize the free energy
of the equilibrium state, the system spontaneously sep-
arates into two phases with compositions ϕ1 and ϕ2,
which are the two minima represented in Figure 2A.
We have to point out that the coexistence of both phases
in the equilibrium requires that the exchange chemical
potential and the osmotic pressure between the phases
are equilibrated, i.e., µ̄1 = µ̄2 and Π1 = Π2 [2, 3, 42].
These requirements are satisfied by a common tangent
to the points (ϕ1, f(ϕ1)) and (ϕ2, f(ϕ2)). This last

Figure 1: The free energy density of mixing for an incompressible
binary fluid as a function of ϕ for different χ. As one might
realize, for χ ≥ 2, two local minima arise, indicating the mixed
state is unstable.

Figure 2: A)A representation of the free energy density of
mixing for χ ≥ 2, indicating the stable, metastable, and unstable
regions. B) Phase diagram of ϕ × χ. The spinodal and binodal
curves are shown in a red dashed line and a black thick line,
respectively.

observation means we can determine the equilibrium
compositions of each phase geometrically, through the
“common tangent rule” [3, 42]. Such a procedure is also
known as Maxwell’s tangent construction [3].

We can proceed and look in detail f(ϕ) with χ > χc.
Under such conditions, we may divide the free energy
into two regions: (1) the miscibility gap, i.e., ϕ1 <
ϕ < ϕ2, where the system minimizes the free energy
by separating into two phases; (2) the stable region,
i.e., ϕ < ϕ1 and ϕ > ϕ2, where the homogeneous state
is maintained as presented in Figure 2A [42]. We may
also categorize two different domains inside the misci-
bility gap following the stability characteristics of the
equilibrium state, i.e., the unstable and the metastable
domains. These domains are separated by inflection
points. For compositions in the unstable region, the
mixed state spontaneously separates in the presence
of small fluctuations, through a mechanism known as
spinodal decomposition [3, 42]. On the other hand, the
metastable region is locally stable for small composition
fluctuations, i.e., the system does not separate spon-
taneously. However, the presence of large fluctuations
can induce demixing, which in this regime occurs by a
mechanism called nucleation and growth [3, 42].

We can precisely define the unstable and metastable
regions using the criteria for stability. Initially, we can
determine the necessary conditions for two distinct
phases to coexist, i.e., df(ϕ)/dϕ = 0. Such an equation
can be solved for the interaction parameter χ, see
Figure 2B. These conditions define the gray region
in this Figure, which is delimited by the coexistence
curve or binodal curve. The reader must realize this
curve delimits necessary, but not sufficient, conditions
for phase separation. To be sufficient, the state must
be unstable, which requires d2f(ϕ)/dϕ2 < 0. Solving
this last equation for χ we obtain the spinodal curve,
represented in red dashed lines in Figure 2B. Therefore,
the system will separate into two phases for any pair
of (ϕ, χ) chosen inside the spinodal curve. The region
between the binodal and spinodal curves is metastable.
Out of these regions, the system keeps mixed [42].

Considering what we have exposed until now, we could
proceed with the study of the phase dynamics associated
with the free energy of mixing, given by Eq.(28). To do
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that, we simply have to calculate the exchange chemical
potential and use it in Eq. (19), which would result
in the CH equation. However, the free energy density
determined above neglects the energy associated with
the formation of interfaces between two regions with
different compositions, in other words, the resulting CH
equation is incomplete. As a consequence, the simulation
of this version of the model will only result in short-range
structures. Therefore, to accurately describe the process
of phase separation and observe the emergence of long-
range structures, e.g., droplets, we have to include the
effects of the interface in the physical model [43].

5. Free Energy of a Non-Homogeneous
System

As we pointed out at the end of the last section, to
effectively describe the process of phase separation the
interfacial energy must be accounted for. Therefore, this
section aims to include such energetic contributions to
the physical model. This is the final step to obtain the
CH equation.

In a system formed by two phases, the composition
is spatially non-uniform. Following this observation, it
is reasonable to suppose that the free energy density,
f , should depend both on the local composition and
the composition of the immediate environment [43].
Therefore, we will express f as a function of the
local composition and the local derivatives, i.e., f =
f(ϕ, ∇ϕ, ∇2ϕ, . . .). We can expand this last expression
in a Taylor series about ϕ⃗ = (ϕ0, 0, 0, . . .), resulting
in [38, 43]

f(ϕ, ϕ1, ϕ2, ϕ3, ϕ11, ϕ22, ϕ33, ϕ12, ϕ23, ϕ31, . . .)

= f(ϕ)0 +
3∑
i

∂f(ϕ0)
∂ϕi

ϕi +
3∑

i,j=1

∂f(ϕ0)
∂ϕij

ϕij

+ 1
2

3∑
i,j=1

∂2f(ϕ0)
∂ϕi∂ϕj

ϕiϕj + 1
2

3∑
i,j,k=1

∂2f(ϕ0)
∂ϕk∂ϕij

ϕkϕij

+ 1
2

3∑
i,j,k,l=1

∂2f(ϕ0)
∂ϕij∂ϕkl

ϕijϕkl + O(ϕ)3. (29)

Here, we ignore terms higher than second-order
derivatives. Note that, in Eq. (29) ϕi = ∂ϕ

∂xi
and ϕij =

∂2ϕ
∂xi∂xj

. Considering the system is isotropic, then the free
energy must be invariant to the symmetry operations of
reflection (xi → −xi) and rotation about a fourfold axis
(xi → xj) [38, 43]. Hence,

∂f(ϕ0)
∂ϕi

= 0,
∂f(ϕ0)

∂ϕii
= κ1,

∂2f(ϕ0)
∂ϕ2

i

= κ2, i = 1, 2, 3

(30)

∂f(ϕ0)
∂ϕij

= ∂2f(ϕ0)
∂ϕi∂ϕj

= 0, i ̸= j. (31)

Using the assumptions made above, the Eq. (29) can
be rewritten as

f(ϕ, ϕ1, ϕ2, ϕ3, ϕ11, ϕ22, ϕ33, ϕ12, ϕ23, ϕ31, . . .)

= f(ϕ)0 + κ1∇2ϕ + κ2

2 |∇ϕ|2.
(32)

We can determine the total free energy integrating
Eq. (32) over the system’s volume,

F [ϕ] =
∫

dV
[
f(ϕ)0 + κ1∇2ϕ + κ2

2 |∇ϕ|2
]

. (33)

Applying the divergence theorem to the second term
of the right-hand side of the last equation and assuming
the term ∇ϕ · n is zero at the boundary, we obtain the
following expression [38, 43],

F [ϕ] =
∫

dV
[
f(ϕ)0 + κ|∇ϕ|2

]
. (34)

Where, κ = κ2
2 − ∂κ1

∂ϕ , as we show in Appendix D.
The functional given in Eq. (34) represents the total free
energy of the system and it is the central one in our
treatment. Observe that such an equation accounts for
the free energy of mixing of the homogeneous system,
i.e., f(ϕ)0 = f(ϕ) given by Eq. (28), and the gradient
energy related to the formation of interfaces that is a
function of the local composition, i.e., |∇ϕ|2.

Now we are able to calculate the exchange chemical
potential and obtain the final equation to describe the
dynamics of phase separation of a binary mixture, i.e.,
the CH equation.

6. The Cahn-Hilliard Equation

In this section, we use the information obtained previ-
ously to determine the CH equation. After that, we per-
form numerical simulations and analyze the outcomes.

The exchange chemical potential is given by:

µ̄ = δF [ϕ]
δϕ

= ∂g(ϕ, ∇ϕ)
∂ϕ

− ∇ · ∂g(ϕ, ∇ϕ)
∂∇ϕ

. (35)

Where, g(ϕ, ∇ϕ) = f(ϕ) + κ|∇ϕ|2 and δF [ϕ]
δϕ is a

functional derivative (more information about it can be
found in the references) [3, 43–45]. Before calculating
the chemical potential, it is convenient and a common
practice to replace f(ϕ) with a fourth-order polynomial
that keeps the form of a double-well potential, see
Figure 3, such as [3, 38]

f(ϕ) = − b

2(ϕ − ϕc)2 + a

4 (ϕ − ϕc)4. (36)

The replacement of f(ϕ) is just a mathematical
procedure to avoid numerical divergence. One can notice
that the Laplacian of the exchange chemical potential
calculated from Eq. (28) contains terms that can lead to
singularity problems.
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Figure 3: Fourth-order polynomial free energy, Eq. (36), with
a = b = 1.0 and ϕc = 1.0, which results in ϕ ∈ (0, Φ) with
Φ = 2.0.

The last equation is obtained by expanding Eq. (28)
around the critical volume fraction ϕc and assuming,
for simplicity, the special case that the first and third-
order components of the expansion are equal to zero [3].
Furthermore, the parameters a and b are related to
entropic and energy terms [3]. Using Eq. (36) in Eq. (34)
we have the Landau-Ginzburg free energy [46]:

F [ϕ] =
∫

dV

[
− b

2(ϕ − ϕc)2 + a

4 (ϕ − ϕc)4 + κ|∇ϕ|2
]

.

(37)
Finally, calculating µ̄ from Eq. (37) and substituting it

into the Eq. (19), we obtain the Cahn-Hilliard equation,

∂ϕ

∂t
= M∇2 (

−b(ϕ − ϕc) + a(ϕ − ϕc)3 + κ̃∇2ϕ
)

. (38)

In which we have assumed the mobility (Λ(ϕ)ν) is a
constant and equal to M , and κ̃ = 2κ.

The reader can immediately recognize that Eq. (38)
is a nonlinear partial differential equation with second
and fourth-order derivatives in the space coordinates.
In general, such a class of equations does not have
analytical solutions, requiring the usage of numerical
methods. There is a great number of works in the litera-
ture presenting efficient numerical approaches based on
finite difference [47–49], finite element [50–52], Fourier-
spectral [53–55], cell dynamics system (CDS) [56, 57]
methods to deal with the CH equation.

Here, we have employed a simple scheme of explicit
finite differences (EFD), which can be easily imple-
mented in Fortran and the simulations can be performed
on a laptop. Summarily, the EFD method discretizes
both spatial domain and time interval into a grid of
integer numbers. In this construction, the derivatives
are approximated by finite difference formulas, and the
differential equation is transformed into a system of
algebraic equations, i.e., one equation for each point of
the grid [58].

This procedure can be applied to Eq. (38) to obtain
its algebraic version. To do that, we have considered
a system with size Lx × Ly, where Lx and Ly are
the system’s length in the x and y-direction. We can
discretize it into a grid of Nx × Ny points, where
Nx = Lx/∆x, Ny = Ly/∆y, and ∆x,y are the distances
between two consecutive points in both directions, i.e.,
the spatial steps. The same can be done with the time

interval T , i.e., we can discretize it into S points, where
S = T/∆t and ∆t is the time step. In this discrete space
ϕ(x, y, t) ≈ ϕn

i,j , where n ∈ S, i ∈ Nx, and j ∈ Ny [58].
Therefore, the algebraic version of the CH equation (38)
is given as,

∂ϕ

∂t
= M

[
−b

(
∂2ϕ

∂x2 + ∂2ϕ

∂y2

)
+ 3a(ϕc − ϕ)

(
−2

(
∂ϕ

∂x

2
+ ∂ϕ

∂y

2)
+ (ϕc − ϕ)

(
∂2ϕ

∂x2 + ∂2ϕ

∂y2

))
+ κ̃

(
∂4ϕ

∂x4 + 2 ∂4ϕ

∂x2∂y2 + ∂4ϕ

∂y4

)]
. (39)

Where the partial derivatives are approximated by
finite differences:

∂ϕ

∂t
≈

ϕn+1
i,j − ϕn

i,j

∆t
(40)

∂ϕ

∂x
≈

ϕn
i+1,j − ϕn

i−1,j

2∆x
(41)

∂ϕ

∂y
≈

ϕn
i,j+1 − ϕn

i,j−1

2∆y
(42)

∂2ϕ

∂x2 ≈
ϕn

i+1,j − 2ϕn
i,j + ϕn

i−1,j

∆x2 (43)

∂2ϕ

∂y2 ≈
ϕn

i,j+1 − 2ϕn
i,j + ϕn

i,j−1

∆y2 (44)

∂4ϕ

∂x4 ≈
ϕn

i+2,j − 4ϕn
i+1,j + 6ϕn

i,j − 4ϕn
i−1,j + ϕn

i−2,j

∆x4

(45)

∂4ϕ

∂y4 ≈
ϕn

i,j+2 − 4ϕn
i,j+1 + 6ϕn

i,j − 4ϕn
i,j−1 + ϕn

i,j−2

∆y4

(46)
∂4ϕ

∂x2∂y2 ≈
(

1
16∆x2∆y2

)
(ϕn

i+2,j+2 − 2ϕn
i,j+2

+ ϕn
i−2,j+2 − 2ϕn

i+2,j + 4ϕn
i,j − 2ϕn

i−2,j + ϕn
i+2,j−2

− 2ϕn
i,j−2 + ϕn

i−2,j−2). (47)

One can realize that the approximated solution of the
partial differential equation in a discrete point of the
grid (i, j) for the time n + 1 is computed by solving an
algebraic equation using information from previous time
steps n. It is also important to emphasize that EFD has
some limitations in terms of numerical stability. So, to
avoid numerical divergence, the time and spatial steps
must satisfy the Neumann criterion [58].

The CH equation is solved by assuming Lx = Ly =
100, periodic boundary conditions, a = b = 1.0,
κ̃ = 0.5, ∆x = ∆y = 0.5, ∆t = 10−3, and different
initial conditions ϕ0 (which are displayed in the Figures’
captions). Moreover, all the simulations are carried out
with ϕc = 1, which implies ϕ ∈ (0, Φ) with Φ = 2,
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Figure 4: A), B), C), and D) show the outcomes of the
numerical simulation of the CH equation for ϕ0 = 0.8 and M =
1 at t = 50, 250, 500, and 1000 time units, respectively. E), F),
G), and H) show the outcomes of the numerical simulation of
the CH equation for ϕ0 = 1.35 and M = 1 at t = 50, 250, 500,
and 1000 time units, respectively.

as presented in Figure 3. Figure 4 shows snapshots of
simulations performed with two different compositions.

As we can note from the simulations, the topology
of the fluid domains depends crucially on the volume
fractions. We observe that after the spinodal decom-
position, spherical droplets rapidly form and as the
simulation evolves the mean droplet radius increases.
Such a process is called droplet coarsening and it can
proceed through two different mechanisms: Coalescence
and Ostwald ripening [3, 59]. The coalescence is driven
by the presence of thermal noise. It induces Brownian
motion, which increases the number of droplet-droplet
collisions and promotes the formation of larger droplets.
On the other hand, the driving force of Ostwald ripening
is the Laplace pressure difference between droplets of
different sizes. It creates a material transport flow from
small to large droplets across the intervening continuous
phase, maximizing the area of bigger droplets and
minimizing, consequently, the energy [3, 59]. It is worth
realizing that both mechanisms occur through diffusion,
but the nature of the diffusing species is quite differ-
ent [59]. Therefore, considering we neglected momentum
transport due to thermal fluctuations, the coarsening
mechanism observed in the simulations presented in
Figure 4 is Ostwald ripening.

It is convenient in many situations to avoid or, at least
to slow down, droplet coarsening. This can be achieved
in passive and active systems.

6.1. Passive system

A passive system composed of a binary mixture of
immiscible liquids in the presence of surfactants can slow
down droplet coarsening.

Surfactants are amphiphilic organic compounds, i.e.,
molecules composed of both hydrophobic (tail) and
hydrophilic (head) groups. These structural character-
istics enable such molecules to interact with both polar
and non-polar molecules simultaneously. Therefore, in

a mixture of immiscible liquids, e.g., water and oil,
surfactants are adsorbed at interfaces between coexisting
phases, forming a “wall”. A direct consequence of the
presence of surfactant molecules in such positions is
the reduction of the interfacial energy, resulting in the
stabilization of the droplets [59].

Following that, the coalescence process may be
reduced to negligible levels by the presence of surfac-
tants [59]. This is possible because the approximation
of two droplets is prevented due to the repulsive force
generated by the steric interactions between two surfac-
tant tails. Such effects can be enhanced by considering
charged surfactants, which create a Coulombic “barrier”
moving droplets away from each other [59]. Ostwald
ripening can also be decreased in the presence of sur-
factants, once it is triggered by energetic differences
between droplets; however, it can not be completely
prevented [59]. This happens because in nonideal situa-
tions there is a saturation point of adsorbed surfactant
molecules at the interface of emulsions. At this point,
there is the formation of structures called micelles and
the interfacial energy cannot be further reduced [59].

We may insert the effects of surfactants in the phase
separation model by considering the resultant polariza-
tion vector field. The free energy accounting such effects
is given below,

F [ϕ, p] =
∫

dV

[
f(ϕ)0 + κ|∇ϕ|2 + |p|2

2χ
+ ϵp · ∇ϕ

]
.

(48)
In the Eq. (48), p is the resultant polarization vector

field, χ = ⟨|p|2⟩ ∝ cs is the osmotic compressibil-
ity, and cs is the global concentration of surfactant
molecules [59]. The included terms represent the reduc-
tion in the free energy due to the presence of the
surfactants in the solution, i.e., |p|2

2χ and their adsorption
in the interface between the two phases, i.e., ϵp · ∇ϕ.
Figure 5 shows the time evolution of a binary mixture
of immiscible fluids in the presence of surfactants. It is
clear from comparing Figures 4 and 5 that the presence
of surfactants slows down Ostwald ripening; however,
it does not suppress completely the coarsening, i.e., it
quasi-suppresses Ostwald ripening.

Figure 5: Numerical simulation of the binary mixture of immis-
cible fluids and surfactant, described by Eq. (48), at t = A) 50,
B) 250, C) 500, and D) 1000 time units. The conditions are
ϕ0 = 1.0, M = 1, p = (0, 0), χ = 11, and ϵ = 0.1. In this
case, the simulations were performed with the xmds2 software
package (version 2.2.2), which employs an adaptive fourth-fifth
order Runge-Kutta and spectral methods for computing the
spatial derivatives [60].

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0280 Revista Brasileira de Ensino de Física, vol. 45, e20230280, 2023



e20230280-10 Continuous theory of phase separation: The Cahn-Hilliard equation

6.2. Active system

An active system formed by the combination of chemical
reactions and phase separation can suppress Ostwald
ripening [23].

Let us consider the scenario in which the components
of the binary mixture, i.e., α and β, can convert into each
other through a simple first-order reaction as represented
below,

α
kf−−⇀↽−−
kb

β

Where kf and kb are the rate constants. The chemical
reaction presented above indicates that the droplet
material, α, chemically transforms into the background
material, β, i.e., α

kf−−→ β. The same process may take
place in the reverse direction, i.e., β

kb−−→ α. Notice
that, if we assume the system can only react through
these reversible steps, it would eventually reach the
equilibrium state. Therefore, to keep the system out of
equilibrium we add a source of energy, S, and a waste,
W , in the following manner α + S

kf−−⇀↽−−
kb

β + W [3].
This is motivated by biological systems, where S may
represent the supply of chemical fuel such as adenosine
triphosphate (ATP) [23]. As we know, the chemical
equilibrium is reached when ∆µ = µα +µF −µβ −µW =
0. So, as long as we keep µS − µW ̸= 0, the system
will be away from thermodynamic equilibrium. This
is possible because we would be able to control the
chemical concentration of S and W externally.

We obtain the dynamic equation by applying the law
of mass action and combining it with the CH equation,
resulting in

∂ϕα

∂t
= −kf ϕαϕS + kbϕβϕW + M∇2µ̄. (49)

As one can realize, the number of α and β molecules
is constant, so that, ϕβ = Φ − ϕα. And, for simplicity,
we suppose that S and W are diluted and constant over
time and space, so that, kf ϕαϕS = Kf ϕα and kbϕβϕW =
Kbϕβ . Using this considerations, and taking ϕα = ϕ, we
have

∂ϕ

∂t
= Kf ϕ + Kb(Φ − ϕ) + M∇2µ̄. (50)

The outcomes of the numerical simulation of Eq. (50)
are shown in Figure 6.

It is evident from the results of the simulation that
Ostwald ripening is suppressed in the presence of first-
order chemical reactions. In fact, its direction is inverted,
i.e., larger droplets shrink to form smaller droplets. Such
a phenomenon is possible because when the system is
driven out of the equilibrium by chemical reactions, it
might evolve toward dynamically stable steady states.
In this case, one such state is composed of stable

Figure 6: Numerical simulation of a binary mixture of immiscible
fluids that can convert into each other through a first-order
chemical reaction. The dynamics are described by Eq. (50) at t
= A) 50, B) 250, C) 500, and D) 1000 time units. The conditions
are ϕ0 = 1.0, Kf = 9 × 10−3, Kb = 2 × 10−3 and M = 2.

monodisperse droplets. It is worth mentioning that these
states can only be reached by the correct choice of
physical parameters [23].

7. Conclusion

In this paper, we have provided a detailed deduction
of the Cahn-Hilliard equation, starting from the basic
concepts of non-equilibrium thermodynamics to obtain
a general equation for the transport of matter, Eq. (19),
going through the general ideas of statistical mechanics
to obtain the free energy density of mixing for a
homogeneous system, Eq. (28), exploring the variational
principle to extend such free energy and include the
energetic contribution of interfaces, Eq. (34), obtaining
an approximation for the free energy for a homogeneous
system to avoid numerical problems, Eq. (36), calculat-
ing the exchange chemical potential from the Landau-
Ginzburg free energy, Eq. (37), using the functional
derivative, Eq. (35), and coming up by the end with the
Cahn-Hilliard equation, by using Eq. (35) into Eq. (19).
We then performed simple simulations of the Cahn-
Hilliard equation, describing the coarsening processes
and offering two alternatives to suppress, or at least
decrease them: a passive system composed of surfac-
tants, and an active system that combines chemical
reactions with phase separation.

We expect that this material may offer the basic theo-
retical background on non-equilibrium thermodynamics,
enabling the reader to deal with different irreversible
phenomena close to the equilibrium in a continuous
approximation. It also may serve as the starting point
for studies on processes far from equilibrium, where non-
linear chemical kinetics can induce the emergence of dis-
sipative structures, such as pattern formation and chaos.
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