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This work provides a comprehensive derivation of the Fourier transform, with less emphasis on the mathematical
rigor associated with the theory. Instead, its primary goal is to serve as a didactic resource that fosters
an understanding of various abstract concepts through straightforward, visual, and animated examples. This
approach aims to make the study more accessible to those approaching the subject for the first time.
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1. Introduction

When the French mathematician Jean Baptiste Joseph
Fourier in 1822 began to study the phenomenon of heat
conduction in solid materials [1], he found a way to
analyze functions with a high level of complexity, by
expressing them through a series of sinusoidal functions,
because the latter are much easier to study, this process
is called a Fourier series [2]. Based on the previous
idea, the Fourier series of a periodic function could be
analyzed when its period tends to be much larger than
the width of the interval that characterizes the function.
Although it is counter-intuitive, the function would
no longer be periodic, but we obtain an information
related to the frequencies of the sinusoidal functions that
characterize it. That allows to get another description of
the same function, being essential its characterization,
this is called the Fourier transform of the function.

Currently, there are some examples of applications
of Fourier transform in areas such as: light diffrac-
tion [3]; in the analysis of electronic signals in the
theory of communications [4]; in techniques for solv-
ing differential equations with boundary conditions [5];
processing images [6], and images obtained by nuclear
magnetic resonance [7] or computed tomography [8];
in the description of natural phenomena on an atomic
scale through quantum mechanics [9]; in quantum com-
puting using quantum fourier transform algorithms [10]
and quantum phase estimation [11]; in machine learn-
ing in the extraction, processing and compression of
data [12].

In relation to the aforementioned, the present doc-
ument is organized as follows, in section 2 the notion
of periodic function and its description through the
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Fourier series is introduced. In section 3 an alternative
and abbreviated description of the Fourier series using
complex functions is shown. Section 4 deals with simple
theoretical deduction, without mathematical rigor, to
understand the main concepts and essence related to
the Fourier transform through visual examples and
animation videos, and finally in section 5 an explanation
of the properties of the Fourier transform is presented.

2. Fourier Series

The analysis starts with the definition of a one-
dimensional real function f(t) that exhibits a repetitive
behavior after a certain displacement of its argument,
t→ t+T , for any value t,

f(t + T ) = f(t). (1)

If a function that satisfies the previous condition is called
a periodic function, where T is the period of the function.
In the graphical representation of a periodic function,
the same behavior is observed at regular intervals, for
example in Fig. 1 we evident that the characteristics
of the function are the same after a period in its
representation.

The simplest examples of periodic functions are the
trigonometric functions sine and cosine, as well as the
constant function satisfying the condition (1). In this
way, J. Fourier developed a way to represent any periodic
function through a linear combination of sines and
cosines of different angular frequencies,

f(t) = 1
2 a0 +

∞∑
n=1

[
an cos(nω0t) + bn sin(nω0t)

]
, (2)

where ω0 =2π/T is the angular frequency that character-
izes the periodic function f , whose expansion coefficients
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Figure 1: Pictorial representation of a periodic function similar
to cardiac activity recorded by an electrocardiogram.

a0, an and bn are defined as,

a0 = 2
T

T/2∫
−T/2

f(t)dt, an = 2
T

T/2∫
−T/2

f(t) cos(nω0t)dt,

bn = 2
T

T/2∫
−T/2

f(t) sin(nω0t)dt.

(3)

Through the knowledge of the coefficients, any periodic
function can be expressed as a sum of even (cosine)
and odd (sine) functions, constituting a basis of linearly
independent functions. To understand the linear inde-
pendence of trigonometric functions, it is necessary to
analyze the following conditions:

T/2∫
−T/2

sin(mω0t) sin(nω0t)dt =
{

T/2, se m = n,
0, se m ̸= n,

T/2∫
−T/2

cos(mω0t) cos(nω0t)dt =
{

T/2, se m = n,
0, se m ̸= n,

T/2∫
−T/2

sin(mω0t) cos(nω0t)dt = 0.

(4)

For any distinct integers m and n (m ̸= n), the inte-
grations will always be zero, implying the orthogonality
of the functions. However, when m = n, the first
two integrations are equivalent to T/21, which means
that the sine and cosine functions are not normalized.
Therefore, in the definition of the coefficients of the
series expansion, they are expressed as the reciprocal
of the previous result, related to the projection of
the periodic function f onto each of the trigonometric
functions that make up the infinite and orthonormal
basis of the expansion. Thus, any periodic function can
be represented as a sum of sines and cosines if the
integrals (3) exist and the coefficients converge to express
the Fourier series of the function. On the other hand, the

1 We recommend that the reader demonstrate the particular value
of integration using the trigonometric identities cos(x ± y) =
cos x cos y ∓ sin x sin y, and sin(x ± y) = sin x cos y ± cos x sin y.
Furthermore, the limiting case of limx→0

sin x
x

=1.

third integration is always zero because the integration
interval is symmetric, but the integrand is a product of
functions with odd parity.

Alternatively, the Fourier series can be expressed in a
compact form by using the Euler identity eix = cos x +
i sin x, where i denotes the imaginary unit (i2 = −1).
Then, the Fourier series is re-expressed using the com-
plex exponential einω0t instead of writing the sine and
cosine functions separately. To understand the reason
for this simplification, it will be detailed in the following
section.

3. Complex Fourier Series

Considering any periodic function f(t) of period T ,
expressed by the sum of the trigonometry functions (2),
and bearing in mind that cos x = 1

2 (eix + e−ix) and
sin x= 1

2i (eix−e−ix), we rewrite the series as,

f(t)= a0

2 +
∞∑

n=1

[
(an−ibn)

2 einω0t + (an+ibn)
2 e−inω0t

]
,

(5)
obtaining a series whose coefficients are complex,

c0 = 1
2 a0, cn = 1

2 (an−ibn), c−n = 1
2 (an+ibn). (6)

Where the third term of the series is equivalent to
performing the sum from minus infinity to n=−1. Thus,
we abbreviate the sum to,

f(t) =
∞∑

n=−∞
cn einω0t, ω0 =2π/T. (7)

In this way, the last representation is known as the
complex Fourier series, whose coefficients2 are given by,

cn = 1
T

T/2∫
−T/2

f(t) e−inω0t dt. (8)

When n = 0 the coefficient c0 represents the average
value of the periodic function. In order to exemplify the
complex Fourier series, three examples of simple periodic
functions will be discussed below.

Example 1
Calculation of the coefficients cn of the function f(t)=

A cos(ω0t), associated with the complex Fourier series,
where A is a constant. The process begins by identifying
the period T0 = 2π/ω0, and expanding the complex

2 The coefficient of expansion cn is obtained using Euler’s identity.
Additionally, one can observe that the coefficient with the negative
index is equivalent to the complex conjugate coefficient with the
positive index c−n =c∗

n.
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exponential,

cn = A

T0

T0/2∫
−T0/2

cos(ω0t) cos(nω0t) dt,

− iA

T0

T0/2∫
−T0/2

cos(ω0t) sin(nω0t) dt.

(9)

The first integral is equivalent to T0/2 when n = ±1.
The second integral will always be zero because the
integrand is an odd function and the integration interval
is symmetric. In this way, we obtain the two coefficients
of the cosine function in the expansion of the Fourier
series,

c−1 = A

2 , c+1 = A

2 . (10)

This implies that the cosine function is expressed by two
positive real coefficients respectively associated with the
angular frequency of the oscillation ω0,

f(t) = c−1e−iω0t + c+1e+iω0t,

= A

(
eiω0t+e−iω0t

2

)
,

= A cos(ω0t).

(11)

In Fig. 2 both expansion coefficients are represented
in a spectrum of amplitudes, revealing that only two
coefficients equivalent to half the amplitude of the
cosine function and angular frequencies ω0 are needed
to express it.

Example 2
Similar to the previous example, calculate the coeffi-

cients cn of the complexed Fourier series for the function
f(t) = A sin(ω0t), where A a constant and the period
T0 =2π/ω0. Expanding the complex exponential,

cn = A

T0

T0/2∫
−T0/2

sin(ω0t) cos(nω0t) dt,

− iA

T0

T0/2∫
−T0/2

sin(ω0t) sin(nω0t) dt.

(12)

Figure 2: Cosine function and the representation of its ampli-
tude spectrum.

Following the same reasoning described in example 1 for
the integrations, we obtain the two coefficients of the
complex Fourier series,

c−1 = − A

2i
, c+1 = A

2i
. (13)

This means that the sine function is expressed using two
complex coefficients of opposite signs related to the odd
parity of the function,

f(t) = c−1e−iω0t + c+1e+iω0t

= A

(
eiω0t−e−iω0t

2i

)
= A sin(ω0t).

(14)

In Fig. 3 we can observe the complex coefficients related
to the angular frequency ω0, contrary to the cosine
function whose coefficients are real positive.

Example 3
In this case, a periodic function of abrupt changes will

be considered, called as rectangular wave of period T ,
shown in Fig. 4, defined as:

f(t) =

a, t ∈
(
− 1

2 b, 1
2 b
)

,

0, t ∈
(
− 1

2 T, − 1
2 b
)

∪
( 1

2 b, 1
2 T
)

,
(15)

whose angular frequency is ω0 =2π/T . In this situation
the coefficients of the complex Fourier series after some
algebraic processes are expressed as,

cn = a

T

b/2∫
−b/2

e−inω0t dt = a

T

e−inω0t

−inω0

∣∣∣∣∣
b/2

−b/2

,

= a

T

(
e−inω0b/2−einω0b/2

−inω0

)
· b/2

b/2 ,

= ab

T

sin
(
nω0b/2

)
(nω0b/2) ,

(16)

Figure 3: Sine function and the representation of its amplitude
spectrum.

Figure 4: Rectangular wave of period T .
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Figure 5: Rectangular wave and amplitude spectrum for different widths and period of oscillation.

where ω0b/2 = πb/T ,

cn = ab

T

sin
(
nπb/T

)
(nπb/T ) . (17)

We observe that the coefficients associated with the
rectangular wave are real, this is because the function
has an even parity. Additionally, zero coefficients occurs
every time nb/T represents an integer value (except
when n = 0). In order to facilitate the understanding of
the previous result, we present in Fig. 5 the coefficients of
the rectangular wave for different values of the ratio b/T ,
and for a better appreciation of ratio’s variation b/T we
recommend to watch the video by clicking here [13].

Once we know of the complex coefficients of the
rectangular wave function (17), the reconstruction of the
function by expanding the series will be proved below,

f(t) =
∞∑

−∞
cn einω0t. (18)

Since the coefficients of the expansion satisfy the prop-
erty c−n =cn, we rewrite the expansion as:

f(t) = ab

T
+ 2ab

T

∞∑
n=1

sin
(
nπb/T

)
(nπb/T ) cos

(
nω0t

)
. (19)

In Fig. 6 the reconstruction of the rectangular wave
can be seen considering the particular case of a sum
limited to a finite number of terms n. As the amount
of coefficients to be assumed increases, the expansion
resembles the function itself. For a better visualization of
the reconstruction of the periodic rectangular function,
we recommend to watch the video by clicking here [14].

4. The Fourier Transform

In order to develop the next reasoning, the rectangular
function will be assumed (15) to facilitate its under-
standing. In this way, it is considered that the period
of the function is extremely greater than its rectangular
width T ≫ b, thus it can be considered infinite (T →∞).
Consequently the terms (17) will tend to,

lim
T →∞

ab

T
= 0, lim

T →∞

sin
(
nπb/T

)(
nπb/T

) = 1. (20)

Figure 6: Reconstruction of the rectangular wave through the
contribution of different terms of the series.

So, the coefficients will have very small values, and it will
be associated with very close angular frequencies nω0
due to the very large period of the function. Allowing
to obtain a continuous spectrum of amplitudes for the
rectangular function of “infinite" period. A brief way
of showing it without all the mathematical rigor will
be presented by denoting the period of the function in
relation to the angular frequency in the Eqs. (7) and (8),
and changing the variable of integration t → x,

f(t) =
∞∑

n=−∞

[
1

2π

T/2∫
−T/2

f(x) e−inω0x dx

]
ω0 einω0t, (21)

when T → ∞, the angular frequency of the periodic
function goes to zero ω0 → 0. By defining the angular
frequency of the function through a very small variation
ω0 =∆ω, the angular frequency of each of the harmonics
in the expansion will tend to a finite value, but an infinite
number will be required of them, this implies that,

nω0 = n∆ω → ω (continuous variable). (22)

Certainly the function would no longer be periodic,
that let us to define the infinitesimal variation of the
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Figure 7: Spectrum of the periodic function when its period tends to infinity.

angular frequency (∆ω →dω),

f(t) =
∞∑

n=−∞

[
1

2π

T/2∫
−T/2

f(x) e−in∆ωx dx

]
ein∆ωt ∆ω. (23)

Thus, the sum of all harmonic components in the series
will be equivalent to a Riemann sum when n → ∞,

f(t) = 1
2π

∞∫
−∞

[ ∞∫
−∞

f(x) e−iωx dx

]
eiωt dω. (24)

The internal integration is defined,

F (ω) =
∞∫

−∞

f(x) e−iωx dx, (25)

as the Fourier transform of the non-periodic f(t) func-
tion, also known as the continuous frequency spectrum.
For a better understanding of the previous process, we
show in Fig. 7 the frequency spectrum for the short and
long period rectangular wave. We recommend to watch
the video of the spectrum of the rectangular function
when it is transformed from discrete to continuous,
clicking here [15], also in the explanation of the next
example.

Example 4
Calculation of the Fourier transform of the rectangular

function, defining it using the constants a and b as,

h(t) =

 a, − 1
2 b ≤ t ≤ 1

2 b,

0, otherwise.
(26)

We define H(ω) as the Fourier transform of the rect-
angular function, easily determined by considering the
interval

[
− b/2, b/2

]
in which the function has a non-

null value,

H(ω) =
∞∫

−∞

h(t)e−iωt dt = a

b/2∫
−b/2

e−iωt dt,

= 2
2 · a

(
eiωb/2−e−iωb/2

iω

)
· b/2

b/2 ,

= ab
sin(ωb/2)

(ωb/2) .

(27)

We notice that this result is similar to the frequency
spectrum (16) of the rectangular wave. However, it
is observed that the composition of the rectangular
function will require a continuous and damped spec-
trum of frequencies because of its discontinuity and
non-differentiable, making it necessary high frequencies
associated with the abrupt transition from the null value
to the value a, and vice versa.

Furthermore, it is worth pointing out that for the
particular case in which the function f(t) is defined in
the space of the time variable t, its Fourier transformed
function will be defined in the space of the reciprocal
variable, that is, the angular frequency ω is expressed in
units of radians per unit of time.

On the other hand, once we know the Fourier trans-
form of a function F (ω) (i.e. its spectral information),
it will be possible to represent function f(t) by defining
the inverse Fourier transform,

f(t) = 1
2π

∞∫
−∞

F (ω)eiωt dω, (28)

Considering the Eqs. (25) and (28), we note that f(t)
and F (ω) constitute a pair of univocal relation, implying
that the one temporal function f(t) will only correspond
to a single representation of function F (ω) in frequency
space, and vice versa. This will be valid whenever the
function f(t) satisfies the condition,

∞∫
−∞

∣∣f(t)
∣∣ dt < ∞, (29)

to be able to calculate its Fourier transform and express
it through a non-infinite spectrum of frequencies. This
condition is known as Parseval’s Theorem [16], which
will not be proved,

∞∫
−∞

|f(t)|2 dt = 1
2π

∞∫
−∞

|F (ω)|2 dω. (30)

Once the concept of the Fourier transform is clear, some
of its most relevant properties are presented below.
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5. Fourier Transform Properties

5.1. Linearity

Let f1(t) and f2(t) are two functions, whose Fourier
transforms are F1(ω) and F2(ω). Then, f(t) is defined
by linearly combining the previous functions, f(t) =
a1f1(t)+a2f2(t), with a1 and a2 constants. The Fourier
transform of the function f(t) is,

F (ω) =
∞∫

−∞

[
a1f1(t)+a2f2(t)

]
e−iωt dt,

= a1

∞∫
−∞

f1(t) e−iωt dt + a2

∞∫
−∞

f2(t) e−iωt dt,

= a1F1(ω) + a2F2(ω).

(31)

Therefore, the Fourier transform of a linear combina-
tion between functions will be equivalent to the linear
combination between the transforms of the respective
functions.

5.2. Dilation or contraction

Given the function f(at), the function can expand or
contract, if the positive constant a is less than or greater
than one, respectively. Defining F (ω) = F [f(t)] as the
Fourier transform of the function,

F [f(at)] =
∞∫

−∞

f(at)e−iωtdt. (32)

Making a change of variables, x = at, dx = a dt,

F [f(at)] = 1
a

∞∫
−∞

f(x)e−i(ω/a)xdx,

= 1
a

F
(ω

a

)
.

(33)

This result indicates that if the function’s argument
is multiplied by a constant, the function’s transform
will be multiplied by the reciprocal of that constant.
We present in Fig. 8 an example of Fourier transform
dilation or contraction of a cosine function of finite
duration. Additionally, we recommend to watch the
video by clicking here [17].

5.3. Temporal Displacement and Phase Gain

When the function f(t) has a time shift f(t − t0), its
Fourier transform will be,

F [f(t−t0)] =
∞∫

−∞

f(t−t0) e−iωt dt. (34)

Making a change of variables, x= t−t0, dx=dt,

F [f(t−t0)] =
∞∫

−∞

f(x) e−iω(t0+x) dx,

= e−iωt0

∞∫
−∞

f(x) e−iωx dx,

= e−iωt0F (ω).

(35)

We note that the Fourier transform of the shifted
function f(t − t0) is equivalent to the transform of
the function f(t) times a phase factor associated with
the function’s temporal shift itself. Conversely, if the
function is multiplied by a phase factor f(t)eiω0t, its
Fourier transform will present a related shift,

F [f(t)eiω0t] =
∞∫

−∞

[f(t)eiω0t] e−iωt dt,

=
∞∫

−∞

f(t) e−i(ω−ω0)t dt,

= F (ω−ω0).

(36)

We exemplify in Fig. 9 a limited cosine function that
presents a temporal displacement, and for a better visu-
alization of the process explained above, we recommend
to watch the video by clicking here [18].

As an example, the calculation of the Fourier trans-
form of the finite cosine function will be presented, and
it is worth clarifying the transforms obtained, since the
function was used as an example to visually represent
the last two properties.

Figure 8: Contraction of function and expansion of its frequency spectrum.
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Figure 9: Fourier transform squared modulus of the constrained cosine function for different displacements.

Figure 10: Narrowing of the constrained cosine frequency spectrum over a range.

Example 5
Since A is a constant, we define the finite cosine

function as,

f(t) =

 A cos ω0t, − 1
2 b ≤ t ≤ 1

2 b,

0, otherwise.
(37)

Its Fourier transform is,

F (ω) =
b/2∫

−b/2

A cos ω0t e−iωt dt,

= A

b/2∫
−b/2

cos ω0t cos ωt dt − Ai

b/2∫
−b/2

cos ω0t sin ωt dt.

(38)

The second integral is zero because the interval of
integration is symmetric and the integrand is an odd
function. Making use of Euler’s identity, we rewrite the
first integral as,

F (ω)= A

2

b/2∫
−b/2

[
cos
(
(ω+ω0)t

)
+ cos

(
(ω−ω0)t

)]
dt,

= A

2

[
sin
(
(ω+ω0)t

)
(ω+ω0) +

sin
(
(ω−ω0)t

)
(ω−ω0)

]b/2

−b/2

,

=A

[
sin
(
(ω+ω0) b

2
)

(ω+ω0) +
sin
(
(ω−ω0) b

2
)

(ω−ω0)

]
.

(39)

According to this result, as the width of the interval to
which the cosine function is defined increases, its Fourier

transform narrows, as we can see in Fig. 10. Additionally,
the increasing the amplitude of the spectrum is related
to the univocal description of the Fourier transform of
the function (30). We recommend to watch the video by
clicking here [19].

6. Final considerations

This document was originated from all subjects studied
to prepare the undergraduate final monograph, and
based on all this information, we decided to condense
it into an article format to get a much more width inter-
ested public. On the purpose of letting the reader to feel
a didactic approach to the Fourier series and transform,
observing the images and videos that aim to facilitate
the understanding of this important mathematical tool.
For this reason, the rigor of the mathematical formalism
was not prioritized, but the conceptual description of the
theory. In addition, if someone wish to delve deeper into
the study of the Fourier transform is invited to consult
the bibliography [1, 2, 4, 20, 21].

All videos are available on YouTube, so those students
who want a better understanding of this tool and
teachers who want to use them in their classes can freely
use the videos and images.
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