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This article provides a comprehensive review of relevant studies in the fields of plasma physics, electromag-
netism, and space physics. The aim is to demonstrate how the study of the scientific literature can be used to
enhance problem-solving abilities and develop innovative solutions in physics. In this paper, we focus on the
study of solutions of the specific Grad-Shafranov equation. Two of the new solutions proposed by Yoon and Lui
(2005) are used as a basis for the development of a new solution. The new solution presented has singular points
similar to the Yoon-Lui-2 solution, but with an inverted configuration, and also presents less rounded double
islands compared to the Yoon-Lui-2 solution. Additionally, the new solution does not exhibit the formation of a
current ring, a characteristic of the Yoon-Lui-1 solution, and varying its parameters may lead to higher plasma
confinement efficiency. In summary, we illustrate how a thorough analysis of literature can serve as a powerful
means for generating innovative approaches to resolving theoretical issues in physics.
Keywords: Grad-Shafranov equation, Magnetic flux-ropes, Plasma confinement, Singularity analysis.

1. Introduction

The role of the scientist is to observe the world around
herself/himself and focus their attention on recurring
phenomena, with the aim of discovering the universal
laws responsible for the similarity observed in the results
of experiments. After the initial observing phase, the
scientist propose explanations, based on the existent
knowledge, and test if these explanations indeed explain
the problem and can predict future behaviors associated
with the observed phenomena. This process is known
as the scientific method and is fundamental to the
understanding of various areas of knowledge, including
physics.

In teaching physics, it is crucial to teach students how
to use the results published in the scientific literature to
foster the creation of new ideas and innovations, promot-
ing the scientific method more broadly and effectively.
As Isaac Newton wrote in a letter to Robert Hooke on
February 5, 1676, based on a metaphor attributed to
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Bernard of Chartres, ‘If I have seen further, it is by
standing on the shoulders of giants.’ Through evidence
gathered from experiments and theoretical research, it is
possible to provide students with a deeper understanding
of physical concepts and how they relate to the world
around them.

This article presents a literature review of relevant
studies in the areas of plasma physics, electromagnetism,
and space physics, with the aim of showing readers how
it is possible to use the study of scientific literature to
obtain new results and predict physical behaviors. In
this specific case, we will focus on the article by Yoon
and Lui (2005) [1], which presented new solutions to the
specific Grad-Shafranov equation (also called the specific
or simplified form of the Grad-Shafranov equation). This
study is divided into two parts. In the first part, we
will use two of these new solutions as the basis for
developing an algebraic method to obtain a new solution.
By following this specific example, readers can learn how
to use scientific literature to solve practical problems
and theoretical activities, providing a richer and more
in-depth learning experience. The second part of this
research will present another new solution, which will
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be described in a separate article. This solution was also
obtained from the solutions of Yoon and Lui (2005).

2. Theoretical Framework

To continue our reasoning, it is crucial to present the
specific Grad-Shafranov equation and its correspond-
ing analytical solution. Starting with the statement of
Gauss’s law for magnetism (∇ · B⃗ = 0), which asserts
that there are no observed magnetic “monopoles,” and
therefore, the magnetic field lines will always be closed
curves [2]. A well-established concept in Electromag-
netism is the definition of the magnetic vector potential
A⃗′, which arises as a consequence of the mathematical
identity that guarantees that the divergence of the curl
of a vector field is zero [3]. It is possible to write the
magnetic field as B⃗ = ∇⃗ × A⃗′ and use a vector identity
in Ampere-Maxwell’s law. According to [4], considering
the invariant y-axis, the term ∇ · A⃗ is zero, with E⃗ and
J⃗ parallel to the y-axis, and therefore:

−∇2A⃗′(x, z) = µ0J⃗(x, z). (1)

The above vector equation is worked with only the y
component, therefore, from now on, we will consider
A′

y = Ay. Thus, the resulting Poisson equation is given
by:

∂2Ay(x, z)
∂x2 + ∂2Ay(x, z)

∂z2 = −µ0Jy(x, z). (2)

Equation (2) represents the generalized Ampère equa-
tion, which holds great significance in the field of physics.
It is worth noting that this equation can be converted
into two new equations, one of which will be the primary
focus of this study. These equations are:

i) The Grad-Shafranov equation (GS), applied when
the current density is defined as a function of the
first derivative of the magnetic vector potential and
has no analytical solution [5, 6];

ii) A simplified form called the specific GS equation,
applied when the current density is expressed as
a function of the exponential of the magnetic
vector potential, which has an analytical solution
[1, 7–12].

The GS equation mentioned in item (i) is written
in terms of Cartesian coordinates in the x-z plane as
follows:

∂2Ay

∂x2 + ∂2Ay

∂z2 = −µ0
d

dAy

(
p(Ay) +

B2
y(Ay)
2µ0

)
, (3)

where Ay is the y-component of the magnetic vector
potential, p is the plasma kinetic pressure, and By is
the y-component of the magnetic field [9, 13, 14]. Equa-
tion (3) is a second-order partial differential equation
that does not have an analytical solution but can be
numerically solved as a Cauchy problem [14–16].

When explaining (3), it is important to emphasize that
it is preferable to validate a proposed numerical solution
by comparing it with an analytical solution. To achieve
this, it is convenient to consider simplifications in the
equation that allow the elimination of nonlinearity. In
this way, a general analytical solution can be obtained
that meets the initial conditions for the implementa-
tion of the numerical solution. This procedure will be
explained, step by step, in following paragraphs, to
provide an analytical solution for the equation (3).

The term on the right-hand side of (3) in the argument
of the derivative defines the plasma transverse pressure
(Pt) [13, 14], that is,

Pt(Ay(x, z)) = p(Ay(x, z)) + By
2(Ay(x, z))

2µ0
. (4)

An analytical solution of equation (3) is only possible
for very specific cases of the expression Pt

1 [7, 17–19].
The equation (4) allow us to found a single expression

to solve the equation (3) defined by

Pt = Pt0e(−2Ψ) (5)

where

Ψ = − Ay

LB0
(6)

is the normalized magnetic vector potential, where B0
is the asymptotic magnetic field, L represents the scale
length, and

Pt0 = B0
2

2µ0
(7)

is the transverse pressure when Ay = 0 [20]. Expressions
(4-7) are substituted into (3) to obtain the specific GS
equation, with the following expression:

∂2Ψ
∂X2 + ∂2Ψ

∂Z2 = e−2Ψ, (8)

considering new dimensionless variables: x
L = X e

z
L = Z [1].

In our mathematical formulation adopted here, the
component of the current density, Jy, is given by:

Jy(x, z) = B0

Lµ0
e(−2Ψ). (9)

The equation (3) was derived by [7] from Plasma
Kinetic Theory by solving the set of Vlasov-Maxwell
equations while considering a velocity distribution
expression as a function of the Boltzmann factor of the
Maxwell-Boltzmann statistics. For the detailed develop-
ment of the entire physical-theoretical formulation using
Kinetic Theory, refer to [21].

1 Some of them applied to the tokamak, which is used to confine
and heat plasma for nuclear fusion research.
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The mathematical expression given by (8) is a Poisson
equation2. However, in the specific case where the non-
homogeneous term takes an exponential form, the equa-
tion is called a “two-dimensional Liouville equation”,
which in its original form is written as Φxx +Φyy = cedΦ,
with c and d being real constants [20, 22]. Note that
equation (8) is the two-dimensional Laplacian of the nor-
malized vector potential (Ψ) equals to the exponential
of Ψ.

The previous equation, which was solved by [23], also
appears in the literature as the “Liouville solution”, but
in this work, we prefer to call it the “Walker formula”
or “Walker solution”, thus using the notation already
established in the area of Space Physics. Walker [23]
proposed a general solution dependent on an analytic
complex function called the generating function, g(ζ).
The solution given by Walker is:

e−2Ψ(X,Z) = 4|g(ζ)′|2

(1 + |g(ζ)|2)2 , (10)

where ζ is a complex variable.
Walker’s formula (10) allows us to propose new ana-

lytical solutions of (8). For example, the model proposed
by [24] was the pioneer among a group of solutions that
followed it [1, 7, 25–27]. The next section will present
the context of a literature review that will allow us to
propose a new solution.

3. Literature Review

This section is essential to show to the reader how science
is supported by published results in the literature. As
a case study, we will use the article by Yoon and Lui
(2005), which presents nine solutions for (8) based on
the Walker formula presented in equation (10).

To summarize, Table 1 lists the nine solutions pre-
sented in the work of Yoon and Lui (2005). The first
column of the table presents the name of each solution,
while the second column presents the corresponding
generating function g(ζ). In the third column, we provide
an exact solution for the GS equation by substituting the
function g(ζ) into the Walker formula.

It is worth noting that solutions one to five are
collectively referred to as the “Harris family”. Solutions
six to nine, on the other hand, are not part of the
“Harris family”, and have specific significance in this
study. New solutions will be proposed based on solutions
seven and eight, which will be henceforth referred to as
Yoon-Lui-1 and Yoon-Lui-2, respectively. It is important
to emphasize that all solutions were obtained from the
Walker formula presented in Equation (10).

2 The Poisson equation is a partial differential equation with broad
applications in physics. Its general form is ∇2Φ = f , where ∇
represents the nabla operator, Φ and f are general functions. For
example, ∇2V = ρ

ϵ0
, where V is the electric potential and ρ is the

charge density.

3.1. Magnetic singularities

Understanding magnetic singularities in magnetic fields
poses a complex challenge in physics, as the unique
physical conditions of these systems cannot be pre-
cisely reproduced in a laboratory setting. In many
cases approaches are based in theoretical models of
astrophysical observations that show extreme conditions
as the initial conditions of the big-bang (derived of the
CMB observations), inside of the event horizon of black
holes, or magnetic reconnection in solar flares and in
the interaction of Coronal Mass Ejections with planetary
magnetic fields. Many solutions derived from the Walker
formula exhibit such magnetic singularities [1]. Such
promising results can be found in several modern theo-
retical physics models and in Albert Einstein’s theory of
general relativity, where singularities emerge in practical
situations when solving Einstein’s equations [30].

Furthermore, there are other areas of physics, such
as cosmology and astrophysics, that also involve the
study of singularities. For example, the Schwarzschild
metric, which is a solution to Einstein’s field equations,
describes curvature singularities in black holes, and
the Robertson-Walker metric describes the singularity
at the isolated point in space that occurred at the
moment of the Big Bang. Despite being challenging con-
cepts to understand, singularities can provide essential
information to fill gaps and solve important theoretical
problems, such as the ultraviolet catastrophe, which
resulted in failures of classical electromagnetic theory.
Indeed, understanding singularities may be crucial to
complete the puzzle of a theory and advancing our
knowledge of fundamental physical phenomena [30].

The study of singularities in two-dimensional magne-
tohydrodynamic (MHD) fluid dynamics is investigated
through direct numerical simulations [31]. Specifically,
the formation of singularities in MHD-2D is influenced
by the interaction between the magnetic field and the
conducting fluid, which can lead to the formation of mag-
netic vortex structures and magnetic singularities [32].
These phenomena have applications in areas such as
nanotechnology, where magnetic vortices have been used
as data storage elements in random-access memory
(RAM) and hard drives [33]. Magnetic singularities
have also been explored as candidates for performing
quantum computations and for developing new magnetic
materials [34].

From now on, our focus will be on solutions derived
from the Walker formula. Traditionally, the analysis of
the singularities of equation (8) involved a thorough
examination of the function Ψ, which could be a labori-
ous and complicated process. This required checking the
domain of the Ψ function for mathematical inconsisten-
cies that indicated the presence of singularities. However,
a more straightforward approach was discovered by
[35], who used the generating function g(ζ) to locate
singularities. It was discovered that this function cannot
be arbitrarily selected and must satisfy the following
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Table 1: Analytical Solutions of the GS Equation according to the work of [1].

Solution: g(ζ)= Ψ=
1- Harrisa eιζ ln(cosh Z)

2- Fadeevb fp +
√

1 + fp
2eιζ ln

(
fp cos X +

√
1 + fp

2 cosh Z
)

3- Kanc e
ιζ− ιb

ξ ln cosh[Z(1+b/R2)]√
(1+b/R2)2−4bZ2/R4

g

4- Manankovad fp +
√

1 + fp
2e

(
iζ− ib

ζ−a

)
ln

fp cos(X− b(X−a)
R2

0
)+

√
1+fp

2 cosh(Z(1+ b

R2
0

))√(
1+ b

R2
0

)2
− 4bZ2

R4
0

h

5- H-F-K-Me fp +
√

1 + fp
2e

(
iζ− ib

(ζ−a)k

)
ln

fp cos(a+R0 cos θ− b cos kθ

Rk
0

)+
√

1+fp
2 cosh(R0 sin θ+ b sin kθ

Rk
0

)√(
1+ kb

R
k+1
0

)2
− 4kb

R
k+1
0

sin2 (k+1)θ
2

i

6- B-W f e[−βρ(ζ)] j ln
√

r+r− cosh(βξ)
β

k

7- Yoon-Lui-1e ζν ln R(Rν +R−ν )
2ν

8- Yoon-Lui-2e ζ − a
ζ

ln (R2+a)2+R2−4aX2

2[(R2+a)2−4aZ2]1/2

9- Yoon-Lui-3e ζ
(1−a2ζ2)

1
2 ln( S(S+R2)2

2T
)l

a[24]
b[25]
c[8]
d[26, 28, 29]
e[1, sections 3.5 (H-F-K-M), 3.7 (1), 3.8 (2), 3.9 (3)]
f[27]
gR2 = X2 + Z2

hR2
0 = (X − a)2 + Z2

iθ = tan−1 Z
X−a

jζ = α cosh ρ, ρ(ζ) = cosh−1( ζ
α

) = ln ζ±
√

ζ2−α2

α
kr± =

√
(X ± α)2 + Z2, ξ = ln(τ +

√
τ2 − 1) and τ = r++r−

2α
lS = (1 − a2R2)2 + (2aZ)2, T = (1 − a4R4)2 + (4a2XZ)2

condition:

∇ ln |g′(ζ)| = 0, (11)

where g(ζ) is a complex function.
In other words, [35] stated that we can rewrite the

equation (10) as follows:

Ψ = −1
2 ln

(
4 |g′|2

(1 + |g|2)2

)
. (12)

Now, applying the nabla operator to equation (12) and
performing some algebraic operations, we have:

∇Ψ = −∇ ln |g′| + ∇ ln
(
1 + |g|2

)
= −∇ ln |g′| + 4 |g′|2

(1 + |g|2)2 . (13)

Note that equation (13) is equal to (10) if, and only
if, ∇ ln |g′(ζ)| = 0. Therefore, if we really want to find
the singularities, we must calculate |g′(ζ)| = 0, which is
the second condition of Génot.

The importance of equation (13) is that it allows
us to determine, from g′(ζ), the singular points (X, Z)
of Ψ(X, Z). In other words, the singularities can be
obtained directly from Ψ, or from the zeros (roots) and
poles of g′(ζ) [35, 36].

3.2. Yoon-Lui-1 solution

This solution was found by [1] using also the Walker
formula, where the chosen generating function was:

g(ζ) = ζν , (14)

where ν is an integer number. Its derivative will be:

g′(ζ) = νζν−1, (15)

Substituting (14) and (15) into (10) and performing the
calculations, we obtain the following solution:

Ψ = ln R(Rν + R−ν)
2ν

, (16)

where R2 = X2 + Z2.
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3.2.1. Calculating singular points

Let’s start by using the derivative of g(ζ), presented
in (15). Calculating the modulus of the first derivative,
we have:

|g′(ζ)| =
(
νζν−1) 1

2 ·
(

νζ∗ν−1
) 1

2
. (17)

Now, applying ∇ ln |g′(ζ)| = 0, we have:

∇ ln
((

νζν−1) 1
2 ·
(

νζ∗ν−1
) 1

2
)

= ∇
[
ln
(
νζν−1) 1

2 + ln
(

νζ∗ν−1
) 1

2
]

= 2 ∂

∂ζ

(
∂

∂ζ∗

[
ln
(
νζν−1)+ ln

(
νζ∗ν−1

)])
= 2 ∂

∂ζ

(
ν − 1

ζ∗

)
= 2 · 0 = 0. (18)

With the first condition satisfied by (18), we proceed
to calculate the singularities by substituting ζ = X + iZ
into equation (17), as shown below:

|g′(ζ)| = ν ((X + iZ) · (X − iZ))
ν−1

2 = 0. (19)

Continuing with the algebraic manipulations, we have:

ν(X2 + Z2)
ν−1

2 = 0. (20)

Assuming that ν ̸= 03, we have two situations: i) if
ν < 1, the point (0, 0) is an indeterminacy of the
equation (19); ii) if ν > 1, the point (0, 0) is a root. In
both cases, the point (0, 0) is the only singularity in the
Yoon-Lui-1 solution. In the case where ν = 1, we have
the expression 00, which is considered a mathematical
indeterminacy. However, when ν = 1, the point (0, 0) is
not an indeterminacy of the Yoon-Lui-1 solution, since
Ψ = ln 1

2 .
Figure 1 shows the current density plot of the Yoon-

Lui-1 solution for the cases of ν = 1 and ν = 4. In the
first case, there are no singularities, and in the second
case, only the point (0, 0) is singular.

From a physical point of view, when applying this
analytical result to the analysis of a magnetic flux rope
with magnetic island configuration, it is recommended
to use ν = 1, since the current density is also maximum
at the center of the tube. Additionally, the absence of
singularities in the solution allows for it to be used to
validate numerical solutions, as done in the work of [14]
with the Fadeev solution.

3.3. Yoon-Lui-2 solution

This solution was found by [1], also using Walker’s
formula, where the chosen generating function was:

g(ζ) = ζ − a

ζ
. (21)

3 Note that ν = 0 leads to an indeterminacy in the solution (16).

Figure 1: Current density graph of Yoon-Lui-1 solution given
by equation (16), which presents only one magnetic island. The
graphs in panel (a) were generated with a parameter of ν = 1,
while those in panel (b) were generated with a parameter of
ν = 4. In the case where (ν ̸= 0, ν < 1) or (ν > 1), the current
density Jy presents a magnetic singularity at (0, 0). In Figure
(b), it is observed that the magnetic field has opposite directions
around the singular point, forming a current ring where the
magnetic field vanishes.

Substituting this into (10) and performing the calcula-
tions, we obtain the following solution:

Ψ = ln
(
R2 + a

)2 + R2 − 4aX2

2
[
(R2 + a)2 − 4aZ2

]1/2 (22)

where R2 = X2 + Z2.

3.3.1. Calculating singular points

Let’s start by taking the derivative of the generating
function, g(ζ) = ζ − a

ζ :

|g′(ζ)| =
∣∣∣∣ζ − a

ζ

∣∣∣∣′ =
∣∣∣∣ a

ζ2 + 1
∣∣∣∣ , (23)

where using the definition of the modulus of the first
derivative, we have:

|g′(ζ)| =
(

a

ζ2 + 1
) 1

2

·
(

a

ζ∗2 + 1
) 1

2

. (24)

Now we will develop the equality ∇ ln |g′(ζ)| = 0 and
after some algebraic manipulation, we have:

∇ ln
((

a

ζ2 + 1
) 1

2

·
(

a

ζ∗2 + 1
) 1

2
)

= 1
2∇

[
ln
(

a

ζ2 + 1
)

+ ln
(

a

ζ∗2 + 1
)]

= 2 ∂

∂ζ

(
∂

∂ζ∗

[
ln
(

a

ζ2 + 1
)

+ ln
(

a

ζ∗2 + 1
)])

= 2 ∂

∂ζ

 −2a

ζ∗3
(

a
ζ∗2 + 1

)
 = 2 · 0 = 0. (25)

Making some algebraic manipulations, we find:(
a2 + 2a(X2 − Z2) + (X2 + Z2)2

(X2 + Z2)2

) 1
2

= 0. (26)

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0104 Revista Brasileira de Ensino de Física, vol. 45, e20230104, 2023



e20230104-6 Enhancing Learning of the Grad-Shafranov Equation through Scientific Literature

If both X and Z are non-zero, the quadratic equation
will not have real roots. However, if one of them is fixed
to zero, the roots can be found. When a is positive, there
are two distinct situations in (26): i) if Z = 0, the roots of
the quadratic equation are obtained from (Z2−|a|)2 = 0,
which has no real solutions; ii) if X = 0, the roots of the
quadratic equation are obtained from (Z2 − |a|)2 = 0,
which has two symmetrical roots given by Z = ±

√
a.

Thus, we found the following singularities for the
case a > 0: (0, +

√
a), (0, −

√
a). Note that for the case

a < 0, when X = 0, the roots of (26) are obtained
from (Z2 + |a|)2 = 0. In this case, there are no roots,
while when Z = 0, the roots of (26) are obtained
from (X2 − |a|)2 = 0. In this case, there are two roots
X = ±

√
a. Therefore, we conclude that we found the

following singularities for the case a < 0: (−
√

a, 0),
(+

√
a, 0).

Moreover, it is important to highlight that when
a = 0, the term on the right-hand side of equation (26)
becomes: (

(X2 + Z2)2

(X2 + Z2)2

) 1
2

= 1 1
2 = 1. (27)

Thus, the equation reduces to 1 = 0, which is a contra-
diction. Therefore, there is no solution for equation (26)
when a = 0, so there is no singular point in this case.

Next is showed the current density plot for the Yoon-
Lui-2 solution in Figure 2. The plot for the Yoon-Lui-
2 solution, given by equation (22) with a = 2, can
be interpreted as follows: note that above the X-axis,
there are two magnetic islands located at X = ±

√
a

with finite current density entering the plane, which is
characteristic of regions of plasma confined in magnetic
fusion devices. At the neutral point X between the
magnetic islands, the current density is zero and the
structure is stable. On the Z-axis, we can observe two
magnetic singularities with zero current density at the
center. This type of singularity is the same as that
appeared in Kan’s solution at (0, ±

√
b) (see Table 1).

This singularity is unwanted in analytical models used to

Figure 2: Density plot of the Yoon-Lui-2 solution given by
equation (22), using a = 2. We note that there are two magnetic
islands on the X axis, located at (−

√
a, 0) and (

√
a, 0), and

a neutral type-X point between them. On the Z axis, we can
observe two singular points and three neutral type-X points, one
at the origin and the other two near the singularities (0, −

√
a)

and (0,
√

a). If a is equal to −2, the islands shift to the Z axis
and the singular points to the X axis.

generate initial conditions in MHD simulations or tests
to improve the numerical solution of the Grad-Shafranov
equation. However, the Yoon-Lui-2 model allows these
singularities to be excluded in a more elegant way,
simply by increasing the value of a, for example, a = 6.
By increasing the value of a, the two singularities are
moved away from the origin, but at the same time, the
two magnetic islands are also moved away.

In summary, [1] proposed this model as an alternative
to the model of [27]. The previous model had an
equilibrium structure with a point X characterized by
a pair of parallel currents, whose density diverged at the
two centers of the magnetic islands. In the alternative
model, however, the current density at the center of
the neighboring magnetic islands is finite. However, the
alternative model has a drawback in that it has two
magnetic singularities above the Z-axis (for a > 0), as
shown in Figure 2.

4. Methodology

The Yoon-Lui-1 and Yoon-Lui-2 solutions, as analyti-
cal solutions of the specific Grad-Shafranov equation,
describe a possible morphology of a magnetic field in
confined plasma regions. Both solutions are expressed in
terms of elementary functions on the Cartesian plane.
However, there are significant differences between them.

The Yoon-Lui-1 solution is an exact analytical solu-
tion for the Grad-Shafranov equation that describes the
structure of the magnetic field in a magnetic island-type
configuration. This solution is characterized by a single
singularity at (0, 0), which is an indeterminacy if ν < 1
and a root if ν > 1, and has maximum current density
at the center of the “magnetic island”. The solution is
particularly useful for validating numerical solutions and
analyzing the stability of magnetic structures.

On the other hand, the Yoon-Lui-2 solution is an
extension of the Yoon-Lui-1 solution and describes the
structure of the magnetic field in a configuration with
two magnetic islands. This solution has two magnetic
singularities above the Z-axis, but these singularities can
be avoided by increasing the value of a, which controls
the separation of the magnetic islands. The current
density is finite at the center of each magnetic island
and zero at the neutral point between them.

In summary, both the Yoon-Lui-1 and Yoon-Lui-
2 solutions are useful for describing the structure of
the magnetic field in confined plasma regions and
are expressed in terms of elementary functions. The
Yoon-Lui-1 solution is simpler and only describes the
structure of a magnetic island, but it is useful for
validating numerical solutions and analyzing stability.
The Yoon-Lui-2 solution describes the structure of two
magnetic islands, but has two singularities above the Z-
axis that can be avoided by increasing the value of a.

In this methodology section, a new solution of the
specific Grad-Shafranov equation will be presented. This
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new solution is obtained by combining the generating
functions of the Yoon-Lui-1 and Yoon-Lui-2 models,
taking the quotient of them.

The new solution obtained from the combination of
the generating functions of these models may present
a unique combination of features, possibly leading to
greater plasma confinement efficiency [37].

To obtain the new solution, specific mathematical
methods, such as combining generating functions, are
used. These methods will be described in detail in
the results section to ensure reader understanding. The
hypothesis of the new solution will be presented, but its
validity will be evaluated later in the following section.

5. Results

The necessary steps to obtain the new solution are
presented below. By taking the quotient of (14) and (21),
we obtain the following generating function:

g(ζ) = ζν

ζ2−a
ζ

= ζν+1

ζ2 − a
, (28)

where ν and a are constants.
The square modulus of g(ζ) after substituting ζ =

X + iZ is as follows:

|g(ζ)|2 = (X2 + Z2)ν+1

a2 − 2a (X2 − Z2) + (X2 + Z2)2 . (29)

Adding one to both sides of the previous equation, we
have:

1 + |g(ζ)|2

=
(X2 + Z2)ν+1 + a2 − 2a

(
X2 − Z2)+

(
X2 + Z2)2

a2 − 2a (X2 − Z2) + (X2 + Z2)2 .

(30)

Continuing with the reasoning, the first derivative of
the generating function is:

g′(ζ) =
ζν
[
(ν − 1)ζ2 − a(ν + 1)

]
(ζ2 − a)2 . (31)

The modulus of the derivative is:

|g′(ζ)| =
√√√√ (X2 + Z2)ν [a(ν + 1) − (ν − 1)(X − iZ)2](

a2 − 2a (X2 − Z2) + (X2 + Z2)2
)2

·
√

[a(ν + 1) − (ν − 1)(X + iZ)2]. (32)

With some algebraic work, we eliminate the imagi-
nary unit from the modulus of the generator function’s
derivative, as follows:

|g′(ζ)| =
√

(X2 + Z2)ν

a2 − 2a (X2 − Z2) + (X2 + Z2)2

·
√

[(ν − 1) (X2 − Z2) − a(ν + 1)]2 + 4(ν − 1)2X2Z2.

(33)

Finally, substituting (30) and (33) into the Walker
formula given by:

Ψ = ln
[

1 + |g(ζ)|2
2|g′(ζ)|

]
, (34)

the result is as follows:

Ψ =

ln

 (X2+Z2)ν+1+a2−2a(X2−Z2)+(X2+Z2)2

a2−2a(X2−Z2)+(X2+Z2)2

2
√

(X2+Z2)ν [[(ν−1)(X2−Z2)−a(ν+1)]2+4(ν−1)2X2Z2]
a2−2a(X2−Z2)+(X2+Z2)2

 .

(35)

Three parameters are introduced in order to simplify
the form of (35), namely:

R2 = X2 + Z2, (36)
U2 = 4X2Z2, (37)
T 2 = X2 − Z2. (38)

The final expression of Equation (35) is:

Ψ =

ln

 R2(ν+1) + a2 − 2aT 2 + R4

2
√

R2ν
[
[(ν − 1)T 2 − a(ν + 1)]2 + (ν − 1)2U2

]
 .

(39)

5.1. Calculating singular points

Calculating the derivative of the generating function,
g(ζ) = ζν+1

ζ2−a , we have:

g′(ζ) =
(

−aζν − aνζν + νζν+2 − ζν+2

(ζ2 − a)2

)
, (40)

from which, calculating the modulus of the first deriva-
tive, we have

|g′(ζ)| =
(

−aζν − aνζν + νζν+2 − ζν+2

(ζ2 − a)2

) 1
2

·(
−aζ∗ν − aνζ∗ν + νζ∗ν+2 − ζ∗ν+2

(ζ∗2 − a)2

) 1
2

. (41)

Starting from the definition ∂2

∂X2 + ∂2

∂Z2 = 4∂2

∂ζ∂ζ∗ and
doing some algebraic work, one can demonstrate that:

∇ ln |g′(ζ)| = 0. (42)

Based on equation (42), the first condition is satisfied.
Next, we will calculate the singularities using the equa-
tion |g′(ζ) = 0|. We substitute ζ = X + iZ in our
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equation (41), as follows:

|g′(ζ)|

=

√(
−aζν − aνζν + νζν+2 − ζν+2

(ζ2 − a)2

)

·

√(
−aζ∗ν − aνζ∗ν + νζ∗ν+2 − ζ∗ν+2

(ζ∗2 − a)2

)
= 0 (43)

Making some algebraic manipulations in equation (43),
if ζ ̸=

√
a, we can write:

(−a(1 + ν)ζν + (ν − 1)ζν+2)
· (−a(1 + ν)ζ∗ν + (ν − 1)ζ∗ν+2) = 0. (44)

Thus, (−a(1 + ν)ζν + (ν − 1)ζν+2) = 0 or (−a(1 +
ν)ζ∗ν + (ν − 1)ζ∗ν+2) = 0. Therefore, in order to gain
a better understanding of the equation, let us consider
some specific cases. For instance, if we take a = 1 and
ν = 1, we obtain:

−2(X ± iZ)1 = 0, (45)

whose only solution would be (0, 0).
Now, for ν ̸= 1 and any a:

ζ = ζ∗ = ±

√
a(1 + ν)
(ν − 1) . (46)

When a = 1 is fixed and ν is varied, the following
singularities arise:

• For ν = 1.0, we have a single singularity at
ζ = (0, 0);

• For ν = 1.2, we have three singularities at ζ =
(0, 0) and at ζ = (±

√
11, 0);

• For ν = 1.6, we have three singularities at ζ =
(0, 0) and at ζ =

(
±
√

13
3 , 0

)
;

• For ν = 2.0, we have two singularities at ζ = (0, 0)
and at ζ = (±

√
3, 0).

6. Discussion

Figure 3 displays the solution(39) and illustrates the
location of the previously mentioned singularity points.

The proposed solution in (39) presents singularities
at specific points in the domain, which are associated
with physical characteristics of the solution. Comparing
with the Yoon-Lui-1 and Yoon-Lui-2 solutions, we can
notice that the new solution has singular points similar
to Yoon-Lui-2, but with the axes reversed, located on
the X axis. The double islands are also present in the
proposed solution, but with less rounding compared to
Yoon-Lui-2.

In addition, the proposed solution does not exhibit
the formation of a current ring, a characteristic present
in the Yoon-Lui-1 solution, even when the parameters

Figure 3: The plot below represents the current density of the
proposed solution, given by equation (39). To generate the
figures, we kept the value of a constant at 1, while varying
the value of ν in each of the four images, corresponding to
ν = 1.0, ν = 1.2, ν = 1.6, and ν = 2.0, respectively from a)
to d). The singular points are indicated in each of the images
at the locations (0, 0), (±

√
11, 0),

(
±
√

13
3 , 0
)

, and
(
±

√
3, 0
)
,

corresponding to the singularities found for each value of ν.
These singular points are important for the analysis of the
behavior of the proposed solution in specific regions of the
domain and help to understand the behavior of the solution
in different regimes.

a and ν are varied. It is important to highlight that
these characteristics are relevant for understanding the
physical behavior of the solution in different regimes,
such as in regions near the singular points and in areas
where double magnetic islands are formed.

The proposed solution presents a valuable contribu-
tion to understanding the physical characteristics in
confined plasma regions. As a result of the investi-
gation carried out in this work, it was found that
the new solution can present a unique combination of
characteristics, possibly leading to a greater plasma
confinement efficiency. In Figure 3, we observe that
as the parameter ν increases, the two singular points
located above the X axis move closer to the magnetic
islands, resulting in more effective confinement of each
magnetic island against singular point fixed at the origin
of the coordinate system. This is because, in the mag-
netic configuration presented, when a magnetic island
is located between two singular points on each edge of
the island that interact with the magnetic field of the
singularity, the fields are directed in the same direction
and thus do not undergo magnetic reconnection. In
this situation, the magnetic island becomes more tightly
confined between the singular points, which is why we
say that it becomes more and more confined as we
increase the value of the parameter ν. Furthermore,
the new solution allows for the possibility of changing the
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position of the external singular points, while keeping
the origin singular point and magnetic islands fixed. In
this way, our hypothesis was confirmed, and the results
obtained show that the new solution may have potential
for application in confined plasma systems, with possible
benefits for plasma confinement efficiency.

Through this study, it is possible to highlight the
importance of bibliographic review and critical analysis
of scientific literature for obtaining new results and inno-
vations in physics. By following this example, readers
can learn to use scientific literature to solve practical
problems and theoretical activities, providing a richer
and more in-depth experience in learning physics.

This article is just the beginning of an exciting
series that explores theoretical solutions for confined
plasmas. In the continuation of this series, in part 2,
we will discuss new solutions that were obtained by
manipulating the solutions of Yoon and Lui (2005).
Specifically, part 2 will present a solution based on the
Yoon-Lui-1 and Yoon-Lui-3 solutions, which promises
to offer an even deeper understanding of the physical
characteristics of confined plasmas. If you are interested
in expanding your knowledge in this fascinating area,
keep reading and discover what part 2 has to offer!

7. Conclusion

In this work we performed a literature review of relevant
studies in the areas of plasma physics, electromagnetism,
and space physics, demonstrating how study of scientific
literature can be used as a source of inspiration to pro-
mote innovation and obtain new results. The importance
of the Grad-Shafranov equation in modeling confined
plasmas was emphasized, and different solutions to
this equation proposed in the scientific literature were
discussed.

The article by Yoon and Lui (2005) was the main focus
of this work, which presented two new solutions to the
simplified Grad-Shafranov equation. A new solution was
developed from these solutions through algebraic manip-
ulations, presenting unique characteristics of plasma
confinement.

A comparison was made between the new solution
and the Yoon-Lui-1 and Yoon-Lui-2 solutions. The new
solution has singular points on the X-axis, while the
previous solutions have singular points above the Z-axis,
for the case of a > 0. In addition, the new solution
presents magnetic islands with less rounded shapes and
does not have a current ring, which is observed in the
Yoon-Lui-1 solution.

We can conclude that the study of these solutions is
crucial to understanding the physical characteristics of
confined plasmas, which can lead to the development
of more efficient solutions for obtaining high-quality
plasmas in fusion reactors. This work illustrates the
importance of bibliographic research in the search for
new theoretical solutions in physics, emphasizing how

scientific literature serves as a valuable tool for advanc-
ing knowledge at the forefront of scientific progress.
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