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We discuss the influence of several factors on the deviations from energy spectrum of an infinite square quantum
well (QW) for real microscopic systems that can be approximately modelled using particle in a box. We introduce
the “blurring” potential in the form of the modified Woods-Saxon potential and solve the corresponding Schrödinger
equation. It is found that the increase of the degree of blurring δ of the QW leads to the increase of number of the
energy levels inside it and to increase of deviations from the quadratic dependence ε(n) (ε is the particle energy, n
is the energy level number) typical for the infinite square QW, especially, for the energy levels close to the QW
“tops”. It is most surprising that for relatively “large” values of δ the difference between the levels energies of
such well and the appropriate (with the same n) levels energies of the square QW with the same depth changes
sign (from positive to negative) as number n increases. We also conclude that the asymmetry of the QW and
non-equality min 6= mout (where min and mout are the particle effective mass inside and outside the QW) play a
significant role for the relatively “shallow” well near the QW top.
Keywords: infinite square quantum well, the “blurring” potential, the asymmetry of QW, the position-dependent
effective mass.

1. Introduction

As it is known, the study of model systems, for which
there are simple analytic solutions of the time indepen-
dent Schrödinger equation, makes it possible to under-
stand the methods of quantum mechanics more com-
prehensively. In addition, the results obtained are of
independent interest, since they reflect, in some approxi-
mation, the properties of the corresponding real systems.
One of such idealized system is the particle in a one-
dimensional box model [1], [2] (also known as the infinite
square quantum well (QW)) that describes a particle
which can only move freely along a linear segment of
finite length. Inside this segment the potential is consid-
ered equal to zero. At all other points of the straight line
the potential goes to infinity. The particle in a box model
is mainly used as an approximation for the description
of quite complicated quantum systems. For example, the
behaviour of electrons in some chemical compounds can
be precisely modelled using particle in a box [3].

The energy spectrum of such QW is very simple [1]:

E = π2~2

2mL2n
2, (1)

where ~ is the reduced Planck constant, m is the mass of
the particle, L is the QW width, n is a positive integer
(1,2,3,4...). The wave functions of the problem vanish
everywhere beyond and at the QW edges. These solutions
of the Schrödinger equation are alternatively even and
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odd with respect to the center of the potential well (this
will be true for any symmetric potential). The even parity
solutions (cosines) correspond to odd n numbers whereas
the odd parity solutions (sinuses) correspond to even n
numbers [1].

There are many articles on square quantum wells (finite
or infinite) in the literature. The educational papers
in this area can be divided into the groups of works
devoted to: improving the procedures for approximate
finding energy spectrum in the finite square QW [4–
8]; solving the time-dependent Schrödinger equation in
the case of a one-dimensional square QW with moving
walls [9, 10]; the study of symmetry properties of the
quantum systems with square-well potential [11, 12]; the
investigations of the relativistic particle in a box [13,14];
the considerations of boundary conditions for an infinite
square-well potential in quantum mechanics [15,16] et al.
However, from the theoretical point of view two issues
are to be clarified. What are the possible reasons for the
deviations from the model of a one-dimensional infinite
square QW in reality? How do these factors transform
the energy spectrum (1)?

There are several factors that cause the deviations
from the infinite square QW model for real microscopic
systems. These are:

1. The finite QW depth.
2. The small “blurring” of the QW walls.
3. The asymmetry of QW.
4. The position-dependent effective mass in solids.
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5. Existence of two additional mechanical degrees of
freedom of the particle.

The aim of this article is the consideration of the influence
of such factors on the deviations from energy spectrum
(1) in the real QW systems (heterostructures, quantum
dots and atomic nuclei, etc.) that can be approximately
modelled using particle in a box.

2. The “blurring” of the walls and finite
quantum well depth

The assumption of the vertical walls is non-physical be-
cause the force Fx = −∂V/∂x turns to infinity in their
locations. Various reasons can lead to the formation of a
finite slope of the potential profile in the QW, namely:
mutual diffusion of the components through the phase
interface (a boundary between two solids) in heterostruc-
tures with the formation of a “thin transition layer”;
unevenness (“roughness”) of the interface itself; forma-
tion of a double electric layer near the interface. The
mismatch (difference) of the lattice constants may result
in mechanical stresses that will decay as one moves away
from the heterointerface distorting the rectangular shape
of the well. The finite QW depth is caused by the finite
difference between the work functions of a particle inside
and outside a well.

Let us consider the finite “blurring” potential in the
form of the modified Woods-Saxon potential [17,18] that
represents a square well with rounded edges:

V (y) = V0(1 + exp(1/δ))
exp(1/δ)

×

[
exp

(
y−1
δ

)
1 + exp

(
y−1
δ

) − 1
1 + exp(1/δ)

]
, (2)

where V0 is the QW depth; y = |x| /(L/2) is the dimen-
sionless coordinate, expressed in terms of half-width of
the QW L/2; δ = ∆/(L/2) � 1. Here ∆ is the quantity
characterizing the degree of blurring of the QW walls (the
thickness or diffuseness of the QW wall). The depth of the
QW (2) is strictly fixed and precisely equal to V0, whereas
the depth of the Woods-Saxon QW in its original form
[17] depends on the value of δ. Such a symmetric potential
V (y) has two inflection points, which always correspond
to the boundaries of the quantum system (x = ±L/2).
For y � 1 we have: V (y) ≈ V0y/δ [1 + exp(1/δ)]. In the
case y → ∞ V (y) ≈ V0 [1 − (1 + exp(1/δ)) exp(−y/δ)],
that is, asymptotically tends to V0 (see solid line in Fig.
1). If V0 → ∞, δ → 0, the potential (2) is transformed
into the potential of the infinite square QW (dashed line
in Fig. 1). The QW in form (2) is considered for the first
time.

We write the Schrödinger equation for (2) as

d2ψ(y)
dy2 +

[
k2 − q2 exp

(
y−1
δ

)
1 + exp

(
y−1
δ

)]ψ(y) = 0, (3)

Figure 1: The solid line is the “blurring” quantum well (2). The
dashed line is the infinite square quantum well.

where

k = π

2

√
ε+ exp(−1/δ)

u
, (4)

q = π

2

√
1 + exp(1/δ)
u exp(1/δ) > k, (5)

ε = E/V0 (0 < ε < 1) is the dimensionless energy of the
particle; u = π2~2/(2mL2V0) is the dimensionless QW
depth. We search the solutions of Eq. (3) that satisfy the
Dirichlet condition: limy→∞ ψ(y) = 0. Moreover, since
the potential (2) is symmetric, Eq. (3) will have definite
parity even/odd solutions. It is worth mentioning that
the discontinuity at x = 0 in the slope of V (y(x)) is
finite, so ψ(y(x)) is continuous, and so is its slope. It is
therefore unnecessary to consider the boundary at x = 0,
and to have two regions x ≤ 0 and x > 0.

To satisfy the Dirichlet condition, we represent the
wave function in the form: ψ(y) = ϕ(y) exp

(
−
√
q2 − k2y

)
.

If we introduce additionally new variable

z = − exp
(

1 − y

δ

)
, (6)

then the Schrödinger Eq. (3) can be transformed to the
Euler’s hypergeometric differential equation [19]:

z(1−z)d2ϕ

dz2 +
(

1 + 2δ
√
q2 − k2

)
(1−z)dϕ

dz
−δ2q2ϕ = 0.

The solution of this equation is the Gauss’s hypergeo-
metric function 2F1(a, b; c; z) [19] with

a = δ
(√

q2 − k2 + ik
)
, b = ā, c = 1 + 2δ

√
q2 − k2. (7)

Therefore, the even parity solution of our problem is

ψe(y) = C 2F1εn(a, b; c; z) exp
(

−
√
q2 − k2y

)
,

n = 0, 2, 4, ... (8)
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where C is the normalizing factor and

dψe

dy

∣∣∣∣
y=0

= 0. (9)

The odd parity solution is given as

ψo(y) = C sgn(x) 2F1εn
(a, b; c; z) exp

(
−
√
q2 − k2y

)
,

n = 1, 3, 5, ... (10)

where

ψo(0) = 0. (11)

The conditions (9), (11) quantize energies εn, where
quantum number n numbers the energy levels in order
of increasing their energy.

Fig. 2, 3 show the results of numerical calculations (for
the numerical solution of the transcendental equations
hereinafter we apply the “fsolve” command of the Maple
software [20]) of particle energy ε depending on continu-
ous variable n, based on Eqs. (4-11), at different values
of δ and u. It should be noted that in Eqs. (8) and (10) n
is the integer variable. But we let it change continuously
to get smooth curves ε(n).

From Fig. 2 it is seen that taking into account the non-
zero value of δ will cause the deviations from quadratic
dependence ε(n) typical for the infinite square QW (see
Eq. (1)), especially, for the energy levels close to the QW
“tops”. With an increase in the degree of blurring of QW
δ, the number of the energy levels inside it increases too.
It is most surprising is that for relatively “large” values
of δ the difference between the levels energies of such well
and the appropriate (with the same n) levels energies
of square QW with the same depth changes sign (from
positive to negative) as number n increases. The above
results are not previously reported in literature and can
help readers to probe the limits of applicability of the
square (infinite or finite) QW.

Figure 2: Dimensionless energy ε as a function of continuous
variable n. (1) u = 10−3, δ = 0.1; (2) u = 10−3, δ = 10−3; (3)
ε = un2, where u = 10−3.

As it expected the decrease of a well depth (that is
the increase of the dimensionless quantity u; see Fig. 3)
causes the decrease of number of such discrete states.
Therefore, there always exist at least one discrete level
located near the top of QW (2) as for the case of the
symmetric finite square QW. This level corresponds to
the even parity solution (8) with n = 0.

Our numerical calculations (which are done using Eq.
(1) and Eq. (12) and putting α = 1) also indicate that the
location of the levels within finite and infinite square QW
approximations is practically the same (the maximum
relative error in the determination of the levels position
is less than 5%) if u ≈ 10−4, that is, if square QW depth
V0 is four orders of magnitude greater than the energy of
the ground state (equal to π2~2/(2mL2)) of the infinite
square QW. This new fact is also important for students’
understanding the applicability limits of the model of an
infinite square QW.

3. The asymmetry of quantum well

The QW, where the inversion symmetry with respect
to the quantum well center is broken by some means, is
called the asymmetric QW. The symmetry breaking can
be achieved in several different ways, for example, varying
the material (alloy) composition in QW or applying an
electric field along the growth direction [21] . The energy
spectrum of such a QW differs from the infinite square
QW not only due to the finite well depth but also due
to the asymmetry of the potential.

For the simplest case of the asymmetric square QW
the transcendental equation for finding particle energy
εa has the following form [22]:

π
√
εa/u+ arcsin

√
εa + arcsin

√
εa/α = πn,

n = 1, 2, 3, ... (12)

where εa = E/V1 (0 < εa < 1), u = π2~2/2mL2V1;
α = V2/V1 > 1 is the factor that defines the degree

Figure 3: Dimensionless energy ε as a function of continuous
variable n. (1) δ = 10−2, u = 10−3; (2) δ = 10−2, u = 10−2.
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of well asymmetry; V1 and V2 are the heights of the
left and right QW walls respectively. In Fig. 4 we plot
dependences εa(n), constructed at different values of α
and u using Eq. (12).

We see that εa > εs, where εs = εa(α = 1) is the
particle energy in the relevant symmetric square QW
(V1,2 = V0). However, the asymmetry of a QW can play
a significant role only for the relatively “shallow” well
near the QW top. These obtained features of the energy
spectrum are of pedagogical value, since they can grasp
the applicability limits of the model of an infinitely deep
QW, which is, naturally, always symmetric. We also note
that there are always so “large” values of parameters α
and u at which even single discrete level does not exist.

4. The position-dependent effective mass

In solid state physics, a particle effective mass is the quasi-
mass of a particle that takes into account its interaction
with the internal electric field of a condensed matter (crys-
tal). The effective mass of particles in low-dimensional
semiconductors is position-dependent. Within the sim-
plest approximation the effective mass inside the well,
min, is constant but differs from the mass outside the
well, mout. To take into account different effective mass
inside and outside the well one uses the BenDaniel-Duke
boundary conditions [23] describing the continuity of the
wave functions and the continuity of the probability cur-
rents density at the interfaces. If one chooses the origin at
the left QW wall then these conditions will be as follows:{

ψin(xb) = ψout(xb)
dψin
dx
∣∣
x=xb

= β dψout

dx
∣∣
x=xb

, xb = 0, L (13)

where β = min/mout is the mass discontinuity factor.
We seek solution of the stationary Schrödinger equa-

tion in the form:

ψin(x) = Cin sin(kinx+ ϕ), (14)

ψout(x) = Cout exp(−kout|x|), (15)

where  kin =
√

2minE
~2

kout =
√

2mout(V0−E)
~2

. (16)

Using Eqs. (13)-(15), we derive:{
cotϕ = β kout

kin

cot(kinL+ ϕ) = −β kout

kin

. (17)

Solving system (17) and using Eq. (16), we finally get:

π
√
ε/u+ 2 arcsin

√
ε/(β + (1 − β)ε) = πn,

n = 1, 2, 3, ... (18)

Eq. (16) obtained here has that one advantage that
it describes the energy spectrum of both even and odd
states sumultaneously, whereas usually [23] two equations
are applied to find eigenvalues .

In Fig. 5 we plot dependences ε(n), constructed at
different values of β and u using Eq. (16).

At fixed value of n the particle energy is an increasing
function of parameter β. We see that the deviation of
parameter β from 1 can play a significant role only for
the relatively “shallow” well near the QW top. These
obtained features of the energy spectrum are of pedagog-
ical value, since they can grasp the applicability limits of
the model of an infinitely deep QW, for which difference
between min and mout in no way affects the energy spec-
trum (see Eq. (18). We also note that there are always
so “large” values of parameters β and u at which even
single discrete level does not exist .

5. Existence of two additional
mechanical degrees of freedom of the
particle

In reality the motion of a particle occurs not in one but
in three directions. These two extra motions can be finite

Figure 4: Dimensionless energy εa as a function of continuous variable n for: (1) α = 10; (2) α = 1. (a) u = 5 · 10−3; (b) u = 0.25.
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Figure 5: Dimensionless energy ε as a function of continuous variable n for: (1) β = 10; (2) β = 1; (3) β = 0.1. (a) u = 5 · 10−3;
(b) u = 0.25.

as in the case of rotational motion in a quantum dot or
have a quasi-free character (the so-called lateral motion)
as for a two-dimensional nanosystem. As an example let
us consider the infinite spherical QW. The position of
the energy levels in such a well is determined via the
roots of equation [24]

Jl+ 1
2

(√
2mE
~2

L

2

)
= 0, (19)

where Jl+ 1
2

(√
2mE
~2

L
2

)
is the half-integer order Bessel

functions of the first kind; l = 0, 1, 2... is the azimuthal
(orbital) quantum number; L is the diameter of QW.
Thus, the positions of energy levels in a spherical QW
depend on two quantum numbers: orbital (l) and radial
(nr). As a result, the eigenvalue spacing (in contrast
to the one-dimensional QW) is quite complex in this
case [24].

It is interesting that for l = 0 (that is in the absence
of orbital motion of the particle) equation (17) can be
solved analytically and we get the energy spectrum in
form (1) with only even values of nr. Here we explain
only why there are no odd values of nr in this spectrum.
The point is that in this case the radial wave function
can be represented in the form: χl(r)/r [24], where χl(r)
function satisfies the same Schrödinger equation as in
the one-dimensional case. Since the radial wave function
should take the finite value at r = 0, then χl(0) = 0. But
it is precisely this condition that satisfies the levels with
the even nr.

Thus, the adding of the new mechanical degrees of
freedom to the particle in box problem significantly com-
plicates its solution and the interpretation of results. This
circumstance should be explained to students on such
and similar examples.

6. Conclusions

We discuss the influence of several factors on the devia-
tions from energy spectrum of an infinite square quan-
tum well (QW) for real microscopic systems that can
be approximately modelled using particle in a box. We
introduce the “blurring” potential in the form of the mod-
ified Woods-Saxon potential and solve the corresponding
Schrödinger equation. It is found that the increase of the
degree of blurring δ of the QW leads to the increase of
number of the energy levels inside it and to increase of
deviations from the quadratic dependence ε(n) (ε is the
particle energy, n is the energy level number) typical for
the infinite square QW, especially, for the energy levels
close to the QW “tops”. It is most surprising that for
relatively “large” values of δ the difference between the
levels energies of such well and the appropriate (with the
same n) levels energies of the square QW with the same
depth changes sign (from positive to negative) as number
n increases. We also conclude that the asymmetry of the
QW and non-equality min 6= mout (where min and mout
are the particle effective mass inside and outside the QW)
play a significant role for the relatively “shallow” well
near the QW top.
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