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We consider Schwinger's method of angular momentum addition using the SU(2) algebra with both
a fermionic and a bosonic oscillator. We show that the total spin states obtained are: one boson
singlet state and an arbitrary number of spin-1/2 states, the later ones are energy degenerate.
It means that we have in this case supersymmetric quantum mechanics and also the addition of
angular momentum for massless particles. We review too the cases of two bosonic and two fermionic
oscillators.

I Introduction

The usual method for de�ning the angular momentum
in quantum mechanics is by means of the commutation
relations satis�ed by its components Ji; i = x; y; z; and
by solving the eigenvalue problem for ~J2 and Jz assum-
ing that the components Ji are observables. From this,
the allowed values for the eigenvalues of ~J2 and Jz , de-
noted j and m, respectively, are obtained. They run
over the values: j = 0; 1=2; 1; 3=2; ::: and �j � m �
j [1]. In this case the angular momentum operators Ji
are the in�nitesimal generators for the SO(3) � SU(2)
algebra. The relation between spin and SU(2) symme-
try is maintained in relativistic �eld theory since the
little group for massive particles is just the rotation
group [2, 3]. For massive spin-j particles we can always
go to the rest frame, thus their spin degrees of freedom
transform according to a (2j + 1)-dimensional repre-
sentation of SU(2), that is, we have 2j+1 polarization
states.

In the case of massless particles it is not possible to
go to the rest frame, so the spin is no longer described
by SU(2). In this case the little group is the Euclidean
ISO(2), denoted also by E(2). This group consists of
rotations by an angle � around the z-direction (assum-
ing this as the direction of the motion) and transla-
tions in the Euclidean plane perpendicular to the z axis.
Its irreducible representations must either represent the
translation by zero, or be in�nite-dimensional. If � is
an eigenvector of the translation generators, ei�Jz� will
be also an eigenvector rotated by an angle �. There is
no room in physics besides the momentum for another

continuous quantum number, so physical massless par-
ticles correspond only to the �rst kind of representa-
tions (i.e., the trivial ones) [3]. This leaves only Jz as
symmetry operator, so the physical representations of
E(2) are one-dimensional and labeled by the helicity
�. Jzj�i = �j�i. This is why the polarization states
of a massless particle with spin j are only �j. We
can see this by considering the second Casimir invari-
ant W�W� = �M2j(j +1) (the other is p2 =M2 > 0)
where W� is the Pauli-Lubanski pseudovector de�ned
as

W� = �1

2
"����J

��P � ; (1)

with J�� and P � denoting the generators of the
Poincar�e group; "���� is the totally antisymmetric sym-
bol in four dimensions. Since M2 = 0 we have for a
state of the four momentum k,

W �W jki = 0; P � P jki = 0 (2)

and, since W �P� = 0,

W � P jki = 0: (3)

So, W � and P� are orthogonal and both lightlike. This
means that they must be proportional

(W� � �P�)jki = 0; (4)

and we have the result that the state of a massless parti-
cle is characterized by one number �, which is the ratio
of W � and P� and so it has the dimension of angular
momentum. It is called, as we said before, helicity. If
parity is included the helicity takes on two values, � and
��. The fact that � can be integral or half-integral is
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due to the fact that ei4�� must be unity, and hence �
must be integer or half-integer [3].

Several years ago Schwinger worked out a connec-
tion between the algebra of angular-momentum and
two uncoupled bosonic oscillators [4]. The Schwinger's
scheme permits to calculate the eigenvalues j and m,
in terms of the operator number of the uncoupled oscil-
lators. The results agree with the general method for
massive particles discussed above. The case of massless
particles, however, does not arise within Schwinger's
scheme. So, the method must be generalized. In this
work we take a �rst step to a more complete generaliza-
tion by considering one or more fermionic oscillators.

The outline of this work is the following.
Schwinger's method which consists of two bosonic oscil-
lators (BB) is reviewed in Sec.II. Next, we generalize
the scheme by considering i) two fermionic oscillators
(FF ) in Sec. III and, ii) one bosonic and one fermionic
oscillator (FB) in Sec. IV. In the last cases only spin
zero and spin 1/2 are generated. In the last section we
show that in the BF case the spin 1/2 particles are in-
�nitely degenerated and supersymmetric quantum me-
chanics naturally arises.

II Two bosonic oscillators (BB)

In this section we will brie
y review the Schwinger
scheme [4, 5] by considering two simple bosonic oscil-
lators with annihilation and creation operators ai and
ayi ; i = 1; 2, respectively. The number operators are

(throughout this work we will use ~ = 1) Ni � ayiai
and assuming the commutation relations [ai; a

y
j ] = Æij ,

it follows that

[Ni; aj ] = �aiÆij ; [Ni; a
y
j ] = ayi Æij ; (no summation):

(5)
We also assume that another pair of operators of the
same oscillator or of di�erent oscillators commute. It
means that the two oscillators are uncoupled. Because
N1 and N2 commute, we can build up simultaneous
eigenstates of N1 and N2 with eigenvalues n1 and n2,
respectively.

Next, we de�ne

J+ � ay1a2; J� � ay2a1; (6a)

and

Jz � 1

2
(ay

1
a1 � ay

1
a2) =

1

2
(N1 �N2): (6b)

These operators satisfy the SU(2) commutation rela-
tions

[Jz; J�] = �J�; [J+; J�] = 2Jz: (7)

De�ning the total number operator N (with eigen-
values n1 + n2)

N � N1 +N2 = ay1a1 + ay2a2; (8)

it follows that the quadratic Casimir operator

~J2 = J2z +
1

2
(J+J� + J�J+) ; (9)

can be written as

~J2 =
N

2

�
N

2
+ 1

�
: (10)

If we associate spin up (m = 1=2) with one quantum
unit of the N1 oscillator and spin down (m = �1=2)
with one quantum unit of the N2 oscillator, it is pos-
sible to imagine a spin 1=2 \particle" with spin up
(down) with each quantum unit of the N1(N2) oscil-
lator. The eigenvalues n1 and n2 are just the number
of spin up and spin down \particles", respectively. We
will see that the association of half-integral spin with
bosonic oscillators is necessary, if we want to construct
a general jj;mi state with j = 0; 1=2; 1; 3=2; 2; ::: and
�j � m � j.

Turning back to the J� operators de�ned in
Eqs. (II), we see that J+ destroys one unit of spin down
with the z-component of angular �1=2 and creates one
unit of spin up with the z-component of angular mo-
mentum +1=2. So, the z-component of angular momen-
tum is therefore increased by 1. Likewise J� destroys
one unit of spin up and creates one unit of spin down,
the z-component of angular momentum is therefore de-
creased by 1. As for the Jz operator, it simply counts
1=2 (~ = 1) times the di�erence between n1 and n2,
just gives the z�component of the total angular mo-
mentum. Hence, the action of the J� and Jz operators
on the eigenstates of the jn1; n2i is given by

c

J+jn1; n2i = ay1a2jn1; n2i = [n2(n1 + 1)]1=2 jn1 + 1; n2 � 1i; (11)

J�jn1; n2i = ay2a1jn1; n2i = [n1(n2 + 1)]1=2 jn1 � 1; n2 + 1i; (12)

Jz jn1; n2i = 1

2
(N1 �N2)jn1; n2i = 1

2
(n1 � n2)jn1; n2i: (13)

Notice that, the sum n1+n2 which gives the total number of spin 1=2 particles remains unchanged. If we substitute

n1 ! j +m; n2 ! j �m; (14)
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Eqs. () reduce to the usual factors

J+jn1; n2i = [(j �m)(j +m+ 1)]1=2 jj +m+ 1; j �m� 1i; (15)

J�jn1; n2i = [(j +m)(j �m+ 1)]1=2 jj +m� 1; j �m+ 1i; (16)

Jz jj +m; j �mi = mjj +m; j �mi; (17)

and the eigenvalues of the quadratic Casimir operator ~J2 de�ned in Eq. (10) become

~J2jj +m; j �mi =
n1 + n2

2

�
n1 + n2

2
+ 1

�
jj +m; j �mi

� j(j + 1)jj +m; j �mi: (18)

d

The connection between the oscillator matrix ele-
ments and angular momentum matrix elements can be
seen by de�ning

j � n1 + n2
2

; m � n1 � n2
2

; (19)

in place of n1 and n2 to characterize simultaneous eigen-
kets of ~J2 and Jz . Hence, the most general N1; N2

eigenket is

jj;mi = (ay1)
j+m(ay2)

j�m

[(j +m)!(j �m)!]1=2
j0; 0i: (20)

If j = m we have the largest eigenvalue for Jz

jj; ji = (ay1)
2j

[(2j)!]1=2
j0; 0i; (21)

so we can imagine this state to be build up of 2j spin
1=2 particles with their spin all pointing in the positive
z-direction. Hence, as we said before, in this scheme
an object of high j can be visualized as being made up
of primitive spin 1=2 \particles", j + m of them with
spin up and the remaining j � m of them with spin
down. This of course, does not mean that an object of
angular momentum j is a composite system of spin 1=2
particles. It means only that, as far as the transfor-
mation properties are concerned, we can visualized any
object of arbitrary angular momentum j as a composite
system of 2j spin 1=2 particles formed in the manner in-
dicated by Eq. (20). This is the well known Schwinger's
oscillator method [5].

III Two fermionic oscillators
(FF)

Let us consider two fermionic oscillators with annihi-
lation and creation operators denoted by Fi and F y

i ,
i = 1; 2. Then

fFi; F y
j g = Æij ; (22)

and any other pair of operators anticommuting. The
number operators are de�ned as usual Ni = F y

i Fi, i = 1
or 2, and they satisfy

[Ni; Fj ] = �Fi Æij ; [Ni; F
y
j ] = F y

i Æij ; (no summation):
(23)

However, from Eq. (22) it follows that

Ni(Ni � 1) = 0; i = 1 or 2; (24)

so, the only eigenvalues of Ni, denoted by ni, are 0 or 1.
The total number operatorN =

P
iNi, has eigenvalues

0; 1 or 2.

As in the case of two bosonic oscillators, we can con-
struct simultaneous eigenkets of N1 and N2. Eqs. (21)

are valid but with the substitution ai ! Fi, a
y
i ! F y

i

and with the constraint upon n1; n2 given above. Thus
as in Eqs. (6) we can de�ne

J+ � F y
1F2; J� � F y

2F1; (25)

Jz � 1

2

�
F y
1F1 � F y

2F2

�
=

1

2
(N1 �N2) ; (26)

which satisfy, as can be easily veri�ed, the SU(2) com-
mutation relations in Eq. (7). From the point of view
of the SU(2) algebra both cases, two bosonic oscillators
and two fermionic oscillators are equivalent. Notwith-
standing ~J2, de�ned in Eq. (9), when written in terms
of the number operators, instead of Eq. (10) is given by

~J2 =
N

2

�
N

2
+ 1

�
� 2N1N2: (27)

Since the eigenvalues of N1 and N2 can assume only the
values 0 or 1, we see from Eq. (27) that the respective

eigenvalues for ~J2 are 0 and 3=4. If we interpret these
values in the form j(j + 1), j � 0, we see that only
j = 0 and j = 1=2 are allowed. The eigenvalues of Jz
de�ned in Eq. (26) are 0; 1=2;�1=2 [6]:
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c

Jz j0; 0i = 0; JzF
y
1F

y
2 j0; 0i = 0; Jzj1; 1i = 0; J2j1; 1; i = 0; (28)

JzF
y
1 j0; 0i =

1

2
F y
1 j0; 0i; JzF

y
2 j0; 0i = �1

2
F y
2 j0; 0i: (29)

d

Hence, it seems that with two fermionic oscillators
we can build up only one spin-1=2 (F y

1 j0; 0i; jF yj0; 0i)
and two spin-0 states (j0; 0i; j1; 1i). In others words,
although the system also satis�es the usual angular-
momentum commutation relations in Eq. (7), only
these two values for the total angular-momentum are
allowed. We call this situation a constrained realization

of the SU(2) algebra.
If we associate spin up (m = 1=2) with one quan-

tum unit of the F1 oscillator and spin down (m = �1=2)
with one quantum unit of the F2 oscillator, it is pos-
sible to imagine one spin 1=2 \particle" with spin up
(down) with each quantum unit of the F1(F2) oscilla-
tor. As in Sec. II the spins are along the z�direction
and the eigenvalues n1 and n2 are just the numbers of
spins up and spins down, respectively. However, in the
present case if n1 = n2 = 0 the total spin is also zero;
if n1 = n2 = 1 both spins are in opposite direction and
the total spin vanishes again. On the other hand, if
n1 = 1; n2 = 0 the total spin is 1=2 and the projec-
tion on the z�axis is 1=2; if n1 = 0; n2 = 1 the total
spin is again 1=2 but its projection in that axis is �1=2.
Notice, however, that this case does not correspond nei-
ther to the massive nor to the massless particle cases.
It can be applied to both kinds of particles.

IV One fermionic and one
bosonic oscillators (FB)

We have seen that both, the usual angular momen-
tum addition and the Schwinger's scheme are valid for
the case of massive particles [5]. The case of mass-
less particles, however, does not arise neither within
the usual approach nor in the Schwinger's scheme. So,
the method must be generalized. In this work we take
a �rst step to get a more complete generalization by

considering one fermionic oscillator.

The interesting feature of Schwinger's scheme is that
it allows us to obtain what are the values of the weights
or roots that are realized in the SU(2) algebra. For in-
stance, in the original work of Schwinger, all representa-
tions of the SU(2) algebra arise and are exactly equiv-
alent, as we said before, to the theory of the angular
momentum addition. This is however a consequence of
the bosonic nature of the oscillators. Notwithstanding,
when both oscillators are fermionic, although the alge-
braic relations are still valid the method does not coin-
cide with the usual addition of angular momentum in
the sense that only restricted values for the eigenvalues
of the angular momentum operator are allowed: only
two spinless states and one spin-1/2 state are obtained
and it is impossible to recover the full set of the uni-
tary representation of SU(2). This is a consequence of
the fermionic character of the operators with which we
implement the realization of the SU(2) algebra [6]. On
the other hand, when one of the oscillators is bosonic
and the other one is fermionic, a usual SU(2) algebra is
still realized but also in a restricted sense. This is the
case that we will consider here.

Let us consider the case of two oscillators, one of
them a bosonic oscillator (a; ay) and the other one a
fermionic oscillator (F; F y). It means that

�
a; ay

�
= 1;

�
F; F y

	
= 1; (30)

and any pair of operators commutes if both of them
are bosonic operators or, if one of them is a bosonic
operator and the other is a fermionic operator; they
anticommute if both of them are fermionic operators.

As before, we will use the following notation: The
number operators are denoted by NB = aya, NF =
F yF and N = NB +NF , with eigenvalues nB ; nF and
n = nB + nF , respectively. Let us de�ne

c

J+ � ayF (NB + 1)�1=2; J� � (NB + 1)�1=2 F ya; (32a)

Jz � 1

2

�
ay(NB + 1)�1a(1�NF )�NF

�
: (32b)
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If the simultaneous eigenkets of NB and NF are denoted by jnB ; nF i when necessary we will use the closure
relation

P jnB ; nF ihnB ; nF j = 1 in order to get a result that it is not state dependent. For instance

(NB + 1)�1
X

nB;nF

jnB ; nF ihnB ; nF j =
X

nB;nF

(nB + 1)�1jnB ; nF ihnB ; nF j; (33)

and similarly for (NB + 1)�1=2. Then, it is possible to verify that the operators de�ned in Eq. (32) satisfy the
commutation relations of the SU(2) algebra given in Eq. (7) and that

J+jnB ; nF i = ay(NB + 1)�1=2F jnB ; nF i = p
nF jnB + 1; nF � 1i; (34)

that is, J+jnB ; nF i = jnB + 1; 0i if nF = 1 and J+jnB ; nF i = 0 if nF = 0. Similarly,

J�jnB ; nF i = F y(NB + 1)�1=2a jnB ; nF i =
p
1� nF jnB � 1; nF + 1i; (35)

d

hence J�jnB ; nF i = 0 when nF = 1 or nB = 0, and
J�jnB ; nF i = jnB � 1; 1i when nF = 0.

Next, we obtain the quadratic Casimir operator

~J2 =
1

2

�
1

2
+ 1

��
ay(NB + 1)�1a(1�NF ) +NF

�
;

(36)
and the hamiltonian of the system can be written as

H = fJ+; J�g = ay(NB + 1)�1a(1�NF ) +NF ; (37)

and it satis�es [H; J�] = 0.
For the state jnB ; nF i = j0; 0i we have

Jz j0; 0i = 0; J2j0; 0i = 0; (38)

while for the states jnB ; nF i 6= j0; 0i it follows

JzjnB ; nF i =
�
1

2
� nF

�
jnB ; nF i; (39)

and

J2jnB ; nF i = 1

2

�
1

2
+ 1

�
jnB ; nF i: (40)

We see from Eqs. (38) and (40) that as in FF case,
only spin 0 and 1/2 are generated. However an inter-
esting di�erence appears when one of the oscillators is
bosonic, as we will see in the next section.

V Conclusions

In the usual supersymmetric quantum mechanics, the
equality !B = !F is imposed by hand [7]. In the
Schwinger's scheme it is implicitly assumed that both
oscillators have the same frequency, !. In the case of
both one fermionic and one bosonic oscillator this im-
plies that !B = !F . It means that we have a symmetry
of the combined bosonic and fermionic oscillators, that
is, we have a supersymmetry. In fact, using Eq. (37),
we have

H j0; 0i = 0; H jnB; nF i = jnB ; nF i: (41)

So, we can identify Q = J+ and �Q = J� as the super-
symmetry generators. Note that, in fact, from Eqs.(34)
and (35) we have

J+jnB ; 1i = jnB+1; 0i; J�jnB+1; 0i = jnB ; 1i: (42)

Then, the bosonic states jnB + 1; 0i have the same en-
ergy than their fermionic partners jnB ; 1i. Only the
vacuum state is not degenerate as it can be seen from
Table I.

Table I. States obtained by the Schwinger scheme and
the respective energies.

nB nF j m E
0 0 0 0 0

1 1/2 -1/2 1
1 0 1/2 1/2 1

1 1/2 -1/2 1
2 0 1/2 1/2 1

1 1/2 -1/2 1
� � � � � � � � � � � � � � �

In fact, since in this case we have N = 1 supersym-
metric quantum mechanics, we can introduce a Grass-
mann parameter � (�2 = 0), and if we de�ne

J1 = �(J+ + J�); J2 = i�(J+ � J�); (43)

we can verify that

[Jz; J1] = iJ2; [Jz; J2] = �iJ1 (44)

and

[J1; J2] = �4i�2Jz = 0: (45)

This commutation relation de�nes the Euclidean group
E(2) and, as we mentioned in Sec. I, it is well known
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that in the relativistic theory this is the little group re-
lated to massless particles [3] and for this reason the
polarization states of massless particles with spin j are
only �j. Thus we can interpret our result as follows:
since we are in a non-relativistic domain, i.e. just one
SU(2), only spinless and spin one-half particles are al-
lowed to be massless since in this case both 2j + 1 or
�j degeneration coincide. From the point of view of the
angular momentum addition, a supersymmetric trans-
formation

jnB + 1; 0i () jnB ; 1i; (46)

is equivalent to a parity transformation which makes
j ! �j and supersymmetric quantum mechanics is e-
quivalent to a \constrained SU(2) algebra".

If we consider SU(2)
SU(2)0, which corresponds to
the relativistic case, we can have massless states with
j = 0; 1=2; 1 but not with j > 1. A way to overcome
this problem is to consider a two-component spinor �eld
as in Ref. [6] as we will show elsewhere.

Finally, we would like to pointed out that it may
be interesting to considered these extensions of the
Schwinger scheme for SU(n) and also in relativistic �eld
theories [8].
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