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ABSTRACT. The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas 
of Utetheisa ornatrix (Lepidoptera, Arctiidae). Species’ geographic ranges are usually considered as basic units in macroecology 
and biogeography, yet it is still difficult to measure them accurately for many reasons. About 20 years ago, researchers started using 
local data on species’ occurrences to estimate broad scale ranges, thereby establishing the niche modeling approach. However, there 
are still many problems in model evaluation and application, and one of the solutions is to find a consensus solution among models 
derived from different mathematical and statistical models for niche modeling, climatic projections and variable combination, 
all of which are sources of uncertainty during niche modeling. In this paper, we discuss this approach of ensemble forecasting 
and propose that it can be divided into three phases with increasing levels of complexity. Phase I is the simple combination of 
maps to achieve a consensual and hopefully conservative solution. In Phase II, differences among the maps used are described by 
multivariate analyses, and Phase III consists of the quantitative evaluation of the relative magnitude of uncertainties from different 
sources and their mapping. To illustrate these developments, we analyzed the occurrence data of the tiger moth, Utetheisa ornatrix 
(Lepidoptera, Arctiidae), a Neotropical moth species, and modeled its geographic range in current and future climates.
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RESUMO. As três fases da projeção combinada de modelos de nicho: distribuição geográfica e deslocamento de áreas climaticamente 
adequadas para Utetheisa ornatrix (Lepidoptera, Arctiidae). A distribuição geográfica das espécies tem sido considerada como a 
unidade básica em macroecologia e biogeografia, mas ainda há dificuldades em mensurá-la de forma adequada, por diferentes 
razões. Há cerca de 20 anos atrás, os pesquisadores começaram a utilizar dados locais da ocorrência das espécies para estimar essas 
distribuições utilizando modelos de nicho ecológico. Entretanto, ainda há uma série de problemas na avaliação dos modelos e em 
suas aplicações, e uma das soluções é utilizar um consenso de diferentes modelos, projeções climáticas, cenários de emissão e 
combinação de variáveis, que são fontes de incerteza durante o processo de modelagem de nicho. Neste artigo nós discutimos essa 
abordagem de consenso e a dividimos em três fases, com níveis crescentes de complexidade. A Fase I é simplesmente a combinação 
de mapas e a obtenção e interpretação de um único mapa de consenso. A Fase II envolve a descrição das diferenças entre os 
mapas utilizando técnicas de análise multidimensional, enquanto que a Fase III consiste em analisar quantitativamente e mapear 
a magnitude relativa das diferentes fontes de incerteza. A fim de ilustrar essa abordagem, nós analisamos dados de ocorrência de 
Utetheisa ornatrix (Lepidoptera, Arctiidae), uma mariposa distribuída na região Neotropical, modelando sua distribuição geográfica 
com base em dados climáticos atuais e projeções de mudança climática.

PALAVRAS-CHAVE. Arctiidae; distribuição geográfica; incerteza; Arctiidae; modelagem de nicho; mudanças climáticas.

Species’ geographic ranges are usually considered as 
basic units in macroecology and biogeography, and a large 
number of studies over the last 20 years have focused on 
the geographic ranges’ properties, including the geographic 
range size, internal structure, position and shape, as well as 
the ecological and evolutionary processes at their borders. 
The analysis of species’ ranges overlap (i.e., richness), is also 
important because it determines the regional component of 
community structure and, when analyzed at broad geographic 
scales, usually generates latitudinal gradients (see Hawkins 
et al. 2003; Mittelbach et al. 2007 for a review of ecological 
and evolutionary processes driving range overlap). More 
recently, understanding patterns and processes associated with 
species’ ranges and range limits has also become important 
in improving conservation plans because better knowledge 

allows the adoption of strategies to increase population 
viability and even to predict where undiscovered species can 
be found (avoiding the “Wallacean shortfall”, e.g., Bini et al. 
2006).

Despite the important theoretical and applied issues 
related to species’ ranges, it is still difficult to measure them 
accurately for many reasons. First, the definition of a species 
range may be scale-dependent, and in many macroecological 
and biogeographical studies, researchers usually define 
species’ ranges based on their extent of occurrence, which is 
a broad definition of the “external” limits of the range. The 
detailed structures within this extent are not known and are 
usually not considered as important in establishing patterns 
at broad scales (e.g., latitudinal gradients). However, this is 
usually insufficient for more refined analyses, such as those 
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required for establishing effective conservation planning 
at local scales. In a more practical aspect, detailed data for 
species’ occurrences, including both determining where the 
species is present and absent, are lacking for most of the world, 
especially for tropical, mega-diverse regions. A compromise 
between these two worldviews is not easy to achieve (Diniz-
Filho et al. 2010a).

Approximately 20 years ago, some researchers started 
to use local data on species occurrences (and eventually 
their absences) to estimate broad scale ranges based on a 
modeling approach (see Pearson & Dawson 2003). The idea 
is to use occurrences to establish what is typically called the 
“bioclimatic envelope”, which reflects, in part, the species’ 
niche (or at least one component of the niche, the Grinnelian 
niche – sensu Soberon 2007). Once the Grinnelian niche is 
established, and considering that the climatic data used to 
define the envelope have a spatial component, it is possible 
to use this “duality” (Colwell & Rangel 2009) to project the 
niche into geographical space and thereby obtain an overall 
picture of the species’ range(s). Of course, the projection 
of a niche model into geographical space will produce a 
generalization, and spatially explicit models directly related 
to the species’ range(s) (i.e., dispersal and geographically 
structured components of population dynamics – see DeMarco 
et al. 2008) would not be considered at first.

This general approach actually created a new research 
field, and niche models are now widely used to reconstruct 
species’ geographic ranges with different purposes (Guisan 
& Thuiller 2005; see Escalante et al. 2009 for a recent 
application in insect biogeography), although of course many 
improvements are still necessary (e.g., Araújo & Guisan 2006). 
Here we review the main aspects of this research field, which 
we call the niche modeling of species distribution. Many 
other reviews on this subject are already written, focusing on 
theoretical and conceptual aspects (Pearson & Dawson 2003; 
Soberon 2007; Pearman et al. 2008; Colwell & Rangel 2009) 
as well as methodological developments (e.g., Segurado & 
Araújo 2004; Elith et al. 2006; Elith & Graham 2009). We will 
focus on the new idea of ensemble forecasts (i.e., combining 
multiple models for better predictions) (Araújo & New 2007) 
and the evaluation of uncertainties during the process of 
generating the species niche (Diniz-Filho et al. 2009a). To 
illustrate these developments, we will analyze the occurrence 
data for the tiger moth Utetheisa ornatrix (Linnaeus, 1758) 
(Lepidoptera, Arctiidae). The larvae of this Neotropical moth 
feed mainly on non-ripened pods and developing seeds of 
Fabaceae shrubs of the genus Crotalaria (Ferro et al. 2006; 
Signoretti et al. 2008). The larvae sequestrate pyrrolizidine 
alkaloids from their host plants and use them as a defense 
mechanism and the precursors of sexual pheromones. This 
insect occurs in natural and disturbed areas throughout South 
and Central America and a portion of the United States (Pease 
1968; see also Ferro & Teston 2009).

Niche Modeling and the Geographic Range of Species
Currently there are many methods available to reconstruct 

the Grinnelian component of species’ niches, usually based 
on climatic data. Projecting the outcome of the niche models 

into geographic space enables reconstruction of the potential 
species’ range(s). These methods are all based on the overall 
idea of correlating the presence (and sometimes the absence) 
of the species in certain localities for which climatic or 
environmental data are available and building a “bioclimatic 
envelope.” However, the various methods use these data in 
very different forms, ranging from very simple models that 
use the maximum and minimum values, or ellipsoidal fits, 
of the environmental data in localities where the species are 
found (i.e., the BIOCLIM and distance methods), to several 
more complex models based on optimization algorithms 
and artificial intelligence (i.e., maximum entropy, artificial 
neural networks and others) that search for irregular 
shapes in hyperspace defined by the presence of records 
for environmental variables. These more complex methods 
produce non-linear functions of the relationships between 
species’ occurrences and the environment (Elith et al. 2006; 
see also Table I). All these different methods arose gradually 
over time, and their applications in the literature follow clear 
patterns. Some of the methods are in fact becoming very 
popular (i.e., MAXENT), whereas the applications of others 
are decreasing.

We used ten of these methods, described in Table I, and 
implemented in different software, to model the niche of 
U. ornatrix based on 87 records obtained from specimens 
deposited in the ten most important Brazilian entomological 
collections and from the literature (Biezanko & Freitas 
1938; Biezanko & Seta 1939; Zikan & Zikan 1968; Ferreira 
et al. 1995; Marinoni & Dutra 1996; Teston & Corseuil 
2004; Teston et al. 2006; Ferro & Teston 2009) (Fig. 1). 
Initially, we modeled these occurrences as a function of 
nine environmental variables (i.e., maximum temperature 
in the hottest month, minimum temperature in the coldest 
month, annual temperature variation, annual precipitation, 
precipitation for the driest month, precipitation for the 
wettest month, precipitation standard deviation, average 
maximum temperature, and average minimum temperature) 
and projected them into geographic space. Some examples 
of the maps using different types of models (optimization 
and distances) and algorithms produced using different 
models (MAXENT, Neural Networks, Random Forests and 
Mahalanobis distances) show that the predictions vary slightly, 
although, in general, they clearly show the distribution of 
U. ornatrix through the Neotropics, concentrated on the 
southeastern coast of Brazil (Atlantic forest) and parts of 
Central America (Fig. 2). Mahalanobis distances map shows 
high suitability throughout the region, despite a patch of high 
suitability in the southeastern South America, the region of 
highest suitability according to the other models.

One of the main current problems in the literature is 
how to evaluate the “quality” of these models, and several 
statistics are now available. Niche models usually generate 
a continuous prediction that tends to express the “centrality” 
of an environmental condition with respect to species’ niche 
centers in multidimensional space. Thus, when this model is 
projected into geographical space, a continuous map appears. 
It is expected that localities with environmental conditions 
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close to the species range center in environmental space will 
have high “suitability,” indicating “Climatically Suitable 
Areas” (CSA) for the species (e.g., Diniz-Filho et al. 2010b). 
In practice, it is usually necessary to truncate these continuous 
predictions to establish where the species occurs and its range 
(although the range limits are, on a small scale, dynamic and 
not well defined by a specific boundary). Different criteria 
may also be used to establish this truncation threshold.

In general, the statistics for model evaluation are 
computed based on a comparison between the observed and 
expected values, obtained when the continuous distribution is 
truncated to generate a discrete prediction of the range. The 
idea is to build a confusion matrix that records the presence 
and absence of the species (or computer-generated absence in 
some cases) and the corresponding predictions of the model. 
The simplest metric, for example, is the omission rate, or 
false negative. This is the proportion of occurrences that are 
not correctly predicted by the model (or its counterpart, the 
commission error, which is the proportion of absences). Many 
statistics can be built using the confusion matrix (see Allouche 
et al. 2006), including the Receiving Operator Curve (ROC), 
which plots the “true positives” rate (sensitivity) against the 
“false positives” rate (1 - true negative rate or 1 - specificity) 
calculated for multiple confusion matrices based on increasing 
truncation thresholds. The area under the ROC curve, called 

the AUC statistics, is one of the most popular metrics, despite 
some criticisms (see Lobo et al. 2008; Peterson et al. 2008).

As an illustration, we present the AUC values for the ten 
models built for U. ornatrix, which indeed show large variation 
(Table II), although all values are above the expected value 
of 0.5 under the null hypothesis of absence of relationship 
between environmental variables and occurrences. Values 
for AUC that are close to one express the maximum fit (in 
principle, a very good model), whereas values closer to 0.5 
(half of the area under the ROC curve) indicate a prediction 
that is no better than a random prediction. In our models, AUC 
values range from 0.859 (for CTA) to 0.937 (for RF). Thus, 
all of the models have a very good fit, and one could simply 
choose the niche model with higher AUC values to project 
the niche into space and to build a geographic range map. 
However, there are problems with this reasoning that arise 
from many statistical and theoretical aspects (see Lobo et al. 
2008). One of the most important criticisms to this reasoning 
is that using a complex empirical function, despite generating 
a good fit, does not necessarily produce a good model of the 
species’ range.

Underlying this main criticism is the assumption that 
species are in “equilibrium” with their environments 
(see Araújo & Pearson 2005). When sampling species’ 
occurrences, one assumes that those (and only those) are the 

Fig.1. Geographical distribution of the 87 occurrences used for niche modeling of Utheteisa ornatrix.
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environmental conditions in which the species can be found, 
as expected if the species has colonized all of the possible 
suitable habitats. However, many processes can disturb this 
equilibrium and, thereby, generate an underestimation of the 
environmentally suitable space. For example, historical effects 
can constrain the colonization of other habitats (see Nogués-
Bravo 2009), or spatially irregular or low sampling efforts 
can bias occurrences towards particular sub-regions of the 
suitable space (e.g., Hortal et al. 2008). The consequence of 
violating the equilibrium assumption is that a model with high 
fit does not necessarily have a high “transferability,” which is 
a critical issue if one is interested not only in determining 
species’ ranges but also in investigating how the niche model 
can be used to predict species’ occurrences in other regions 
(i.e., after a biological invasion) or in future environments 
(i.e., responses to climate change) (see Peterson et al. 2007 
for a discussion).

Another problem is that adding more parameters (i.e., 
increasing the number of environmental variables or producing 
complex truncations or polynomial expansions of them) to a 
model will increase the fit but will also produce an accurate 
model of any of the errors involved in the data. Without clear 
theoretical ecological reasoning—which is unfortunately 
lacking in most cases—hyper-complex models, despite 
possessing a high fit, will tend to produce bad predictions 
(Randin et al. 2006; see also Elith et al. 2006; Peterson et al. 
2007 for a discussion).

Thus, if statistics (at least some of them) fail to indicate a 
good model, the main issue becomes how to select a model. 
Most users simply choose a model according to computational 
facility and availability. Others prefer simple methods that can 
produce overall descriptions of the niche, such as MAHAL or 
statistical models such as the GLM (when absence data are 
available). Others believe that fit statistics, such as AUC, can 

Fig. 2. Geographic ranges of Utheteisa ornatrix obtained by spatial projections of niche models, built with (A) Maximum Entropy; (B) Random Forests; (C) 
Artificial Neural Networks; (D) Mahalanobis distances.
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be a reasonable guide for selecting the best model to use. A 
completely different approach, proposed by Araújo & New 
(2007), is to use as many models as possible to generate 
consistent and robust predictions; this approach is called 
“ensemble forecasting.”

Ensemble Forecasting: Phase I. Establishing Consensus 
Projections

The idea of ensemble forecasting involves the 
consideration that different sources of errors (sensitivity to 
data, lack of absence data, errors in environmental variables) 
will affect each niche model in different ways. It is expected 
that, by using a consensus of these models, errors will tend 
to cancel each other out and produce a trustworthy and more 
conservative solution.

Araújo & New (2007) considered multiple hierarchically-

arranged sources of variation among species’ range 
predictions (including niche models, model parameterization, 
data sampling schemes, models and emission scenarios, and 
so on). The overall idea of ensemble forecasting is to combine 
different models using different approaches. Marmion et al. 
(2009) recently produced a comparative analysis of several 
strategies and showed that simple means seem to produce 
a more robust solution (see also Roura-Pascal et al. 2009; 
Coetzee et al. 2009; O’ Haney 2009).

To illustrate the possibilities of using ensemble 
forecasting in geographical projections of niche models, we 
combined the ten niche models for U. ornatrix and generated 
different forms of ensembles. We used a simple average 
suitability model (Fig. 3A) and the principal component of 
the correlation matrix among the suitability values (Fig. 3B), 
which explained 77.9% of the correlation structure (see also 

Fig. 3. Ensemble forecasting of 10 geographic ranges derived from distinct niche models for Utheteisa ornatrix. A) mean suitability (which define climatically 
suitable areas, or CSAs); B) First principal component of suitabilities; C) frequency of models that indicates species as present in each region and; D) majority 
consensus of frequencies (i.e., species is present in a region if 50% of the model suggest it is present).
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Thuiller 2004; Araújo et al. 2005, 2006). These two ensembles 
use the original suitability values of each model, and therefore, 
they are not truncated to produce discrete (0/1) predictions of 
where species can be found. However, it is also possible to 
truncate each model to produce a discrete prediction and then 
to calculate the frequency at which different models appear 
in a cell (Fig. 3C). Finally, if a discrete final consensus map 
is desired, one can use, for example, a majority consensus 
rule and state that only cells for which half of the models 
indicate the presence of species be considered as occupied by 
the species (Fig. 3D). In this case, all of the maps are quite 
similar and reinforce the high suitability in the Atlantic forest 
and in Central America.

Generating the maps shown in Fig. 3 and describing the 
above-mentioned method can be the “first phase” of model 
combination, in which the purpose is to obtain a unique 
map of the species’ distributions. However, in addition to 
producing a consensus map, the idea of ensemble forecasting 
also involves understanding the origins of uncertainty and 
why different models are produced for certain species. This 
would be the second methodological phase in the ensemble 
forecasting approach, i.e., understanding the structure of the 
differences among the niche models and their associated 
distribution maps.

Ensemble Forecasting: Phase II. Multidimensional 
Analysis of Uncertainty Patterns

The first way to disentangle these uncertainties is to use 
multivariate statistical analysis to compare the maps (Thuiller 
2004). The principal component analysis (PCA) of the 
suitability maps is a way to evaluate the differences among 
the niche models. The scores of the PCA are the coordinates 
of each observation (in this case, the cells in the maps) in 
each principal component, and therefore, they can be mapped 
(see Fig. 3B). On the other hand, the loadings of the PCA, 
which reveal the contribution of each map to the principal 
component, are a useful way to assess the similarities among 
the maps.

For instance, in our analysis of U. ornatrix, the first 
principal component explained 77.9% of the correlation 
structure among the suitability maps. The plot of loading 
on the two axes (Fig. 4A) clearly shows that all maps have 
similar directions along the first axis, and therefore, they tend 
to be quite similar. The only exception is the Mahalanobis 
distance map, which tends to depart from the other maps 
because, when using distance, the higher suitability produced 
by this method make it different from the others (although the 
overall “shape” of suitability is not too different).

The same patterns—grouping all similar models and 
contrasting the map generated by Mahalanobis distances—
appears in a UPGMA cluster analysis based on Euclidian 
distances among these maps (Fig. 4B).

Ensemble Forecasting: Phase III. Measuring and Mapping 
the Variance Components of Uncertainty

Diniz-Filho et al. (2009a) and Buisson et al. (2010) have 
recently proposed that linear models can be used to assess 

the relative magnitude of different sources of variation in 
ensemble forecasting. Thus, this would be a third phase in the 
ensemble analysis, the purpose of which is to disentangle the 
different sources of uncertainty and to evaluate (and map, as 
shown below) their magnitude quantitatively.

To increase the number of sources of variation to investigate 
and to better illustrate our variance partitioning approach, 
we analyzed the projections of the ten niche models built 
for U. ornatrix in the future using different models (coupled 
Atmospheric-Ocean Global Circulation Models - AOGCM) 
for climate change. These AOGCMs were the CCCma 
(Canadian Centre for Climate Modeling and Analysis), 
CSIRO (Australia’s Common wealth Scientific and Industrial 
Research Organization), and the HadCM3 (Hadley Centre 
for Climate Prediction and Research’s General Circulation 
Model) (only the pessimistic scenarios were used), the 

Fig. 4. Similarity of the 10 distribution maps of Utheteisa ornatrix, based on 
Euclidian distances of suitabilities and analyzed by multivariate techniques, 
including A) Principal component loadings; B) UPGMA clustering. See 
Table 1 for codes.
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Table I. Short description of the models used in this paper niche modeling of Utheteisa ornatrix, using the software BIOMOD (see Thuiller 2003; Thuiller et 
al. 2009) or MAXENT (Phillips & Dudik 2007). Mahalanobis distance was implemented in the MATLAB platform.

Method
Artificial Neural Network 

(ANN)

Classification Tree Analysis 
(CTA)

Generalized Additive 
Models (GAM)

Generalized Boosting 
Models (GBM)

Generalized Linear Models 
(GLM)

Mahalanobis distance

Maximum Entropy 
(MaxEnt)

Mixture Discriminant 
Analysis (MDA)

Multivariate Adaptive 
Regression Spline (MARS)

Random Forest (RF)

Short description
The ANN are a flexible way to generalize a linear model, selecting the best 
network through a N-fold cross-validation procedure. Criterion is based on the 
number of hidden units and weight decay (accuracy) of each possible result.
The CTA is a method that splits the response in groups as homogenous as 
possible, based on the explanatory variables. The tree that minimizes the 
heterogeneity of each leaf with the smallest number of leafs is found by cross 
validation among possible trees.
GAMs are a generalization of the well-known GLMs (Generalized Linear 
models) that identify the appropriate transformation of the data, maximizing 
the relationship between the response and explanatory variables. To achieve 
this, GAMs use a series of smoothers to fit the data locally, so that these 
models cope for a wide range of response shapes.
GBMs are models that generate a large number of relative simple models (when 
compared to a GLM or a CTA) whose combined prediction is expected to 
produce a robust estimate of the response. Here we used a boosting regression 
tree (BRT) algorithm which combines the results of a given specified number 
of CTA’s classifications trees.
GLSs are mathematical extensions of standard linear models developed to 
deal with non-normal error distribution and allow non-linear relationships 
between the response and the explanatory variables.
The distance model based on the Mahalanobis metrics determine the distance 
of  each point in multivariate space to the centroid of this space (optimum of 
the species), taking into account the covariance structure among explanatory 
variables.
Maxent is a method for making predictions based on incomplete information, 
estimating a target probability distribution by finding the distribution of 
maximum entropy, which is the closest to uniform. This optimization is 
subjected to a set of constraints representing the incomplete information about 
the target distribution.
MDAs are a flexible extension of the classical linear discriminant analysis, 
which searchs for the linear combinations of variables that best discriminated 
between site groups defined by the presence or absence of the species. In 
MDA.
MARS are an alternative regression for fitting non-linear responses using a 
method similar to a piecewise, non-stationary, regression, rather than smooth 
functions used in GAMs. It takes into account that the coefficients to be 
fitted have different optimal values across different levels of the explanatory 
variables.
RF is a generalization of CTA, and “grows” a large number of CTAs based on 
a randomized subset of the predictors, so that each tree is a full-sized tree and 
the final result is obtained by averaging all the partial results.

Software
BIOMOD

BIOMOD

BIOMOD

BIOMOD

BIOMOD

implemented 
in Matlab 

MaxEnt

BIOMOD

BIOMOD

BIOMOD

Parameters used
5-fold
cross-validation

100-fold
cross-validation

3 smoothers

2000
classification
trees

Cubic
polynomial

No user
defined
parameters

1000
iterations

No user
defined
parameters

No user
defined
parameters

No user
defined
parameters

predictions for which were downloaded from Worldclim 
(http://www.worldclim.org/futdown.htm). Thus, it is possible 
to evaluate which source of variation (niche model or climatic 
model) is more important for the overall variation.

First, we can map the simple unweighted consensus 
map under current (Fig. 5A) and future (Fig. 5B) climates 
and evaluate the differences by mean suitability values (Fig. 
5C). It is possible to see that a loss of climatically suitable 
areas will appear in the central part of the species’ range and 
will tend to move in the southeastern direction. However, 
it is important to notice that a large variance around these 
estimates of climatically suitable areas exists in the future 
(Fig. 5D).

The variance partition proposed by Diniz-Filho et al. 
(2009a) allows us to explain why these variances arise in 

geographical space; this involves performing a model II two-
way Analysis of Variance (ANOVA) for each cell in the grid, 
comparing the suitability of the maps from different niche 
models (Factor I) and the climate models (Factor II). Because 
there is no replication, it is impossible to disentangle the error 
from the interaction term, but it is still possible to evaluate 
the main effects. On average, 95.17% of the variation among 
the maps is due to niche models (ranging from 23.71% to 
99.9%), and 0.8% of the variation is due to the differences 
among the climate models (ranging from less than 0.0001% 
to 37.89%).

More importantly, because ANOVA is performed 
independently for each cell, it is possible to map these 
variance components (Fig. 6A). It is also possible to use spatial 
autocorrelation analyses based on Moran’s I correlograms 
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(Diniz-Filho et al. 2003) to determine if spatial structures are 
present in this variance component. The variance component 
due to the effect of niche modeling shows a strong spatial 
pattern, with high Moran’s I forming a clinal correlogram 
(Fig. 6B). As expected under the assumption of phase I of 
ensemble forecasting, the places in which the species are 
indicated as present have much less uncertainty due to the 
niche models than places where the species is clearly not 
found. The variance component due to the climate model 
does not reveal any geographic pattern of variation, because 
it has a non-significant Moran’s I correlogram.

For instance, our results are similar to those obtained by 
Diniz-Filho et al. (2010b), who modeled the distribution of 
the grasshopper Tropidacris cristata in the Neotropics. They 
showed the large effect of niche modeling on the shifts in 
climatically suitable areas towards southeastern Brazil. 

However, in their analysis, the effect of AOGCM and the 
interaction with niche modeling was much more pronounced. 
Diniz-Filho et al. (2009b) also showed the strong effect of 
niche modeling when evaluating the responses of Cerrado 
fauna (species turnover) to climate change.

Dormann et al. (2008) used a similar ANOVA design to 
evaluate uncertainty in niche modeling, but it is important to 
highlight that their response variables were the fit statistics 
from each model. Therefore, although their reasoning is 
similar to that proposed by Diniz-Filho et al. (2009a), the 
approach does not really show the explicit differences among 
the geographic range maps. Rather, it shows which effects 
are responsible for model fitting. This is because we can 
expect that, when using the same data, a very high model fit is 
generated by the same distribution map. However, when the 
model fit decreases (as commonly observed), similar values 

Fig. 5. Projecting geographics ranges into the future and the shifts in Climatically Suitable Areas (CSA) of Utheteisa ornatrix. A) mean current suitability; 
B) mean suitability in the future; C) shifts in CSAs between present and future and; D) variance of differences in CSA among niche models and climatic 
models.

A B

C D

Suitability
0 - 0.1
0.1 - 0.2
0.2 - 0.3
0.3 - 0.4
0.4 - 0.5
0.5 - 0.6
0.6 - 0.7
0.7 - 0.8
0.8 - 0.9
0.9 - 1

Suitability
0 - 0.1
0.1 - 0.2
0.2 - 0.3
0.3 - 0.4
0.4 - 0.5
0.5 - 0.6
0.6 - 0.7
0.7 - 0.8
0.8 - 0.9
0.9 - 1

∆ Suitability
-0.4 - -0.3
-0.3 - -0.2
-0.2 - -0.1
-0.1 - 0
0 - 0.1
0.1 - 0.2
0.2 - 0.3

Variance
0.02 - 0.03
0.03 - 0.05
0.05 - 0.06
0.06 - 0.07
0.07 - 0.09
0.09 - 0.1
0.1 - 0.12
0.12 - 0.13
0.13 - 0.15
0.15 - 0.16
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for the given fit statistics can be produced based on different 
maps.

	
Concluding Remarks
We used the niche modeling analysis of U. ornatrix, 

a Neotropical tiger moth species, to illustrate how recent 
advances in niche modeling can be conservatively used, 
under the framework of ensemble forecasting, to generate 
distribution maps. Although this approach does not overcome 
the critical issue of species’ equilibrium with the environment, 
it may represent a compromise solution if the methods deal 
differently with this assumption (e.g., are not equally robust 
to violations in the assumption). The maps from niche models 
allow both a description of the internal structure of geographic 
ranges, in terms of establishing climatically suitable areas for 
the species, and an understanding of how these areas will shift 
under climate change. We propose three phases for ensemble 
forecasting studies. Phase I includes the combination of maps 
for achieving a consensual—and hopefully conservative—
solution, using different models, data and methods. Phase II 
describes the differences among the maps used, and Phase 

III is the quantitative evaluation of the relative magnitude of 
uncertainties from different sources and their mappings.

Phase I was actually proposed by Araújo & New (2007) 
as an approach that allows researchers to keep working, 
considering the uncertainties and discussions regarding the 
validity and use of different models, both for describing 
species’ niches and for predicting climate changes. However, 
at the same time, they recognize that we can use uncertainty 
levels to improve our knowledge and move the field forward. 
Phase II has been used for several years (e.g., Thuiller 2004; 
Araújo et al. 2005, 2006; Pearson et al. 2006) and can facilitate 
decisions concerning outlier models in multidimensional 
space. Diniz-Filho et al. (2009a; see also Buisson et al. 
2010) proposed Phase III as a more complex way to evaluate 
the magnitude of uncertainty that can be attributed to each 
source. 

Both Phase II and Phase III can be used to improve the 
modeling approach. Our results clearly show that the main 
source of uncertainty in generating geographic ranges is 
niche modeling, and therefore, an effort must be made to 
improve their evaluation. Reducing uncertainty requires a 
better evaluation of models and, perhaps, the development of 
new statistics that find a better compromise between model 
fit and transferability. This may take time, but it may also 
be a promising research solution. In the meantime, the three 
phases of ensemble forecasting can be an alternative for 
modeling species distribution.       
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